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Abstract
Overwhelmed with genomic data, biologists are facing the first big post-genomic questionçwhat do all genes do?
First, not only is the volume of pure sequence and structure data growing, but its diversity is growing as well,
leading to a disproportionate growth in the number of uncharacterized gene products. Consequently, established
methods of gene and protein annotation, such as homology-based transfer, are annotating less data and in many
cases are amplifying existing erroneous annotation. Second, there is a need for a functional annotation which is
standardized and machine readable so that function prediction programs could be incorporated into larger work-
flows.This is problematic due to the subjective and contextual definition of protein function.Third, there is a need to
assess the quality of function predictors. Again, the subjectivity of the term ‘function’ and the various aspects of
biological function make this a challenging effort. This article briefly outlines the history of automated protein
function prediction and surveys the latest innovations in all three topics.
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INTRODUCTION
Arguably the main push that has moved bioinfor-

matics from the wings of life sciences to center stage

has been the growing influx of genomic information

over the past decade. BLASTing a newly found

sequence has been routine for over a decade now,

and the memory of a time when sequence database

searching was not an integral part of molecular

biology is rapidly fading. With the exponential

increase in the number of proteins being identified

by sequence genomics projects and their molecular

structure being determined by structure genomics

projects, we are facing a sea of data from which actual

information needs to be carefully distilled. Putting it

simply, what do all the genes do? It is impossible to

perform a functional assay for every uncharacterized

gene in every genome. Moreover, it is impossible to

keep up with the influx of data by manually curated

annotation. Given this state of affairs, scientists have

been turning to sophisticated computational methods

for assistance in annotating the huge volume of

sequence and structure data being produced.

This review will discuss the problems, recent

solutions and future challenges for automated

function prediction (AFP) in bioinformatics. The

review begins with the challenge posed by merely

defining protein function, the attempts to objectify

this definition, and render functional annotations

amenable to computational processing. Special

emphasis is placed on ontologies as they are currently

the dominant accepted solution to this problem. We

continue to explore the techniques for function

prediction: homology-based annotation transfer, phylo-

genomic methods, sequence patterns, structure similar-

ity, structure patterns, genomic context, microarray data,

and the latest aggregate methods. Finally, we discuss

attempts at quality assessment of function prediction

programs and the unique challenges it presents.

WHAT IS FUNCTION?
The definition of biological function is ambiguous,

and the exact meaning of the term varies based on

the context in which it is used [1*–3]. It is obvious
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that the biological function of a protein has more

than one aspect. Take for example a protein kinase;

in the biochemical aspect, a kinase’s function would

be the phosphorylation of a hydroxyl group of a

specific substrate. The scope of interest implied by

this definition does not require any more than a

‘disembodied’ protein performing alone in vitro.
However, proteins perform their function within

an organism, and this has consequences ranging from

the subcellular to the whole-organism level. In a

physiological aspect, the same kinase may be part

of a signaling pathway, where a protein both

phosphorylates, and is phosphorylated by, interacting

partners. A mutation in this kinase might cause a

disease, so yet another aspect is a phenotypic or

medical one. Therefore, when speaking of a

protein’s function, we must always specify the

aspect or aspects of the functional description.

When setting out to use a function prediction tool,

let alone to develop one, we must keep in mind

which functional aspect or aspects we are trying to

predict, and use the appropriate vocabulary.

DESCRIBING FUNCTION
Having defined the functional aspect or aspects of

interest, how should function be described in a

computationally amenable way? Protein sequence

and structure information are easily rendered

machine legible. Protein sequences are represented

as character strings that are suited for many tasks:

pairwise and multiple alignments, motif finding,

database searching, and a slew of other tasks aimed at

extracting biological information from the sequence.

The ability to express sequence information as a

character string amenable for computational proces-

sing dovetails with algorithms able to analyse this

information. As for structure, although the repre-

sentation is more complex, the PDB [4] and mmCIF

[5] file formats do so for most practical purposes.

There is a limited, well-defined syntax involved in

both cases.

In contrast to sequence and structure information,

the annotation of a protein is written in human

language, which conveys the subtleties and intrica-

cies of its function as well as the experimental

evidence which supports it, its research history, and

other characteristics. As is accepted in human

language, particularly in science where the vocabu-

lary is invented and reinvented daily, many terms are

synonymous. This synonymy is confusing to humans

and even more so to machines. Other factors

add to the problem, such as mixing up or omitting

functional aspects of a protein. Finally, what consti-

tutes functional information and what does not?

To make functional annotation open to compu-

tational processing, there is a need to convey it in a

controlled and well-defined fashion. The need for a

controlled vocabulary and well-defined relationships

in describing function was first recognized by

biochemists and took the form of the Enzyme

Commission Classification, or EC (http://

www.hem.qmul.ac.uk/iubmb/enzyme/). EC classi-

fies reactions in a four-level hierarchy, and those are

noted by a four-position identifier, going from the

general ‘Lyase’ (4.-.-.-) in the first position through

the more specific ‘Nitrogen lyase’ (4.3.-.-) on to

‘Ammonia lyases’ (4.3.1.-) to the ultimately specific

‘Histidine-ammonia lyase’ (4.3.1.3) in the fourth

position. EC answers the requirements both for a

controlled vocabulary and for a well-defined rela-

tionship between terms. However, there are other

functions besides the enzymatic and other functional

aspects besides the biochemical that are wanted in

annotation. In 1993, the first genomic scheme to

categorize gene products was suggested for Escherichia
coli [6]. Other annotation schemes were suggested,

mainly following the need to annotate budding

genomic projects, and those are reviewed in [2, 7].

