
Computational 
Gene Finding 

 
Dong Xu 

  
  

Digital Biology Laboratory 

Computer Science Department  

Christopher S. Life Sciences Center 

University of Missouri, Columbia 

E-mail: xudong@missouri.edu 

http://digbio.missouri.edu 
  



 Protein-encoding genes and gene 

structures 

 Computational models for coding regions 

 Computational models for coding-region 

boundaries 

 Markov chain model for coding regions 

Lecture Outline 



What Is a Gene? 

    
Definition: A gene is the nucleotide 

sequence that stores the information 

which specifies the order of the 

monomers in a final functional 

polypeptide or RNA molecule, or set of 

closely related isoforms (Epp CD, Nature, 

389: 537). 



Monogenic Diseases Common Diseases Infections 

 Cystic fibrosis 

 Huntington’s disease 

 Haemophilia 

 Phenylketonuria 

 Alzheimer disease 

 Adult onset diabetes 

 Cancer 

 Cardiovascular disease 

 Depression 

 Influenza 

 Hepatitis 

 AIDS 

Environment 

Genes 

Gene and Disease 



Genetic Code 



Reading Frame 

 Reading (or translation) frame: each DNA segment has six possible 

reading frames 

 

 

 
Reading frame #1 

ATG 

GCT 

TAC 

GCT 

TGC 

Reading frame #2 

TGG 

CTT 

ACG 

CTT 

GA. 

Reading frame #3 

GGC 

TTA 

CGC 

TTG 

A.. 

ATGGCTTACGCTTGA Forward strand: 

Reading frame #4 

TCA 

AGC 

GTA 

AGC 

CAT 

Reading frame #5 

CAA 

GCG 

TAA 

GCC 

AT. 

Reading frame #6 

AAG 

CGT 

AAG 

CCA 

T.. 

TCAAGCGTAAGCCAT Reverse strand: 



Prokaryotic Gene Structure 

 

 

5’ 
3’ 

Coding region of Open Reading Frame 

Promoter region (maybe) 

Ribosome binding site (maybe) 

Termination sequence (maybe) 

Start codon / Stop Codon 

Open reading frame (ORF): a segment of DNA with two in-frame stop 

codons at the two ends and no in-frame stop codon in the middle 



Eukaryotic Gene Structure 



Gene Structure Rules 

 Each coding region (exon) has a fixed translation frame 

(no gaps allowed) 

 

 All exons of a gene are on the same strand 

 

 Neighboring exons of a gene can have different reading 

frames 

frame 1 frame 2 frame 3 



Computational Gene 
Finding 

 The Problem: Given a stretch of DNA sequence, find all coding 

regions and construct gene structures from identified exons if needed 

 

 

 

 

 

 

 A gene finding problem can be decomposed into two 

problems: 

 identification of coding potential of a region in a particular frame 

 identification of boundaries between coding and non-coding  regions 

 

 



Repetitive Sequence 

 Definition 

DNA sequences that made up of copies of the 

same or nearly the same nucleotide sequence 

Present in many copies per chromosome set 



Repeat Filtering 

RepeatMasker 

Uses precompiled representative sequence 

libraries to find homologous copies of known 

repeat families 

Use Blast 

http://www.repeatmasker.org/  

 

 

http://www.repeatmasker.org/


Gene Finding Tools 

 Genscan 
(http://genes.mit.edu/GENSCAN.html )  

 GeneMarkHMM 
(http://opal.biology.gatech.edu/GeneMark/) 

 GRAIL (http://compbio.ornl.gov/Grail-1.3/) 

 Genie 
(http://www.fruitfly.org/seq_tools/genie.html) 

 Glimmer 
(http://www.tigr.org/softlab/glimmer) 

http://genes.mit.edu/GENSCAN.html
http://opal.biology.gatech.edu/GeneMark/
http://compbio.ornl.gov/Grail-1.3/
http://compbio.ornl.gov/Grail-1.3/
http://compbio.ornl.gov/Grail-1.3/
http://www.fruitfly.org/seq_tools/genie.html
http://www.tigr.org/softlab/glimmer


Testing Finding Tools 

Access Genscan 

(http://genes.mit.edu/GENSCAN.html )  

Use a sequence at 
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=8077108 

http://genes.mit.edu/GENSCAN.html
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Coding Signal Detection (1) 

