Analysis and Prediction of Protein Structure

Jianlin Cheng, PhD

Department of Computer Science Informatics Institute University of Missouri, Columbia

2011

Free for academic use. Copyright @ Jianlin Cheng & original sources for some materials

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Sequence, Structure and Function

Amino Acid Structure

Amino Acids

Amino acid	Abbrev.	Side chain	Hydro- phobic	Polar	Charged	Small	Tiny	Aromatic or Aliphatic	van der Waals volume	Codon	Occurrence in proteins (%)
Alanine	Ala, A	-CH3	х	-	-	X	Х	-	67	GCU, GCC, GCA, GCG	7.8
Cysteine	Cys, C	-CH2SH	х	-	-	X	-	-	86	UGU, UGC	1.9
Aspartate	Asp, D	-CH2COOH	-	к	negative	х	-	-	91	GAU, GAC	5.3
Glutamate	Glu, E	-CH2CH2COOH	-	X	negative	-	-	-	109	GAA, GAG	6.3
Phenylalanine	Phe, F	-CH ₂ C ₆ H ₅	х	-	-	-	-	Aromatic	135	UUU, UUC	3.9
Glycine	Gly, G	-H	х	-	-	x	к	-	48	GGU, GGC, GGA, GGG	7.2
Histidine	His, H	-CH ₂ -C ₃ H ₃ N ₂	-	X	positive	-	-	Aromatic	118	CAU, CAC	2.3
Isoleucine	lle, I	-CH(CH ₃)CH ₂ CH ₃	х	-	-	-	-	Aliphatic	124	AUU, AUC, AUA	5.3
Lysine	Lys, K	-(CH2)4NH2	-	X	positive	-	-	-	135	AAA, AAG	5.9
Leucine	Leu, L	-CH ₂ CH(CH ₃) ₂	x	-	-	-	-	Aliphatic	124	UUA, UUG, CUU, CUC, CUA, CUG	9.1
Methionine	Met, M	-CH ₂ CH ₂ SCH ₃	×	-	-	-	-	-	124	AUG	2.3
Asparagine	Asn, N	-CH2CONH2	-	х	-	x	-	-	96	AAU, AAC	4.3
Proline	Pro, P	-CH2CH2CH2-	х	-	-	X	-	-	90	CCU, CCC, CCA, CCG	5.2
Glutamine	Gin, Q	-CH2CH2CONH2	-	X	-	-	-	-	114	CAA, CAG	4.2
Arginine	Arg, R	-(CH ₂) ₃ NH-C(NH) NH ₂	-	х	positive	-	-	-	148	CGU, CGC, CGA, CGG, AGA, AGG	5.1
Serine	Ser, S	-CH ₂ OH	-	х	-	x	x	-	73	UCU, UCC, UCA, UCG, AGU,AGC	6.B
Threonine	Thr, T	-CH(OH)CH ₃	х	к	-	X	-	-	93	ACU, ACC, ACA, ACG	5.9
Valine	Val, V	-CH(CH ₃) ₂	x	-	-	X	-	Aliphatic	105	GUU, GUC, GUA, GUG	6.6
Tryptophan	Trp, W	-CH ₂ C ₆ H ₆ N	x	-	-	-	-	Aromatic	163	UGG	1.4
Tyrosine	Tyr, Y	-CH ₂ -C ₈ H ₄ OH	х	X	-	-	-	Aromatic	141	UAU, UAC	3.2

Hydrophilic

Protein Sequence

Protein Secondary Structure

- Determined by hydrogen bond patterns
- 3-Class categories: alpha-helix, betasheet, loop (or coil)
- First deduced by Linus Pauling et al.

