Computational Gene Finding

Dong Xu

Digital Biology Laboratory
Computer Science Department Christopher S. Life Sciences Center University of Missouri, Columbia E-mail: xudong@missouri.edu http://digbio.missouri.edu

Lecture Outline

- Protein-encoding genes and gene structures
- Computational models for coding regions
- Computational models for coding-region boundaries
- Markov chain model for coding regions

What Is a Gene?

Definition: A gene is the nucleotide sequence that stores the information which specifies the order of the monomers in a final functional polypeptide or RNA molecule, or set of closely related isoforms (Epp CD, Nature, 389: 537).

Gene and Disease

Environment

Genes

Monogenic Diseases

- Cystic fibrosis
- Huntington' s disease
- Haemophilia
- Phenylketonuria

Common Diseases

- Alzheimer disease
- Adult onset diabetes
- Cancer
- Cardiovascular disease
- Depression

Infections

- Influenza
- Hepatitis
- AIDS

Genetic Code

Reading Frame

- Reading (or translation) frame: each DNA segment has six possible reading frames

Forward strand:

Reading frame \#1
ATG
GCT
TAC
GCT TGC

Reverse strand:

Reading frame \#4
TCA

AGC
GTA
AGC
CAT

ATGGCTACGCTTGA

Reading frame \#2	Reading
TGG	GGC
CTT	TTA
ACG	CGC
CTT	TTG
GA.	A..

TCAAGCGTAAGCCAT

Reading frame \#5	Reading
CAA	AAG
GCG	CGT
TAA	AAG
GCC	CCA
AT.	T..

Prokaryotic Gene Structure

\square

Coding region of Open Reading Frame
Promoter region (maybe)

Ribosome binding site (maybe)

Termination sequence (maybe)

Start codon / Stop Codon

Open reading frame (ORF): a segment of DNA with two in-frame stop codons at the two ends and no in-frame stop codon in the middle

Eukaryotic Gene Structure

Gene Structure Rules

- Each coding region (exon) has a fixed translation frame (no gaps allowed)
- All exons of a gene are on the same strand
- Neighboring exons of a gene can have different reading frames

Computational Gene

 Finding- The Problem: Given a stretch of DNA sequence, find all coding regions and construct gene structures from identified exons if needed atgaacagacgcgatcttcttttacaagaaatgggcatttcccagtgggaattatatcgc cccqaggtactgcaaggttcaqtagyaat tagtytggcagagaatattcgccttaptcact gtttccgatgaaaatatcagtagctcgcctttgttggctgatgtgctgttaagccttaat cttaalaaagaaaattgtttatgtttgaattacgatcaaatccagcatatggaatgtaaa \&agcctattcgttattggttactatcagaaaatagcgaccaaattbaccgcactttgcca. ttttgcaagcaggctgagcaggtttatcgctcgccaagttggcagcaatttcaatctaat catceaqccaaacqaqcottqtqqcaacaalttcaqcaqccttaa
- A gene finding problem can be decomposed into two problems:
K identification of coding potential of a region in a particular frame
K identification of boundaries between coding and non-coding regions

Repetitive Sequence

- Definition

KDNA sequences that made up of copies of the same or nearly the same nucleotide sequence
K Present in many copies per chromosome set

Repeat Filtering

- RepeatMasker

\measuredangle Uses precompiled representative sequence libraries to find homologous copies of known repeat families
K Use Blast
Khttp://www.repeatmasker.org/

Gene Finding Tools

- Genscan
(http://genes.mit.edu/GENSCAN.html)
- GeneMarkHMM
(http://opal.biology.gatech.edu/GeneMark/)
- GRAIL (http://compbio.ornl.gov/Grail-1.3/)
- Genie
(http://www.fruitfly.org/seq tools/genie.html)
- Glimmer
(http://www.tigr.org/softlab/glimmer)

Testing Finding Tools

- Access Genscan (http://genes.mit.edu/GENSCAN.html)
- Use a sequence at
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide\&val=8077108

Lecture Outline

- Protein-encoding genes and gene structures
- Computational models for coding regions
- Computational models for coding-region boundaries
- Markov chain model for coding regions

Coding Signal Detection (1)

- Frequency distribution of dimers in protein sequence (shewanella)