 Frequency distribution of dimers in protein sequence (shewanella) 

The average 

frequency is 5% 

 

Some amino acids 

prefer to be next to 

each other 

 

Some other amino 

acids prefer to be 

not next to each 

other 



 Dimer bias (or preference) could imply di-codon (6-mers like AAA TTT) 

bias in coding versus non-coding regions 

 

 Relative frequencies of a di-codon in coding versus non-coding 

 frequency of dicodon X (e.g, AAAAAA) in coding region, total number of 

occurrences of X divided by total number of dicocon occurrences 

 frequency of dicodon X (e.g, AAAAAA) in noncoding region, total number of 

occurrences of X divided by total number of dicodon occurrences 

 

 
In human genome, frequency of dicodon “AAA AAA” is 

~1% in coding region versus ~5% in non-coding region 

Question: if you see a region with many “AAA AAA”, 
would you guess it is a coding or non-coding region? 

Coding Signal Detection (2) 



 Most dicodons show bias towards either coding or non-
coding regions; only fraction of dicodons is neutral 

 

 Foundation for coding region identification 

 

 

 

 

 Dicodon frequencies are key signal used for coding 
region detection; all gene finding programs use this 
information 

Regions consisting of dicodons that mostly tend 

to be in coding regions are probably coding 

regions; otherwise non-coding regions 

Coding Signal Detection (3) 



 Dicodon frequencies in coding versus non-coding are 

genome-dependent 

shewanella 

bovine 

Coding Signal Detection (4) 



 in-frame versus any-frame dicodons 

 

 

ATG TTG GAT GCC CAG AAG............  

in-frame dicodons 

not in-frame dicodons 

In-frame: 

ATG TTG 

GAT GCC 

CAG AAG 

Not in-frame: 

TGTTGG, ATGCCC 

AGAAG ., GTTGGA 

AGCCCA, AGAAG .. 

any-frame  

Coding Signal Detection (5) 

more 

sensitive 



Computational Model (1) 

 Preference model:  
 for each dicodon X (e.g., AAA AAA), calculate its frequencies in 

coding and non-coding regions, FC(X), FN(X) 

 calculate X’s preference value P(X) = log (FC(X)/FN(X)) 

 

 Properties: 
 P(X) is 0 if X has the same frequencies in coding and non-coding 

regions 

 P(X) has positive score if X has higher frequency in coding than in 
non-coding region; the larger the difference the more positive the 
score is 

 P(X) has negative score if X has higher frequency in non-coding 
than in coding region; the larger the difference the more negative 
the score is 

 



 Example 

 

 

 

 

 

 
 

 Coding preference of a region (an any-frame model) 

 

 

AAA ATT, AAA GAC, AAA TAG have the following frequencies 

FC(AAA ATT) = 1.4%,  FN(AAA ATT) = 5.2% 

FC(AAA GAC) = 1.9%, FN(AAA GAC) = 4.8% 

FC(AAA TAG) = 0.0%, FN(AAA TAG) = 6.3% 

 

We have 

 

P(AAA ATT) = log (1.4/5.2) = -0.57 

P(AAA GAC) = log (1.9/4.8) = -0.40 

P(AAA TAG) = - infinity (treating STOP codons differently) 

 

A region consisting of only these dicodons is probably a non-coding region 

Calculate the preference scores of all dicodons of the region and sum them up; 

If the total score is positive, predict the region to be a coding region; otherwise a 

non-coding region. 

Computational Model (2) 



 In-frame preference model (most commonly used in prediction programs) 

 

Application step: 

For each possible reading frame of a region, calculate the total in-frame 

preference score  P0(X), the total (in-frame + 1) preference score  P1(X),  

the total (in-frame + 2) preference score  P2(X), and sum them up 

If the score is positive, predict it to be a coding region; otherwise non-coding 

Data collection step: 

For each known coding region,  

calculate in-frame preference score,  P0(X), of each dicodon X;  e.g., 

ATG TGC CGC GCT ...... 

calculate (in-frame + 1) preference score, P1(X), of each dicodon X;  e.g., 

ATG TGC CGC GCT ...... 

calculate (in-frame + 2) preference score, P2(X), of each dicodon X;  e.g., 

ATG TGC CGC GCT ...... 