Alpha-Helix

Jurnak, 2003

Beta-Sheet

Anti-Parallel

Parallel

Non-Repetitive Secondary Structure

Beta-Turn

Tertiary Structure

- John Kendrew et al., Myoglobin
- Max Perutz et al., Haemoglobin
- 1962 Nobel Prize in Chemistry

Perutz Kendrew

haemoglobin

myoglobin

Anfinsen's Folding Experiment

- Structure is uniquely determined by protein sequence
- Protein function is determined by protein structure

Protein Folding Movie

<u>http://www.youtube.com/watch?v=fvBO3T</u>
 <u>qJ6FE&feature=fvw</u> (Demo)

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, Analysis, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Protein Structure Determination

- X-ray crystallography
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- X-ray: any size, accurate (1-3 Angstrom (10⁻¹⁰ m)), sometime hard to grow crystal
- NMR: small to medium size, moderate accuracy, structure in solution

Wikipedia, the free encyclopedia

Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample. Wikipedia, the free encyclopedia

Storage in Protein Data Bank

🐸 RCSB PDB : Structure Explorer - Mozilla	Firefox										
Ele Edit View Go Bookmarks Tools Help											
A state of the state of											
Google - pdb	💌 🔶 Ġ Search 👻	💋 🎴 PageRank 😽 Check	🝷 💐 AutoLink 🐨 AutoF	🖩 🔁 Options 🌛	🖏 pdb						
PROTEIN DATA BANK				A	An In s of Tuesd	formation P day Oct 10, 200	ortal to Biolo	A MEMBER OF THE PDB gical Macromolecular Structures 9323 Structures () PDB Statistics ()			
Contact Us Help Print Page	PDB ID or keyword	Author	SEARCH	🕜 Advanced Sea	rch						
Home Search Structure Queries	Structure Summary	Biology & Chemistry	Materials & Methods S	equence Details	Geometry						
•							11/.16	Images and Visualization			
= 1VJG								Biological Molecule			
Download Files	Title	Crystal structure of	of putative lipase from t	the G-D-S-L fam	ily from No	ostoc sp. at 2.0	1 A resolution	Diological Molecule			
FASTA Sequence	Authors	Joint Center for	Structural Genomics	s (JCSG)							
Display Files Display Molecule											
Structural Reports	Primary Citation Dint Center for Structural Genomics (JCSG) Crystal structure of putative lipase from the G-D-S-L family from Nostoc sp. at 2.01 A resolution To be published										
Structure Analysis											
► Help	Emerimentel	Deposition 2004-0									
	Experimental Method Type X-RAY DIFFRACTION Data 🗎 [EDS]										
	Parameters	Resolution[Å]	R-Value 0.175 (obs.)	R-Free 0.218		Space Group P 3 ₂ 2 1					
	Unit Cell	Length [Å] Angles [°]	a 56.19 alpha 90.00	b beta	56.19 90.00	c gamma	129.32 120.00	Display Options			
	Molecular Description Asymmetric Unit	Polymer: 1 Molecul	e: putative lipase from	the G-D-S-L fan	nily Chain	ns: A		KiNG Jmol WebMol Protein Workshop OuickRDB			
	Functional Class	Structural Genom	iics Unknown Functio	n				All Images			
	So	urce Polymer: 1	Scientific Name: Nostoc	sp. pcc 7120	🔿 Comm	non Name: Bac	t eria Expression	system: Nostoc sp. pcc 7120			
Done											
2 Start 🥘 🖸 🥹 🤷 👋 🗳 Inbo	x - Outlook Express	CAP5937	slides 13	D slides	:1	🙂 RC	SB PDB : Structure				
🕑 🕑 🖾 🗍 🧕 📴 Entr	ez cross-database s	🛿 untitled - Paint						ZUS" Monday			