Name	ala	arg	asn	asp	cys	gu	gn	gly	his	Ile	leu	lys	met	he	pro			rp		val
ala	9.5	4.1	4.3	5.3	1.2	6	4.8	6.5	2	6.5	11.5	6	2.6	3.7	3.5	6.2	5	1	2.7	6.5
arg	7.9	5.5	3.9	5.3	1.1	6	5.5	5.9	2.6	6.5	11.4	5	2.2	4.7	3.6	5.5	4.4	1.4	4	6.6
asn	9.6	4.9	4.2	4.9	1	5.3	5.6	7.4	2.3	6	10	4.9	2	3.5	5.1	1	5.5	1.5	. 1	6.1
as	9.3	4	4.7	5.1	1	6.7	2.9	7	1.8	7.1	9.6	6.3	2.3	4.3	3.9	5.9	5.1	1.6	3.6	6.6
cys	8.4	4.8	3.3	5.4	1.7	5.6	5.2	8.1	4.3	5.4	10.2	3.8	1.8	4.1	4.5	6.3	4.3	1.6	3.4	6.8
glu	9.4	5.8	3.6	4.5	0.8	4.9	7	5.8	2.6	5.9	12.7	5	2.4	4	3.5	5.4	5	1.1	2.8	6.8
gln	10.3	4.9	3	4.4	0.9	4.5	6.8	7	2.7	5.5	12.8	4.1	2	3.9	3.8	5.8	5.3	1.4	3	6.9
gly	8.1	4.8	3.9	5.1	1.2	6	4.6	6.4	2.4	6.8	10.5	5.8	2.7	4.8	2.4	5.8	5.1	1.4	3.7	7.5
his	7.3	4.7	4	4.8	1.5	4.9	5.6	6.9	3	6.2	10.8	4.8	1.6	5	5.2	6.8	4.9	1.7	4.2	5.1
ile	11	4.7	4.9	6.5	1.1	6.9	3.6	7.2	2.1	5.3	8.6	5.3	1.8	3.2	4.2	7	5.6	0.9	2.9	6.1
leu	10.4	4.2	4.3	5.2	1.1	5.2	3.7	6.8	2	5.6	10.6	5.3	2.3	3.8	4.5	7.4	6.2	1	2.6	6.6
lys	10.6	5.2	3.8	5.2	0.5	5.3	5.9	6.6	2.6	5.2	11.3	4.7	1.9	2.8	4.6	6	5.5	1.2	2.6	7.6
met	10.8	4.8	3.8	4.6	0.7	4.6	4.9	7	1.7	4.7	11.4	5.2	2.8	3.3	5.1	7.4	6.3	0.9	2	6.8
phe	9.6	3.7	5.2	6.5	1.2	6.4	2.7	7.9	1.9	6.7	7.4	5	2.5	3.9	3.6	8	5.8	1.3	3.3	6.3
pro	8.4	3.6	4.6	5.4	0.	7.6	5.2	5.4	2.3	6.1	11.2	5.5	2.4	4.2	2.8	6.5	5.4	1.4	2.9	7.5
ser	9.1	4.6	3.7	5	1	5.4	5.2	7.2	2.6	6	11.6	4.5	2.2	4.1	4.1	6.5	5	1.2	3.2	6.8
thr	9.1	4.2	3.7	5.6	0.9	5.7	5.7	7.5	2.2	5.5	12	4.2	2	3.5	5.5	6.2	5.3	1.1	2.6	6.7
trp	7.1	6.3	3.2	4.8	1.3	3.9	8.5	6.6	3.6	5	14.2	3.2	2.4	4.6	3.9	5.8	4.3	1.3	3	6.1
tyr	7.9	6.5	3.6	4.9	1.2	4.5	7	7.1	2.6	5	11.7	4	1.6	4.7	4.9	6.4	4.6	1.5	3.4	5.7
val	9.6	4.1	4.4	5.9	1	6.2	3.4	6.4	1.8	6.5	10.2	5.2	2.5	3.7	3.8	7.2	6.1	1.1	2.7	7.1

The average frequency is 5%

Some amino acids prefer to be next to each other

Some other amino acids prefer to be not next to each other

Coding Signal Detection (2)

- Dimer bias (or preference) could imply di-codon (6-mers like AAA TTT) bias in coding versus non-coding regions
- Relative frequencies of a di-codon in coding versus non-coding
K frequency of dicodon X (e.g, AAAAAA) in coding region, total number of occurrences of X divided by total number of dicocon occurrences
K frequency of dicodon X (e.g, AAAAAA) in noncoding region, total number of occurrences of X divided by total number of dicodon occurrences

In human genome, frequency of dicodon "AAA AAA" is
$\sim 1 \%$ in coding region versus $\sim 5 \%$ in non-coding region
Question: if you see a region with many "AAA AAA", would you guess it is a coding or non-coding region?

Coding Signal Detection (3)

- Most dicodons show bias towards either coding or noncoding regions; only fraction of dicodons is neutral
- Foundation for coding region identification

Regions consisting of dicodons that mostly tend to be in coding regions are probably coding regions; otherwise non-coding regions

- Dicodon frequencies are key signal used for coding region detection; all gene finding programs use this information

Coding Signal Detection (4)