 

Computational Model (3) 



 Prediction procedure of coding region 

Procedure: 

Calculate all ORFs of a DNA segment; 

For each ORF, do the following  

       slide through the ORF with an increment of 10 base-pairs 

       calculate the preference score, in same frame of ORF, within a window of  

       60 base-pairs; and assign the score to the center of the window 

Example (forward strand in one particular frame) 

preference scores 

0 

+5 

-5 

Computational Model (4) 



 Making the call: coding or non-coding and where the boundaries are 

 

 

 

 

 

 

 

 Need a training set with known coding and non-coding regions 

 select threshold(s) to include as many known coding regions as possible, and in the same 

time to exclude as many known non-coding regions as possible 

 

 

coding 

region? where to draw the 

boundaries? 

If threshold = 0.2, we will include 90% of coding regions and also 10% of non-coding regions 

If threshold = 0.4, we will include 70% of coding regions and also 6% of non-coding regions 

If threshold = 0.5, we will include 60% of coding regions and also 2% of non-coding regions 

where to draw  

the line? 

Computational Model (5) 



 Why dicodon (6mer)? 

Codon (3mer) -based models are not nearly as information rich as dicodon-based models 

Tricodon (9mers)-based models need too many data points for it to be practical 

People have used 7-mer or 8-mer based models; they could provide better prediction 

methods 6-mer based models 

There are  

4*4*4 = 64 codons 

4*4*4*4*4*4 = 4,096 di-codons 

4*4*4*4*4*4*4*4*4= 262,144 tricodons 

To make our statistics reliable, we would need at least ~15 

occurrences of each X-mer; so for tricodon-based models, we need 

at least 15*262144 = 3932160 coding bases in our training data, 

which is probably not going to be available for most of the genomes 

Computational Model (6) 
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Signals for  
Coding-Region Boundaries (1) 

 Possible boundaries of an exon 

 

 

 

 

 Splice junctions: 

 

 

 Translation start 
 in-frame ATG 

 

{ translation start, 

acceptor site }  

{ translation stop, 

donor site }  

EXON |   INTRON              |  EXON 

            |            | 

           \_/          \_/ 

A  G  G   T   A......C   A   G 

64 73 100 100 62     65 100 100   

(Percent occurrence) 

donor site:  coding region | GT 

acceptor: AG | coding region 



 Both splice junction sites and translation starts have certain 

distribution profiles 

 Acceptor site (human genome) 

 if we align all known acceptor sites (with their splice junction site aligned), we have the 

following nucleotide distribution 

 

 

 

 

 

 Donor site (human genome) 

 

Signals for  
Coding-Region Boundaries (2) 



Model for Splice Sites (1) 

 Information content 

 for a weight matrix, the information content of each column is calculated as  

 

 

 when a column has evenly distributed nucleotides, the information content is 

lowest 

-F(A)*log (F(A)/.25) - F(C)*log (F(C)/.25) - F(G)*log (F(G)/.25) - F(T) *log (F(T)/.25) 

column -3: -0.34*log (.34/.25) - 0.363*log (.363/.25) -0.183* log (.183/.25) - 

0.114* log (.114/.25) = 0.04 

column -1: -0.092*log (.092/.25) - 0.03*log (.033/.25) -0.803* log (.803/.25) - 

0.073* log (.073/.25) = 0.30 

Only need to consider positions with “high” information content 



 Weight matrix model  

 build a weight matrix for donor, acceptor, translation start site, respectively 

 using positions with high information 

 

 Application of weight matrix model 

 

 

 

 

 add up frequencies of corresponding letter in corresponding positions 

AAGGTAAGT: 0.34+0.60+0.80+1.0+1.0+0.52+0.71+0.81+0.46 = 6.24 

TGTGTCTCA:  0.11+0.12+0.03+1.0+1.0+0.02+0.07+0.05+0.16 = 2.56 

Model for Splice Sites (2) 
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Why Markov Chain? 