Search protein 1VJG

SEQRES	1	А	21	GLY	ILE	VAL	GLU	GLN	CYS	CYS	THR	SER	ILE	CYS	SER	LEU	
SEQRES	2	А	21	TYR	GLN	LEU	GLU	ASN	TYR	CYS	ASN						
SEQRES	1	в	29	PHE	VAL	ASN	GLN	HIS	LEU	CYS	GLY	SER	HIS	LEU	VAL	GLU	
SEQRES	2	в	29	ALA	LEU	TYR	LEU	VAL	CYS	GLY	GLU	ARG	GLY	PHE	PHE	TYR	
SEQRES	3	в	29	THR	PRO	LYS											
FORMUL	3	HOH	ł *	'31 (I	H2 01	L)											
HELIX	1	1	GLY	Α	1	CYS	Α	7	1								7
HELIX	2	2	SER	Α	12	ASN	Α	18	1								7
HELIX	3	3	GLY	в	8	GLY	в	20	1								13
HELIX	4	4	GLU	в	21	GLY	В	23	5								3
SSBOND	1	CYS	Α	6	C	YS A	1:	1						1	555	1555	
SSBOND	2	CYS	Α	7	C	YS B		7						1	555	1555	
SSBOND	3	CYS	Α	20	C	YS B	19	9						1	555	1555	
CRYST1	78	.608	3 7	8.6	08	78.0	608	90.0	00 9	90.00	90	0.00	I 21	13		24	
ORIGX1		1.0	00000	00 (0.000	0000	0.0	00000	00		0.0	00000	D				
ORIGX2		0.0	00000	00 3	1.000	0000	0.0	00000	00		0.0	00000	D				
ORIGX3		0.0	00000	00 (0.000	0000	1.0	00000	00		0.0	00000	D				
SCALE1		0.0)1272	21 (0.000	0000	0.0	00000	00		0.0	00000	D				
SCALE2		0.0	00000	00 (0.012	2721	0.0	00000	00		0.0	00000	D				
SCALE3		0.0	00000	00 (0.000	0000	0.0	01272	21		0.0	00000	D				
ATOM	1	N	GI	A Y.	1		45	.324	26	807	11	.863	1.0	00 2	4.82		N
ATOM	2	CI	A GI	A Y.	1		45	.123	27	.787	12	.967	1.0	00 2	4.93		С
ATOM	3	С	GI	A Y.	1		43	.756	27	627	13	.605	1.0	00 2	5.16		С
ATOM	4	0	GI	A Y.	1		43	.107	26	.591	13	.438	1.0	00 2	5.00		0
ATOM	5	N	II	E A	2		43	.313	28	661	14	.323	1.0	00 2	5.21		N
ATOM	6	CZ	A II	E A	2		42	.050	28	622	15	.065	1.0	00 2	5.39		С
ATOM	7	С	II	ΕA	2		40	.818	28	.303	14	.200	1.0	00 2	5.69		С
ATOM	8	0	II	ΕA	2		39	.935	27	565	14	.635	1.0	00 2	5.56		0
ATOM	9	CE	3 II	EA	2		41	.816	29	917	15	.917	1.0	00 2	5.39		С

С D V -С D

Structure Visualization

• Rasmol

(http://www.umass.edu/microbio/rasmol/getras.ht m)

- MDL Chime (plug-in) (http://www.mdl.com/products/framework/chime/)
- Protein Explorer (http://molvis.sdsc.edu/protexpl/frntdoor.htm)
- PyMol

J. Pevsner, 2005

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- **III. Structure Classification**
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Protein Structure Classification

- About 4 million known protein sequences
- About 40,000 known protein structures in PDB
- Many protein structures are similar due to evolutionary relationship
- Many protein structures are similar due to convergent evolution
- Number of unique structure topologies is estimated to be limited (1000 1500?)
- Number of protein sequences is huge (20^{300})

Protein Structure Universe

Proteins. One thousand families for the molecular biologist. C. Chothia. Nature, 1992.