- Dicodon frequencies in coding versus non-coding are genome-dependent

Name	ala									ile	leu									
ala	9.5	4.1	4.3	5.3	1.2	. 6	4.8	6.5	2	6.5	11.5	6	2.6	3.7	3.5	6.2	5	1.1	2.7	. 5
arg	7.9	5.5	3.9	5.3	1.1	- 6	5.5	5.9	2.6	6.5	11.4	5	2.2	4.7	3.6	5.5	4.4	1.4	4	. 6
asn	9.6	4.9	4.2	4.9	1	5.3	5.6	7.4	2.3	6	10	4.9	2	3.5	5.1	6.1	5.5	1.5	3.1	6.1
asp	9.3	4	4.7	5.1	1	6.7	2.9	7	1.8	7.1	9.6	6.3	2.3	4.3	3.9	5.9	5.1	1.6	3.6	6.6
cys	8.4	4.8	3.3	5.4	1.7	5.6	5.2	8.1	4.3	5.4	10.2	3.8	1.8	4.1	4.5	6.3	4.3	1.6	3.4	6.8
glu	9.4	5.8	3.6	4.5	0.8	4.9	7	5.8	2.6	5.9	12.7	5	2.4	4	3.5	5.4	5	1.1	2.8	6.8
gln	10.3	4.9	3	4.4	0.9	4.5	6.8	7	2.7	5.5	12.8	4.1	2	3.9	3.8	5.8	5.3	1.4	3	6.9
gly	8.1	4.8	3.9	5.1	1.2	. 6	4.6	6.4	2.4	6.8	10.5	5.8	2.7	4.8	2.4	5.8	5.1	1.4	3.7	7.5
his	7.3	4.7	4	4.8	1.5	4.9	5.6	6.9	3	6.2	10.8	4.8	1.6	5	5.2	6.8	4.9	1.7	4.2	
ile	11	4.7	4.9	6.5	1.1	6.9	3.6	7.2	2.1	5.3	8.6	5.3	1.8	3.2	4.2	7	5.6	0.9	2.9	6.1
leu	10.4	4.2	4.3	5.2	1.1	5.2	3.7	6.8	2	5.6	10.6	5.3	2.3	3.8	4.5	7.4	6.2	1	2.6	
lys	10.6	5.2	3.8	5.2	0.5	5.3	5.9	6.6	2.6	5.2	11.3	4.7	1.9	2.8	4.6	6	5.5	1.2	2.6	
met	10.8	4.8	3.8	4.6	0.7	4.6	4.9	7	1.7	4.7	11.4	5.2	2.8	3.3	5.1	7.4	6.3	0.9	2	6.8
phe	9.6	3.7	5.2	6.5	1.2	6.4	2.7	7.9	1.9	6.7	7.4	5	2.5	3.9	3.6	8	5.8	1.3	3.3	6.3
pro	8.4	3.6	4.6	5.4	0.7	7.6	5.2	5.4	2.3	6.1	11.2	5.5	2.4	4.2	2.8	6.5	5.4	1.4	2.9	7.5
ser	9.1	4.6	3.7	5	1	5.4	5.2	7.2	2.6	6	11.6	4.5	2.2	4.1	4.1	6.5	5	1.2	3.2	6.8
thr	9.1	4.2	3.7	5.6	0.9	5.7	5.7	7.5	2.2	5.5	12	4.2	2	3.5	5.5	6.2	5.3	1.1	2.6	6.7
trp	7.1	6.3	3.2	4.8	1.3	3.9	8.5	6.6	3.6	5	14.2	3.2	2.4	4.6	3.9	5.8	4.3	1.3	3	6.1
tyr	7.9	6.5	3.6	4.9	1.2	4.5	7	7.1	2.6	5	11.7	4	1.6	4.7	4.9	6.4	4.6	1.5	3.4	5.7
val	9.6		4.4	5.9	1	6.2	3.		1.8	65	10.2	5.2	2.5	37	3.8					