 Preference model cannot capture all the dependence relationship 

among adjacent dicodons 

 

 Markov chain model has been a popular model for modeling 

dependence in a linear sequence (a chain of events) 

 

 Basic assumption of the model for a chain of events: 

 

 

 

 Example: the weather of today is a function of only the weather of past seven days 

(i.e., it is independent of the weather of eight days ago) 

The “occurrence” of each event depends only on 

the most recent events right before this event 



 Basics of probabilities: 

 P(A) represents the probability of A being true 

 P(A, B) represents the event of having both A and B being true 

 if A and B are independent, P(A, B) = P(A) * P(B) 

 P(A | B), conditional probability, of A being true under the condition B is true (this 

applies only when B is true) 

 

 Zero-th order Markov chain is equivalent to “all events are 

independent” 

 First order Markov chain: the occurrence of an event depends only on 

the event right before it 

 

 
P(A1 A2 A3 A4 A5 A6) = P(A1) P(A2 | A1) P(A3 | A2) P(A4 | A3) P(A5 | A4) P(A6 | A5)  

Markov Chain Model (1) 



 

 

 K-th order Markov chain model: 

 

 

 

 

 

 Markov chain model allows us to “decompose” a large problem into 

a collection of smaller problems 

 

 

Example of 5th order Markov chain: 

P(A1 A2 A3 A4 A5 A6 A7 A8 A9A10A11) = P(A1 A2 A3 A4 A5) *  

P(A6 | A1 A2 A3 A4 A5 ) * P(A7 | A2 A3 A4 A5 A6) * 

P(A8 | A3 A4 A5 A6 A7) * P(A9 | A4 A5 A6 A7 A8) * 

P(A10 | A5 A6 A7 A8A9) * P(A11 | A6 A7 A8 A9 A10) 

Markov Chain Model (2) 



 Definition of conditional probability 

 

 

 

 Decomposition rule 

 

P( A | B ) = P (A, B) / P(B) 

A 

B 

C 

P( C) = P(C | A) P(A) + P(C | B) P(B) 
 

as long A and B do not overlap and A plus B 

completely covers C 

A 

B 

Markov Chain Model (3) 



Markov Chain Model for  
Coding Region (1) 

Bayesian formula for coding: 

P (coding | A1 ….  An ) = P (coding, A1 ….  An ) / P(A1 ….  An )  

 

                                   P (A1 ….  An | coding) * P (coding)  

= ---------------------------------------------------------------------------------------------- 

    P (A1 ….  An | coding) P(coding) + P (A1 ….  An | noncoding) P(noncoding) 

 

Bayesian formula for non-coding: 

P (non-coding | A1 ….  An )  

 

                                   P (A1 ….  An | noncoding) * P (noncoding)  

= ---------------------------------------------------------------------------------------------- 

    P (A1 ….  An | coding) P(coding) + P (A1 ….  An | noncoding) P(noncoding) 

 

 Any-frame Markov chain model 



Markov Chain Model for  
Coding Region (2) 

This formula decomposes a problem of “predicting a region A1 …. An 

being a (non) coding region” to the following four problems 

1. Estimating probability of seeing A1 ….  An  in noncoding regions 

2. Estimating probability of coding bases in a whole genome 

3. Estimating probability of noncoding bases in a whole genome 

4. Estimating probability of seeing A1 ….  An  in coding regions 

All these can be estimated using known 

coding and noncoding sequence data 



Markov Chain Model for  
Coding Region (3) 

 Any-frame Markov chain model 

Markov chain model (5th order) : 

P (A1 ….  An | coding) = P (A1 A2 A3 A4 A5 | coding) * P (A6 | A1 A2 A3 A4 A5 , coding) * 

P (A7 | A2 A3 A4 A5 A6 , coding) * …. * P (An | An-5 An-4 An-3 An-2 An-1 , coding)  

Markov chain model (5th order) : 

P (A1 ….  An | noncoding) = P (A1 A2 A3 A4 A5 | noncoding) * P (A6 | A1 A2 A3 A4 A5 , noncoding) * 

P (A7 | A2 A3 A4 A5 A6 , noncoding) * …. * P (An | An-5 An-4 An-3 An-2 An-1 , noncoding)  

P(coding): total # coding bases/total # all bases 

P(noncoding): total # noncoding bases/total # all bases 

a priori 

probability 
conditional 

probability 



Build Markov Tables (1) 

 a priori probability tables (5th order): P(5mer |coding) 
and P(5mer | noncoding) 

 5mer frequency table for coding regions 

 5mer frequency table for noncoding regions 

 

 Conditional probability tables (5th order):  P(X | 5mer, 
coding) and P(X | 5mer, noncoding) (X could be A, C, G, T) 

 For a fixed 5mer (e.g., ATT GT), what is the probability to have A, C, G 
or T following it in coding region 