Colors in the universe of protein structures

Christine Orengo 1997 Structures 5 1093-1108

B. Rost, 2005

Typical Folds

- Fold: connectivity or arrangement of secondary structure elements.
- NAD-binding Rossman fold
- 3 layers, a/b/a, parallel beta-sheet of 3 strands. Order: 321456

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1b16;pc=a

Another Fold Example: TIM betaalpha barrel

Contains parallel beta-sheet Barrel, closed. 8 strands. Order 1,2,3,4,5,6,7,8.

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1hti;pc=a

Fold: Helix Bundle (human growth factor)

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1hgu

Fold: beta barrel

N N N

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1rbp

Structure Classification Database

- SCOP (http://scop.berkeley.edu/)
- CATH

(http://cathwww.biochem.ucl.ac.uk/latest/inde x.html)

• Dali/FSSP

(http://ekhidna.biocenter.helsinki.fi/dali/start)

SCOP Classification Levels

Scop Classification Statistics

SCOP: Structural Classification of Proteins. **1.69** release 25973 PDB Entries (1 Oct 2004). 70859 Domains. 1 Literature Reference (excluding nucleic acids and theoretical models)

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	218	376	608
All beta proteins	144	290	560
Alpha and beta proteins (a/b)	136	222	629
Alpha and beta proteins (a+b)	279	409	717
Multi-domain proteins	46	46	61
Membrane and cell surface proteins	47	88	99
Small proteins	75	108	171
Total	945	1539	2845

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- III. Structure Classification
- **IV. 1D Prediction**
- V. 2D Prediction
- VI. 3D Prediction (emphasis)
- VII. Tools and Applications

Goal of structure prediction

- Epstein & Anfinsen, 1961: sequence uniquely determines structure
- INPUT: sequence
 OUTPUT:

3D structure and function
CASP – Olympics of Protein Structure Prediction

- Critical Assessment of Techniques of Protein Structure Prediction
- 1994,1996,1998,2000,20
 02,2004,2006
- Blind Test, Independent Evaluation
- CASP7: 100 targets
- CASP8: 120 targets

1D: Secondary Structure Prediction

Secondary Structure Prediction

- Predict secondary structure from sequence information without using any structural information
- Generation I (statistical methods)
- Generation II (statistical window)
- Generation III (evolutionary information + statistical machine learning)

Secondary Structure Prediction (Generation 1)

Single residues

(1. generation)

1957-70/80

Chou-Fasman, GOR
50-55% accuracy

Secondary structure propensity score of an amino acid AA

Log P(AA in Helix) / P(AA)
Log P(AA in Sheet) / P(AA)
Log P(AA in Loop) / P(AA)

Secondary Structure Prediction (Generation II)

- Segments (window)
- GOR III
- Accuracy: 55-60%
- 1986-1992
- Estimation: max < 65%, Strand: non-local, < 40%

ARSKQPCTWYRESQTCEQRKRTPA Average propensity scores of a window

Helix formation is local

β -sheet formation is NOT local

Erabutoxin β (3ebx)

B. Rost, 2005

R

Output: Prob (H) Prob (E) Prob (L)

Question 1: how to encode an amino acid? Question 2: how to train neural networks? Parameter to decide: window size (51-101)