shewanella

bovine

Na	ala	arg						gly	his	ile	leu	lys								
ala	11.4	5.9	3.1	4.5	1.9	5.8	3.6	7.7	1.9	4.3	9.7	4.3	2.1	3.7	6.4	6.4	5.6	1.1	2.6	. 8
arg	8.5	7.7	4	4.6	2.3	5.9	3.8	7.6	2.5	4.4	9.2	5	1.7	4	5.3	6.3	5	1.5	3.4	6.5
asn	6.3	4.9	4.9	4.4	2.1	5.3	4.1	6.9	2.2	5.6	9.7	5.4	2.1	4.1	5.9	7.3	5.3	1.9	4.6	6.2
asp	7.4	4.9	3.5	5.4	2.4	6.6	3.4	7.4	2.1	5.4	9.5	4.7	2	4.4	5.4	6.8	5.7	1.6	4	. 4
cys	6.9	5.9	4	5.4	2.7	5.6	4.9	7.1	3	4.4	8.8	5.4	1.6	3.5	6.8	. 4	5.7	. 4	2.7	5.7
glu	7.8	5.3	4.3	6.4	1.9	9.7	3.7	6.8	2	5.1	8.2	6.2	2.2	3.3	4.8	5.3	5.4	1.2	3.2	6.2
g	7.9	5.6	4.2	5	2	6.6	5.1	6.9	2.1	4.7	9.3	5.7	2	3.3	5.9	5.7	6.1	1.6	3.3	. 2
gly	7.9	5.8	3.9	5	1.9	6.2	3.5	8	1.8	4.7	8.7	5.2	1.7	3.7	6.9	7.4	5.8	1.4	. 2	2
his	6	5.8	4.3	3.5	2.9	5.1	4.1	6.3	3.2	4.5	10.6	4.8	1.6	4.5	6.7	6.6	6.1	1.7	. 9	6
ile	6.2	4.9	4.9	4.7	2.4	5.3	4.6	5.8	2.2	6	9.9	5.3	2.1	4.1	5.3	7.7	6.9	1.2	3.7	6
leu	7.7	5.6	4.1	4.7	2.1	5.8	4.5	6.8	2.	4.6	11	5.	1.9	3.7	5.7	7	5.5	1.2	. 1	6.4
lys	6.3	5.2	4.8	5.2	2.1	7.2	3.7	6.7	2.2	6	8.5	7.5	2	3.5	4.8	6.1	5.8	1.6	3.5	. 3
met	9.3	5.3	4.1	5.9	1.6	6.1	3.5	6.4	1.6	4.1	9.6	6.6	2.6	4	5.1	6.9	5.5	1	3.2	6.6
ph	6	5.4	4.5	5.2	2.5	5.5	4.1	6.5	2.3	5.3	10.2	5.2	1.8	4.1	5.3	7.8	5.8	1.4	3.9	6.2
pro	8.5	5.4	3.1	5.1	1.9	6.7	3.9	9.5	1.9	4.3	7.7	4.3	1.7	3.3	8.7	6.9	5.7	1.4	2.8	6.4
ser	6.7	5.4	3.8	4.9	2.3	5.4	4	7.9	2.1	4.5	9.5	5.2	1.8	4	5.7	8.6	6.2	1.4	3	6.4
thr	7.5	4.6	3.7	5	2.6	5.7	3.8	6.8	2	5.2	9.7	4.4	1.8	3.9	6	7.2	7.3	1.5	3.5	6.9
trp	7.1	5.2	4.9	5.5	2.3	5.4	4.3	5.8	2.2	5.6	9.5	6.6	2.1	3.8	4.1	6.4	5.9	1.7	3.7	6.8
tyr	5.8	5.7	5	5.1	2.3	5.7	4.1	6.2	2.4	5	8.6	5.6	1.9	5	4.8	6.7	6.3	1.5	4.8	6.5
val	7.6	5	4.4	5.2	2.4	5.7	3.7	6.3	1.9	5	9.3	5.1	2.1	4.1	5.5	6.9	6.6	1.1	3.6	7.4

Coding Signal Detection (5)

- in-frame versus any-frame dicodons

In-frame:
ATG TTG
GAT GCC
CAG AAG

Not in-frame:
TGTTGG, ATGCCC
AGAAG ., GTTGGA
AGCCCA, AGAAG ..
more
sensitive

Computational Model (1)

- Preference model:
K for each dicodon X (e.g., AAA AAA), calculate its frequencies in coding and non-coding regions, $\mathrm{FC}(\mathrm{X}), \mathrm{FN}(\mathrm{X})$
K calculate X 's preference value $P(X)=\log (F C(X) / F N(X))$
- Properties:
$K P(X)$ is 0 if X has the same frequencies in coding and non-coding regions
$K P(X)$ has positive score if X has higher frequency in coding than in non-coding region; the larger the difference the more positive the score is
$K P(X)$ has negative score if X has higher frequency in non-coding than in coding region; the larger the difference the more negative the score is

Computational Model (2)

- Example

```
AAA ATT, AAA GAC, AAA TAG have the following frequencies
FC(AAA ATT) = 1.4%, FN(AAA ATT ) = 5.2%
FC(AAA GAC) = 1.9%, FN(AAA GAC) = 4.8%
FC(AAA TAG) = 0.0%, FN(AAA TAG) = 6.3%
We have
P(AAA ATT ) = log (1.4/5.2) = -0.57
P(AAA GAC) = log (1.9/4.8) = -0.40
P(AAA TAG) = - infinity (treating STOP codons differently)
A region consisting of only these dicodons is probably a non-coding region
```

- Coding preference of a region (an any-frame model)

Calculate the preference scores of all dicodons of the region and sum them up; If the total score is positive, predict the region to be a coding region; otherwise a non-coding region.

Computational Model (3)

- In-frame preference model (most commonly used in prediction programs)

```
Data collection step:
For each known coding region,
calculate in-frame preference score, P}\mp@subsup{P}{0}{}(X)\mathrm{ , of each dicodon X; e.g., \(\underbrace{\text { ATG TGG }} \underbrace{\text { GGC GCJ }} \ldots .\).
calculate (in-frame +1) preference score, \(P_{1}(X)\), of each dicodon \(X\); e.g., AT \(\underbrace{G}\) TGC GGC \(\underbrace{G C T} . .\).
calculate (in-frame +2 ) preference score, \(P_{2}(X)\), of each dicodon \(X\); e.g., ATG \(\underbrace{\text { TGC CGC }} \underbrace{\text { GCT ..... }}\).
```


Application step:

For each possible reading frame of a region, calculate the total in-frame preference score $\Sigma P_{0}(X)$, the total (in-frame +1) preference score $\Sigma P_{1}(X)$, the total (in-frame +2) preference score $\Sigma P_{2}(X)$, and sum them up If the score is positive, predict it to be a coding region; otherwise non-coding

Computational Model (4)