 For a fixed 5mer (e.g., ATT GT), what is the probability to have A, C, G 
or T following it in noncoding region 

 

 P(coding) = ~0.02 and P(noncoding) = ~0.98 



AAA AA: 0.000012 

AAA AC: 0.000001 

AAA AG: 0.000101 

……. 

a priori probabilities 

for coding PAC 

AAA AA: 0.000329 

AAA AC: 0.000201 

AAA AG: 0.000982 

……. 

a priori probabilities 

for noncoding PAN 

AAA AA: 0.17 0.39 0.01 0.43 

AAA AC: 0.12 0.44 0.02 0.42 

AAA AG: 0.01 0.69 0.10 0.20 

……. 

conditional probabilities for coding PC 

AAA AA: 0.71 0.09 0.00 0.20 

AAA AC: 0.61 0.19 0.02 0.18 

AAA AG: 0.01 0.69 0.10 0.20 

……. 

conditional probabilities for noncoding PN 

         A   C    G   T          A   C    G   T 

Build Markov Tables (2) 



In-Frame  
Markov Chain Model (1) 

 In-frame Markov tables 

AAA AA: 0.000012  0.000230  0.000009 

AAA AC: 0.000001  0.000182  0.000011 

AAA AG: 0.000101  0.000301  0.000101 

……. 

a priori probabilities for coding PAC00, 1, 2 
translation frame 

A  A  A  A  C 
A  A  A  A  C 

A  A  A  A  C 

AAA AA: 0.17 0.39 0.01 0.43 

AAA AC: 0.12 0.44 0.02 0.42 

AAA AG: 0.01 0.69 0.10 0.20 

……. 

conditional probabilities  

for coding PC0 

AAA AA: 0.33 0.12 0.10 0.35 

AAA AC: 0.02 0.49 0.12 0.37 

AAA AG: 0.10 0.60 0.15 0.15 

……. 

conditional probabilities  

for coding PC1 

AAA AA: 0.17 0.39 0.01 0.43 

AAA AC: 0.12 0.44 0.02 0.42 

AAA AG: 0.01 0.69 0.10 0.20 

……. 

conditional probabilities  

for coding PC2 



In-Frame  
Markov Chain Model (2) 

 In-frame Markov chain  (5th order) calculation 

P0 (A1 ….  An | coding) = P0 (A1 A2 A3 A4 A5 | coding) * P0 (A6 | A1 A2 A3 A4 A5 , coding) * 

P1 (A7 | A2 A3 A4 A5 A6 , coding) * P2 (A8 | A3  A4 A5 A6 A7 , coding) * ........ 

A  A  A  A  C  T  G  C  ....... 

0  1  2  0   1  2   0   1  2 

P (A1 ….  An | noncoding) = P (A1 A2 A3 A4 A5 | noncoding) * P (A6 | A1 A2 A3 A4 A5 , noncoding) * 

P (A7 | A2 A3 A4 A5 A6 , noncoding) * …. * P (An | An-5 An-4 An-3 An-2 An-1 , noncoding)  

Calculation for non-coding regions stays the same 



In-Frame  
Markov Chain Model (3) 

 Markov tables for Human genome 

a priori table 

in-frame conditional 

probabilities 



In-Frame  
Markov Chain Model (4) 

 Coding score procedure 

 for a DNA segment [i, j], calculate Markov coding scores scoreC[0], 

scoreC[1], scoreC[2], representing three frames (one strand), and non-

coding score scoreN 

 

 if MAX { scoreC[0], scoreC[1], scoreC[2] } > scoreN, the region is 

predicted to coding; otherwise non-coding 

 

 

 

 

calculated reading frame in reference to the 

starting point of the first base 

first base 

i 



Application of  
Markov Chain Model 

 Prediction procedure 

 

 

 

 

 

 

 A computing issue 

 

Procedure: 

Calculate all ORFs of a DNA segment; 

For each ORF, do the following  

       slide through the ORF with an increment of 10 base-pairs 

       calculate the preference score, in same frame of ORF, within a window of  

       60 base-pairs; and assign the score to the center of the window 

Multiplication of many small numbers (probabilities) is generally problematic 

in computer 

Converting a * b * c * d ..... *z to log (a) + log (b) + log (c) + log (d) ... log (z) 
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