B. Rost, 2005

Second Breakthrough: Evolutionary Information - Profile

1

1

1			50
fyn human VIIFVAI YDy	EARIEDDISF HK	EKFQIIN SSEGD	WEAR SLITIGEIGYI
yrk chick VIIFIAIYD	EARIEDDLSF OK	EKFĤIN NIEGD	WEAR SLSSCAIGYI
for human VIIFIALYDY	EARIEDDLIF IK	EKFHIIN NIEGD	WEAR SLSSEKIGCI
yes chick VIVFVALYDY	EARITEDLSF KK	ERFQIIN NIEGD	WEAR SIAIGKIGYI
src avis2 VIIFVALYDY	ESRIETDLSF KK	ERLQIVN NIEGD	WIAH SLTIQIGYI
src aviss VIIFVALYDY	ESRIETIDLSF KK	ERLQIVN NIEGD	WIAH SLTIQIGYI
src avisr VIIFVALYDY	ESRIETIDLSF KK	ERLQIVN NIEGD	WUAH SLITIQUIGYI
src chick VIIFVALYDY	ESRIETIDLSF KK	ERLQIVN NIEGD	WUAH SLITIQIGYI
stk hydat VIIFVALYDY	EARISEDLSF KK	FRLQIIN TADOD	WYAR SLIINSEGYI
src rsvpa	ESRIETDLSF KK	RERLQIVN NIEGI	WIAH SLITIQIGYI
hck humanIWALYDY	EAIHHEDLSF QK	EQMANE ES.CE	WKAR SLAIRKEGYI
blk mauseFWALFDY	AANDRDLQV IK	FKLQVIR .SIGD	WIAR SIVICREGYV
hck mouse .TIWALYDY	EAIHREDLSF QK	EAGE .EAGE	WKAR SLAIKKEGYI
lyn humanIWALYPy	DGIHPDDLSF KK	EKAKATE "EHE	WKAK SLLIKKEGFI
lck human LVIALHSY	EPSHDQDIGE'EK	<u> LQLRIIE</u> QS.(<u>H</u>	WKAQ SLITIQEGET
ss81_yeastALYPY	(DADDOELSF' EQ	NEILQ/SD .IEGR	WKAR R.ANELIGII
abl mouseLEVALYD	'VASEDNILSI 'IK	£KLRVLG Ynnæ	NCEAQ'IKNQQGWV
abli human. LEVALYDE	' VASGDNILSI 'IK	£KLRVLG Ynnæ	NCEAQ IKN QGWV
src1 drameWSLYDY	KSRLESDLSF MK		
	DAESSMELSE KE		WLAE L. KORKGKV
yrj4 yeastVALYSH	A-FFSGLPF RK		
	VASGUNILSI IK		WSEV KSKIG.QGW
			WRAR D.KIGNEGIL
alpt_salexAEIDI	. CASELINELLE AL		

B. Rost, 2005

Comments: frequency is often normalized into probability

Prediction of protein secondary structure

- 1980: 55% simple
- 1990: 60% less simple
- 1993: 70% evolution
- 2000: 76% more evolution
- what is the limit?
 - 88% for proteins of similar structure
 - missing through:

better definition of secondary structure including long-range interactions

- structural switches
- chameleon / folding

Useful Tools

- PSI-PRED (http://bioinf.cs.ucl.ac.uk/psipred/)
- SSpro (http://casp.rnet.missouri.edu/sspro4.html)
- Porter (http://distill.ucd.ie/porter/)
- Prof_PHD (http://cubic.bioc.columbia.edu/predictprotein/)
- SAM (http://www.cse.ucsc.edu/research/compbio/sam.html)

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Tools and Projects

2D: Contact Map Prediction **2D** Contact Map **3D Structure** J.....n 2 3 1 . . n

Distance Threshold = 8A^o

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Main Contact Prediction Tools

SVMcon: Protein Contact Map Prediction Using Support Vector Machine and a Large Feature Set

(Download SVMcon 1.0 software and source code (Linux version))

Email address (where the prediction will be sent):

Target Name (required):

Protein sequence (one plain sequence, no headers, at most 400 residues):

Cheng and Baldi, BMC Bioinformatics, 2007

Main Contact Prediction Tools

NNcon: Protein Contact Map Prediction Using Artificial Neural Networks (Help)

Email address(where the prediction will be sent):

Target Name(required):

Protein sequence(one plain sequence, no headers, and length < 1000 amino acids; an example sequence is here):

Predict

Tegge et al., Nucleic Acids Research, 2009

Take home: 2D prediction

- Prediction hard, but stakes are high
- inter-residue
 - Correlated mutations can imply spatial proximity
 - Distinction between different models, no accurate prediction of 3D, yet
- Don't freak out when accuracy is low
 - 1) how accurate are these prediction methods on average
 - 2) are all important contacts predicted?
- for 5% of the best-predicted contacts prediction accuracy about 50% (sequence separation >= 6)