- Prediction procedure of coding region

Procedure:
Calculate all ORFs of a DNA segment;
For each ORF, do the following
slide through the ORF with an increment of 10 base-pairs calculate the preference score, in same frame of ORF, within a window of 60 base-pairs; and assign the score to the center of the window

Example (forward strand in one particular frame)

Computational Model (5)

- Making the call: coding or non-coding and where the boundaries are

- Need a training set with known coding and non-coding regions
K select threshold(s) to include as many known coding regions as possible, and in the same time to exclude as many known non-coding regions as possible

If threshold $=0.2$, we will include 90% of coding regions and also 10% of non-coding regions If threshold $=0.4$, we will include 70% of coding regions and also 6% of non-coding regions If threshold $=0.5$, we will include 60% of coding regions and also 2% of non-coding regions

Computational Model (6)

- Why dicodon (6mer)?

Codon (3mer) -based models are not nearly as information rich as dicodon-based models
Tricodon (9mers)-based models need too many data points for it to be practical
People have used 7-mer or 8-mer based models; they could provide better prediction methods 6-mer based models

```
There are
\[
4 * 4 * 4=64 \text { codons }
\]
\[
4^{*} 4^{*} 4^{*} 4^{*} 4^{*} 4=4,096 \text { di-codons }
\]
\[
4^{*} 4^{*} 4^{*} 4^{*} 4^{*} 4^{*} 4^{*} 4^{*} 4=262,144 \text { tricodons }
\]
```

To make our statistics reliable, we would need at least ~15 occurrences of each X-mer; so for tricodon-based models, we need at least $15^{*} 262144=3932160$ coding bases in our training data, which is probably not going to be available for most of the genomes

Lecture Outline

- Protein-encoding genes and gene structures
- Computational models for coding regions
- Computational models for coding-region boundaries
- Markov chain model for coding regions

Signals for
Coding-Region Boundaries (1)

- Possible boundaries of an exon

- Both splice junction sites and translation starts have certain distribution profiles
- Acceptor site (human genome)
K if we align all known acceptor sites (with their splice junction site aligned), we have the following nucleotide distribution

$\mathbf{Y}_{75} \mathbf{Y}_{72} \mathbf{Y}_{78} \mathbf{Y}_{79} \mathbf{Y}_{77} \mathbf{Y}_{80} \mathbf{Y}_{66} \mathbf{Y}_{78} \mathbf{Y}_{85} \mathbf{Y}_{84} \mathbf{N} \mathbf{C}_{68} \mathbf{A} \mathbf{G}^{\prime} \mathbf{G}_{63}$															
	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	1
A	11.1	12.7	3.2	4.8	12.7	8.7	16.7	16.7	12.7	9.5	26.2	6.3	100	0.0	21.4
C	36.5	30.9	19.1	23.0	34.9	39.7	34.9	40.5	40.5	36.5	33.3	68.2	0.0	0.0	7.9
G	9.5	10.3	15.1	12.7	8.7	9.5	16.7	4.8	2.4	6.3	13.5	0.0	0.0	100	62.7
U	38.9	41.3	58.7	55.6	42.1	40.5	30.9	37.3	44.4	47.6	27.0	25.4	0.0	0.0	7.9

- Donor site (human genome)

	-3	-2	-1	1	2	3	4	5	6
\boldsymbol{A}	34.0	60.4	9.2	0.0	0.0	52.6	71.3	7.1	16.0
\mathbf{C}	36.3	12.9	3.3	0.0	0.0	2.8	7.6	5.5	16.5
\mathbf{G}	18.3	12.5	80.3	100	0.0	41.9	11.8	81.4	20.9
\mathbf{U}	11.4	14.2	7.3	0.0	100	2.5	9.3	5.9	46.2

Model for Splice Sites (1)

- Information content
K for a weight matrix, the information content of each column is calculated as

$$
-F(A)^{*} \log (F(A) / .25)-F(C)^{*} \log (F(C) / .25)-F(G) * \log (F(G) / .25)-F(T) * \log (F(T) / .25)
$$

K when a column has evenly distributed nucleotides, the information content is lowest

	-3	-2	-1	1	2	3	4	5	6
\mathbf{A}	34.0	60.4	9.2	0.0	0.0	52.6	71.3	7.1	16.0
\mathbf{C}	36.3	12.9	3.3	0.0	0.0	2.8	7.6	5.5	16.5
\mathbf{G}	18.3	12.5	80.3	100	0.0	41.9	11.8	81.4	20.9
\mathbf{U}	11.4	14.2	7.3	0.0	100	2.5	9.3	5.9	46.2

$$
\begin{aligned}
& \text { column }-3:-0.34^{*} \log (.34 / .25)-0.363^{*} \log (.363 / .25)-0.183^{*} \log (.183 / .25)- \\
& 0.114^{*} \log (.114 / .25)=0.04 \\
& \text { column }-1:-0.092^{*} \log (.092 / .25)-0.03^{*} \log (.033 / .25)-0.803^{\star} \log (.803 / .25)- \\
& 0.073^{*} \log (.073 / .25)=0.30
\end{aligned}
$$