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- **VI. 3D Prediction**
- VII. Useful Tools

Two Methodologies for 3D Structure Prediction

- AB Initio Method (physical-chemical principles / molecular dynamics, knowledge-based approaches)
- Template-Based Method (knowledge-based approaches)

Two Approaches

Protein Data Bank

Ab Initio Structure Prediction

- Energy Function
- Structure Sampling
- Currently, the accuracy of *Ab-Initio* method is low.
- Energy function is not accurate.
- Sampling method can't find the structure with lowest energy in majority of cases.
- Sampling takes a long time and only is able to sample a small structure space.

Protein Energy Landscape

Markov Chain Monte Carlo Simulation

picture from http://www.scripps.edu/pub/olson-web/people/sanner/html/lat_gallerv.html

Some Ab Initio Tools

• David Baker's Rosetta

(http://depts.washington.edu/ventures/UW_Technology/Express_Licen ses/Rosetta/)

- Cheng's MULTICOM
- Xu et al.'s MUFOLD
- Zhang and Skolnick's TASSER

Template-Based Structure Prediction

- 1. Template identification
- 2. Query-template alignment
- 3. Model generation
- 4. Model evaluation
- 5. Model refinement

Notes: if template is easy to identify, it is often called **comparative Modeling or homology** modeling. If template is hard to identify, it is often called **fold recognition**.

Template Identification

- Sequence alignment (BLAST, Smith-Waterman algorithm)
- Sequence profile alignment (PSI-BLAST, HMM (SAM-T02, Hammer)
- Profile-Profile alignment (HHSearch, Sparks, Compass, FFAS, BASIC)
- Sequence-Structure Alignment (3D-1D, FUGUE, mGenThreader, Raptor)
- Consensus (Pcons, 3D-Jury)
- Machine Learning Information Retrieval Approach (FOLDpro)

Classic Fold Recognition Approaches Profile - Sequence Alignment (Altschul et al., 1997) ITAKPAKTPTSPKEQAIGLSVTFLSFLLPAGWVLYHL Query ITAKPEKTPTSPREQAIGLSVTFLEFLLPAGWVLYHL **ITAKPAKTPTSPKEEAIGLSVTFLSFLLPAGWVLYHL** Family Average ITAKPQKTPTSLKEQAIGLSVTFLSFLLPAGWALYHL Score Template ITAKPQWLKTSERSTEWQSVTFLSFLLPQTQGLYHN

More sensitive for distant homologs in superfamily. (> 25% identity)

Classic Fold Recognition Approaches

Profile - Sequence Alignment

Or Hidden Markov Model

(Altschul et al., 1997)

Template ITAKPQWLKTSERSTEWQSVTFLSFLLPQTQGLYHN

More sensitive for distant homologs in superfamily. (> 25% identity)

Classic Fold Recognition Approaches

Profile - Profile Alignment

(Rychlewski et al., 2000)

More sensitive for very distant homologs. (> 15% identity)

Useful for recognizing similar folds without sequence similarity. (no evolutionary relationship)

Machine Learning Information Retrieval Framework

Cheng and Baldi. Bioinformatics, 2006

Pairwise Feature Extraction

- Sequence / Family Information Features Cosine, correlation, and Gaussian kernel
- Sequence Sequence Alignment Features Palign, ClustalW
- Sequence Profile Alignment Features PSI-BLAST, IMPALA, HMMer, RPS-BLAST
- **Profile Profile Alignment Features** ClustalW, HHSearch, Lobster, Compass, PRC-HMM
- Structural Features

Secondary structure, solvent accessibility, contact map, betasheet topology

Query-Template Alignment

- Most fold recognition methods are some kind of specialized alignment methods. So they generate alignments.
- For similar sequences, PSI-BLAST alignment is ok. For distantly related sequences, profile-profile alignment methods seem to be better (HHSearch, COMPASS, LOBSTER (COACH), CLUSTALW, T-Coffee, and so on).

Model Generation

- Modeller

 (http://www.salilab.org/modeller/download
 _installation.html)
- Swiss-Model (http://swissmodel.expasy.org//SWISS-MODEL.html)
- Segmod/ENCAD (csb.stanford.edu/levitt/segmod/)

TARGET

ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

A. Fisher, 2005
How to use Modeller

- Need an alignment file between query and template sequence in the PIR format
- Need the structure (atom coordinates) file of template protein
- You need to write a simple script (Python for version 8.2) to tell how to generate the model and where to find the alignment file and template structure file.
- Run Modeller on the script. Modeller will automatically copy coordinates and make necessary adjustments to generate a model.
- See project step 5-8 for more details.

An PIR Alignment Example

NIRVIARVRPVTKEDGEGPEATNAVTFDADDDSIIHLLHKGKPVSFELDKVFSPQASQQDVFQEVQ ALVTSCIDGFNVCIFAYGQTGAGKTYTMEGTAENPGINQRALQLLFSEVQEKASDWEYTITVSAAE IYNEVLRDLLGKEPQEKLEIRLCPDGSGQLYVPGLTEFQVQSVDDINKVFEFGHTNRTTEFTNLNE HSSRSHALLIVTVRGVDCSTGLRTTGKLNLVDLAGSERVGKSGAEGSRLREAQHINKSLSALGDVI AALRSRQGHVPFRNSKLTYLLQDSLSGDSKTLMVV-----QVSPVEKNTSETLYSLKFAER--------VR*

Structure File Example (1SDMA.atm)

ATOM	1	Ν	LYS	1	-3.978	26.298 113.043	1.00 31.75	N
ATOM	2	CA	LYS	1	-4.532	25.067 113.678	1.00 31.58	С
ATOM	3	С	LYS	1	-5.805	25.389 114.448	1.00 30.38	С
ATOM	4	0	LYS	1	-6.887	24.945 114.072	1.00 32.68	0
ATOM	5	СВ	LYS	1	-3.507	24.446 114.631	1.00 34.97	С
ATOM	6	CG	LYS	1	-3.743	22.970 114.942	1.00 36.49	С
ATOM	7	CD	LYS	1	-3.886	22.172 113.644	1.00 39.52	С
ATOM	8	CE	LYS	1	-3.318	20.766 113.761	1.00 41.58	С
ATOM	9	ΝZ	LYS	1	-1.817	20.761 113.756	1.00 43.48	N
ATOM	10	Ν	ILE	2	-5.687	26.161 115.522	1.00 26.16	N
ATOM	11	CA	ILE	2	-6.867	26.500 116.302	1.00 22.75	С
ATOM	12	С	ILE	2	-7.887	27.226 115.439	1.00 21.35	С
ATOM	13	0	ILE	2	-7.565	28.200 114.770	1.00 20.95	0
ATOM	14	CB	ILE	2	-6.513	27.377 117.523	1.00 21.68	С
ATOM	15	CG1	ILE	2	-5.701	26.563 118.526	1.00 21.13	С
ATOM	16	CG2	ILE	2	-7.782	27.875 118.200	1.00 18.96	С
ATOM	17	CD1	ILE	2	-5.368	27.325 119.787	1.00 21.39	С
ATOM	18	Ν	ARG	3	-9.120	26.737 115.461	1.00 22.04	N
ATOM	19	CA	ARG	3	-10.214	27.327 114.693	1.00 23.95	С
ATOM	20	С	ARG	3	-10.783	28.563 115.400	1.00 22.82	С
ATOM	21	0	ARG	3	-10.771	28.645 116.629	1.00 22.62	0
ATOM	22	СВ	ARG	3	-11.327	26.290 114.510	1.00 26.34	С
ATOM	23	CG	ARG	3	-11.351	25.586 113.161	1.00 30.68	С
ATOM	24	CD	ARG	3	-10.004	25.034 112.771	1.00 35.43	С
ATOM	25	NE	ARG	3	-10.104	24.072 111.672	1.00 43.37	N
ATOM	26	СΖ	ARG	3	-10.575	24.350 110.458	1.00 46.04	С
ATOM	27	NH1	ARG	3	-10.997	25.572 110.168	1.00 48.68	N
ATOM	28	NH2	ARG	3	-10.627	23.400 109.532	1.00 48.37	N
ATOM	29	Ν	VAL	4	-11.278	29.524 114.630	1.00 20.49	N
ATOM	30	CA	VAL	4	-11.853	30.724 115.225	1.00 17.59	С
ATOM	31	С	VAL	4	-13.082	31.211 114.471	1.00 18.31	С
ATOM	32	0	VAL	4	-13.030	31.446 113.264	1.00 16.37	0
ATOM	33	СВ	VAL	4	-10.834	31.872 115.272	1.00 19.94	С
ATOM	34	CG1	VAL	4	-11.512	33.168 115.759	1.00 15.64	С
ATOM	35	CG2	VAL	4	-9.668	31.489 116.168	1.00 15.45	С