Model for Splice Sites (2)

- Weight matrix model
K build a weight matrix for donor, acceptor, translation start site, respectively
k using positions with high information
- Application of weight matrix model

	-3	-2	-1	1	2	3	4	5	6
\mathbf{A}	34.0	60.4	9.2	0.0	0.0	52.6	71.3	7.1	16.0
\mathbf{C}	36.3	12.9	3.3	0.0	0.0	2.8	7.6	5.5	16.5
\mathbf{G}	18.3	12.5	80.3	100	0.0	41.9	11.8	81.4	20.9
\mathbf{U}	11.4	14.2	7.3	0.0	100	2.5	9.3	5.9	46.2

K add up frequencies of corresponding letter in corresponding positions

$$
\begin{aligned}
& \text { AAGGTAAGT: } 0.34+0.60+0.80+1.0+1.0+0.52+0.71+0.81+0.46=6.24 \\
& \text { TGTGTCTCA: } 0.11+0.12+0.03+1.0+1.0+0.02+0.07+0.05+0.16=2.56
\end{aligned}
$$

Lecture Outline

- Protein-encoding genes and gene structures
- Computational models for coding regions
- Computational models for coding-region boundaries
- Markov chain model for coding regions

Why Markov Chain?

- Preference model cannot capture all the dependence relationship among adjacent dicodons
- Markov chain model has been a popular model for modeling dependence in a linear sequence (a chain of events)
- Basic assumption of the model for a chain of events:

The "occurrence" of each event depends only on the most recent events right before this event

- Example: the weather of today is a function of only the weather of past seven days (i.e., it is independent of the weather of eight days ago)

Markov Chain Model (1)

- Basics of probabilities:
$K P(A)$ represents the probability of A being true
$K P(A, B)$ represents the event of having both A and B being true
K if A and B are independent, $P(A, B)=P(A){ }^{*} P(B)$
$K P(A \mid B)$, conditional probability, of A being true under the condition B is true (this applies only when B is true)
- Zero-th order Markov chain is equivalent to "all events are independent"
- First order Markov chain: the occurrence of an event depends only on the event right before it

$$
\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4} \mathrm{~A}_{5} \mathrm{~A}_{6}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2} \mid \mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{3} \mid \mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{~A}_{4} \mid \mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{~A}_{5} \mid \mathrm{A}_{4}\right) \mathrm{P}\left(\mathrm{~A}_{6} \mid \mathrm{A}_{5}\right)
$$

Markov Chain Model (2)

- K-th order Markov chain model:

$$
\begin{aligned}
& \text { Example of } 5^{\text {th }} \text { order Markov chain: } \\
& P\left(A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8} A_{9} A_{10} A_{11}\right)=P\left(A_{1} A_{2} A_{3} A_{4} A_{5}\right)^{*} \\
& P\left(A_{6} \mid A_{1} A_{2} A_{3} A_{4} A_{5}\right)^{*} P\left(A_{7} \mid A_{2} A_{3} A_{4} A_{5} A_{6}\right)^{*} \\
& P\left(A_{8} \mid A_{3} A_{4} A_{5} A_{6} A_{7}\right)^{*} P\left(A_{9} \mid A_{4} A_{5} A_{6} A_{7} A_{8}\right)^{*} \\
& P\left(A_{10} \mid A_{5} A_{6} A_{7} A_{8} A_{9}\right)^{*} P\left(A_{11} \mid A_{6} A_{7} A_{8} A_{9} A_{10}\right) \\
& \hline
\end{aligned}
$$

- Markov chain model allows us to "decompose" a large problem into a collection of smaller problems

Markov Chain Model (3)

- Definition of conditional probability

$$
P(A \mid B)=P(A, B) / P(B)
$$

- Decomposition rule

Markov Chain Model for Coding Region (1)

- Any-frame Markov chain model

Bayesian formula for coding:

$$
\begin{aligned}
& P\left(\text { coding } \mid A_{1} \ldots A_{n}\right)=P\left(\operatorname{coding}, A_{1} \ldots A_{n}\right) / P\left(A_{1} \ldots A_{n}\right) \\
& P\left(A_{1} \ldots A_{n} \mid \text { coding }\right) * P \text { (coding) }
\end{aligned}
$$

$$
\begin{aligned}
& P\left(A_{1} \ldots A_{n} \mid \text { coding }\right) P(\text { coding })+P\left(A_{1} \ldots A_{n} \mid \text { noncoding }\right) P(\text { noncoding })
\end{aligned}
$$

Bayesian formula for non-coding:

$$
\begin{aligned}
& \left.P \text { (non-coding } \mid A_{1} \ldots A_{n}\right)
\end{aligned}
$$

Markov Chain Model for Coding Region (2)

This formula decomposes a problem of "predicting a region $A_{1} \ldots . . . A_{n}$ being a (non) coding region" to the following four problems

1. Estimating probability of seeing $A_{1} \ldots A_{n}$ in noncoding regions
2. Estimating probability of coding bases in a whole genome
3. Estimating probability of noncoding bases in a whole genome
4. Estimating probability of seeing $A_{1} \ldots A_{n}$ in coding regions

All these can be estimated using known coding and noncoding sequence data

Markov Chain Model for Coding Region (3)

- Any-frame Markov chain model

Markov chain model (5 ${ }^{\text {th }}$ order) :

$P\left(A_{1} \ldots A_{n} \mid\right.$ coding $)=P\left(A_{1} A_{2} A_{3} A_{4} A_{5} \mid \text { coding }\right)^{*} P\left(A_{6} \mid A_{1} A_{2} A_{3} A_{4} A_{5}\right.$, coding $)$ *
$P\left(A_{7} \mid A_{2} A_{3} A_{4} A_{5} A_{6} \text {, coding }\right)^{*} \ldots{ }^{*} P\left(A_{n} \mid A_{n-5} A_{n-4} A_{n-3} A_{n-2} A_{n-1}\right.$, coding $)$
Markov chain model ($5^{\text {th }}$ order) :
$P\left(A_{1} \ldots A_{n} \mid\right.$ noncoding $)=P\left(A_{1} A_{2} A_{3} A_{4} A_{5} \mid\right.$ noncoding $) * P\left(A_{6} \mid A_{1} A_{2} A_{3} A_{4} A_{5}\right.$, noncoding $) *$ $P\left(A_{7} \mid A_{2} A_{3} A_{4} A_{5} A_{6} \text {, noncoding }\right)^{*} \ldots .{ }^{*} P\left(A_{n} \mid A_{n-5} A_{n-4} A_{n-3} A_{n-2} A_{n-1}\right.$, noncoding $)$

P(coding): total \# coding bases/total \# all bases

P(noncoding): total \# noncoding bases/total \# all bases

Build Markov Tables (1)

- a priori probability tables ($5^{\text {th }}$ order): P (5mer |coding) and P (5mer | noncoding)
$\measuredangle 5$ mer frequency table for coding regions
$K 5$ mer frequency table for noncoding regions
- Conditional probability tables (5 $5^{\text {th }}$ order): $\mathrm{P}(\mathrm{X} \mid 5 \mathrm{mer}$, coding) and $\mathrm{P}(\mathrm{X} \mid 5 \mathrm{mer}$, noncoding) (X could be $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$)
\measuredangle For a fixed 5 mer (e.g., ATT GT), what is the probability to have A, C, G or T following it in coding region
\measuredangle For a fixed 5 mer (e.g., ATT GT), what is the probability to have A, C, G or T following it in noncoding region
- $\mathrm{P}($ coding $)=\sim 0.02$ and $\mathrm{P}($ noncoding $)=\sim 0.98$

Build Markov Tables (2)

a priori probabilities for coding PAC
AAA AA: 0.000012
AAA AC: 0.000001
AAA AG: 0.000101
$\ldots \ldots$.

a priori probabilities
for noncoding PAN
AAA AA: 0.000329
AAA AC: 0.000201
AAA AG: 0.000982
$\ldots . . .$.

AAAAA: 0.000329
AAA AC: 0.000201
AAA AG: 0.000982
conditional probabilities for coding PC
conditional probabilities for noncoding PN

A C G T

AAA AA: 0.170 .390 .010 .43
AAA AC: 0.120 .440 .020 .42
AAA AG: 0.010 .690 .100 .20

A C G T
AAA AA: 0.710 .090 .000 .20
AAA AC: 0.610 .190 .020 .18
AAA AG: 0.010 .690 .100 .20

In-Frame

Markov Chain Model (1)

- In-frame Markov tables
a priori probabilities for coding $\mathrm{PACO}_{0,1,2}$

AAA AA: 0.000012	0.000230	0.000009
AAA AC: 0.000001	0.000182	0.000011
AAA AG: 0.000101	0.000301	0.000101
$\ldots \ldots .$.		

conditional probabilities for coding PC_{0}

AAA AA: 0.170 .390 .010 .43
AAA AC: 0.120 .440 .020 .42
AAA AG: 0.010 .690 .100 .20
conditional probabilities for coding PC_{1}

AAA AA: 0.330 .120 .100 .35
AAA AC: 0.020 .490 .120 .37
AAA AG: 0.100 .600 .150 .15
translation frame

conditional probabilities for coding PC_{2}

AAA AA: 0.170 .390 .010 .43
AAA AC: 0.120 .440 .020 .42
AAA AG: 0.010 .690 .100 .20

In-Frame

Markov Chain Model (2)

- In-frame Markov chain (5th order) calculation

$$
\begin{aligned}
& P_{0}\left(A_{1} \ldots A_{n} \mid \text { coding }\right)=P_{0}\left(A_{1} A_{2} A_{3} A_{4} A_{5} \mid \text { coding }\right)^{*} P_{0}\left(A_{6} \mid A_{1} A_{2} A_{3} A_{4} A_{5} \text {, coding }\right)^{*} \\
& P_{1}\left(A_{7} \mid A_{2} A_{3} A_{4} A_{5} A_{6} \text {, coding }\right)^{*} P_{2}\left(A_{8} \mid A_{3} A_{4} A_{5} A_{6} A_{7} \text {, coding }\right)^{*} \ldots \ldots . .
\end{aligned}
$$