Modeller Python Script (bioinfo.py)

Output Example

Command: mod8v2 bioinfo.py

Model Evaluation

- Prosa (http://www.came.sbg.ac.at/Services/prosa.html)
- Verify-3D (http://nihserver.mbi.ucla.edu/Verify_3D/)
- ProCheck (http://www.biochem.ucl.ac.uk/~roman/procheck/procheck .html)
- ModelEvaluator: Machine learning approach (Zheng et al., Proteins, 2008)
- APOLLO (Zheng et al., Bioinformatics, 2011)

Sequence Identity and Alignment Quality in Structure Prediction

Superimpose -> RMSD

%Sequence Identity: percent of identical residues in alignment **RMSD**: square root of average distance between predicted structure and native structure.

Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction (emphasis)
- **VII.** Tools and Applications

3D Structure Prediction Tools

- I-TASSER: http://zhang.bioinformatics.ku.edu/I-TASSER/
- MULTICOM: <u>http://casp.rnet.missouri.edu/multicom.html</u>
- Sparks (<u>http://phyyz4.med.buffalo.edu/hzhou/anonymous-fold-sp3.html</u>)
- HHpred (http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpre d)
- Robetta (<u>http://robetta.bakerlab.org/</u>)
- FUGUE (<u>http://www-cryst.bioc.cam.ac.uk/%7Efugue/prfsearch.html</u>)
- FOLDpro (http://mine5.ics.uci.edu:1026/foldpro.html)
- SAM (http://www.cse.ucsc.edu/research/compbio/sam.html)
- 3D-PSSM (http://www.sbg.bio.ic.ac.uk/3dpssm/)
- mGenThreader (<u>http://bioinf.cs.ucl.ac.uk/psipred/psiform.html</u>)
- 3D-Jury (http://bioinfo.pl/Meta/)
- FFAS (http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl)
- PCONS (<u>http://pcons.net/</u>)
- Phyre (<u>http://www.sbg.bio.ic.ac.uk/~phyre/</u>)

Protein Folding Game: FoldIt

• Video:

http://www.youtube.com/watch?v=lGYJyur4FUA

Fun: Movie Demo

http://www.youtube.com/watch?v= E0J9H3Yxjec&feature=related

Assignment (Review one paper)

- Y. Zhang. Protein structure prediction: when is it useful? Current Opinion in Structural Biology, vol. 19, 145-155, 2009.
- Review the paper and write one page summary
- Due Sept. 9, 2011