\section*{| 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | A A A A C T G C}

$$
\begin{aligned}
& P\left(A_{1} \ldots A_{n} \mid \text { noncoding }\right)=P\left(A_{1} A_{2} A_{3} A_{4} A_{5} \mid \text { noncoding }\right){ }^{*} P\left(A_{6} \mid A_{1} A_{2} A_{3} A_{4} A_{5} \text {, noncoding }\right) * \\
& P\left(A_{7} \mid A_{2} A_{3} A_{4} A_{5} A_{6} \text {, noncoding }\right)^{*} \ldots .{ }^{*} P\left(A_{n} \mid A_{n-5} A_{n-4} A_{n-3} A_{n-2} A_{n-1} \text {, noncoding }\right)
\end{aligned}
$$

Calculation for non-coding regions stays the same

- Markov tables for Human genome

in-frame conditional probabilities

■. 1867120.1701700 .4273900 .215729 $0.259907 \quad 0.3386520 .1101390 .291302$ $0.2824350 .2290420 .305389 \quad 0.183134$ 0.2289370 .2228350 .2710630 .277165 $\begin{array}{lll}0.260952 & 0.246270 & 0.384087 \\ 0.108691\end{array}$ 0.2952710 .3428750 .0476040 .314250 $0.214186 \quad 0.3285110 .2286510 .228651$ $0.145116 \quad 0.2473650 .430077 \quad 0.177442$ $0.301228 \quad 0.2112050 .285700 \quad 0.201867$ 0.2914710 .3497950 .0762020 .282532 $0.374479 \quad 0.197526 \quad 0.251042 \quad 0.176953$ $0.124338 \quad 0.302720 \quad 0.410809 \quad 0.162134$ 0.0000010 .5898690 .0000010 .410131 0.2263340 .3490590 .0755470 .349059 $0.0000010 .364719 \quad 0.270561 \quad 0.364719$ $0.153399 \quad 0.460197 \quad 0.1165030 .269902$ 0.1667200 .2908260 .3725300 .169924 $0.324470 \quad 0.4042410 .085158 \quad 0.186131$ $\begin{array}{llll}0.164926 & 0.448450 & 0.185647 & 0.200977\end{array}$ $\begin{array}{llll}0.050185 & 0.414194 & 0.343088 & 0.192534\end{array}$ 0.1983590 .1619690 .5425430 .097128 $0.2378350 .422977 \quad 0.1056720 .233516$ $\begin{array}{lll}0.111173 & 0.512849 & 0.273464 \\ 0.102514\end{array}$ $\begin{array}{llll}0.059626 & 0.291251 & 0.540305 & 0.108818\end{array}$ $0.048228 \quad 0.3553150 .469882 \quad 0.126575$ 0.2046050 .4318600 .2272560 .136279 $\begin{array}{llll}0.094442 & 0.378024 & 0.417396 & 0.110139\end{array}$ 0.0365820 .2569720 .5964020 .110045 0.0000010 .7372940 .0000010 .262706

In-Frame

Markov Chain Model (4)

- Coding score procedure
K for a DNA segment [i, j], calculate Markov coding scores scoreC[0], scoreC[1], scoreC[2], representing three frames (one strand), and noncoding score scoreN
K if MAX \{ scoreC[0], scoreC[1], scoreC[2] \} > scoreN, the region is predicted to coding; otherwise non-coding

calculated reading frame in reference to the starting point of the first base

Application of Markov Chain Model

- Prediction procedure

> Procedure:
> Calculate all ORFs of a DNA segment;
> For each ORF, do the following
> slide through the ORF with an increment of 10 base-pairs
> calculate the preference score, in same frame of ORF, within a window of 60 base-pairs; and assign the score to the center of the window

- A computing issue

Multiplication of many small numbers (probabilities) is generally problematic in computer

Converting a * b * c * $\mathrm{d} \ldots . .{ }^{*} \mathrm{z}$ to $\log (\mathrm{a})+\log (\mathrm{b})+\log (\mathrm{c})+\log (\mathrm{d}) \ldots \log (\mathrm{z})$

References

- Chapter 9 in "Current Topics in Computational Molecular Biology, edited by Tao Jiang, Ying Xu, and Michael Zhang. MIT Press. 2002."
- Chapter 9 in "Pavel Pevzner: Computational Molecular Biology An Algorithmic Approach. MIT Press, 2000."

Selected Reading

- http://www.ncbi.nlm.nih.gov/pubmed/20221925
- http://www.ncbi.nlm.nih.gov/pubmed/12364589
- http://www.ncbi.nlm.nih.gov/pubmed/16728949
- http://www.ncbi.nlm.nih.gov/pubmed/21653517
- http://www.ncbi.nIm.nih.gov/pubmed/19564452
- http://www.ncbi.nIm.nih.gov/pubmed/19494180
- http://www.ncbi.nlm.nih.gov/pubmed/10779491

Acknowledgments

This file is for the educational purpose only. Some materials (including pictures and text) were taken from the Internet at the public domain.