The common thread among those schemes is the

establishment of a controlled vocabulary and in many

cases a categorization that proceeds from the general

to the specific.

The Gene Ontology (GO) [8] currently serves

as the dominant approach for machine-legible

functional annotation. GO is a framework con-

sisting of controlled vocabularies describing three

aspects of gene product function: molecular
function, biological process and cellular
location. The latter, although not a functional

aspect per se, is deemed important for functional

annotation since proteins do not operate in a vacuum

(or rather in a saline solution) but within a well-

defined context of the living cell. Each ontology is

implemented as a directed acyclic graph (DAG)

where terms are represented as nodes in the graph

and are arranged from the general to the specific.

The DAG arrangement means that each node

may have more than a single parent—this is to

describe functions that are involved in more than a

single biological process, cellular compartment, or

molecular function.
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The GO Annotation (GOA) project’s mission is

to annotate genomes and various sequence and

structure databases using GO terms [9]. When GO

terms are assigned to a gene product, an evidence

code stating how the annotation was obtained is

assigned as well. In this manner, the reliability of the

annotation is noted—is it based on experimental

evidence that can be traced to an author (high

reliability)? Or it is simply inferred by homology

transfer annotation that has not been reviewed by a

curator (low reliability)? GO has nine such evidence

codes, and they are discussed in the GO site (http://

www.geneontology.org/GO.evidence.shtml). Note

that the evidence code is not a part of the ontology

DAG, but rather is associated only upon assignment

of a term, or terms, to a gene or gene product. There

are other, more specialized ontologies that are used

in more specific aspects of molecular biology or for

other purposes, such as medically interesting annota-

tion or genomic aspects unique to a given organism

(http://www.obo.org). An example of GOA is

provided in Figure 1.

By standardizing an annotation and defining

the relationships between terms using a graph,

annotations may be computationally processed [10].

Given a GO-annotated genome, a researcher can, for

example, extract all the gene products involved in

the synthesis of a particular metabolite. Within the

scope of this discussion, GO provides a standard way

for programs to output their function predictions.

This is useful if those programs serve as components

in more-extensive workflows, for example, a system

predicting functions for all unknown ORFs in a

genome and then extracting those that are predicted

to be involved in a metabolic pathway of interest.

Naturally, the use of a controlled vocabulary

comes at the expense of the detail and subtlety of

natural language. However, GO is considered to be a

good working compromise between the need to

convey functional information with all its minutiae

and the need to make it standardized and computer

legible. GO terms and relationships are being

updated constantly so that new functions, error

corrections, and amended definitions can be

included.

Automated function prediction by
homology-based transfer
Having defined function and the means of describing

function, we now turn to discussing function

prediction programs. Bioinformatics’ first and

most-often-used class of tools have to do with

searching sequence databases by using sequence

similarity tools. As a matter of fact, the 1997 PSI-

BLAST paper by Altschul et al. [11] has over 13 000
citations as of September 2005, showing how

routinely sequence-based database searching is used.

Chiefly, the reason that researchers BLAST protein

sequences against databases is to learn about some

aspect of their function. The researcher aims to

answer this question by finding a significant sequence

similarity to another protein that is already in the

database and whose function was experimentally

characterized. This is essentially the most widely

used form of computational function prediction—

annotation transfer by sequence similarity, also

known as homology-based transfer. The biological

rationale for homology-based transfer is that if two

sequences have a high degree of similarity, then they

have evolved from a common ancestor and they have
similar, if not identical, functions. This statement

may seem obvious to the point of being trivial;

however, we shall see how a homology-based

transfer may not be very reliable for functional

annotation even in high-alignment identity

percentages.

As databases grow in the number of sequences

they hold, homology-based transfer begins to break-

down in three aspects. The first aspect is the

observation that even with a high sequence similarity

annotation transfer may be erroneous. Shah and

Hunter [12, 13] have attempted to discriminate

between enzymatic functions based on sequence

alignments and have concluded that it is necessary to

establish functionally significant subregions for dis-

crimination purposes. Rost [14] has established that

even at high sequence similarity rates, enzymatic

function may not necessarily be conserved. Tian and

Skolnick [15] have concluded that a 40% sequence

identity is sufficient to establish catalytic mechanism

similarity, but as for substrate similarity, a 60%

identity or higher is necessary to determine that with

acceptably low false-positive error rates. However,

they have observed that information loss due to a

high false-negative rate does occur at such high

identity percentages. At the other end of the

sequence identity scale, Galperin et al. [16] have

shown that enzymes that are supposedly analogous

due to undetectable sequence similarity are, in fact,

homologous. Pawlowski et al. [17] have shown that a

distant but significant sequence similarity correlates

well with functional similarity, although a very high
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Figure 1: Gene Ontology. Gene Ontology is explained here via the annotation of Ribulose-1,5-bisphosphate
carboxylase/oxygenase (RubisCO), which catalyses the first step of carbon fixation in photosynthetic organisms.
The molecular function, biological process, and cellular-component aspects are shown in dotted, dashed, and solid
outlines, respectively. The associated terms proceed directionally, from the general to the specific. Note the
use of multiple parents for some of the GO terms, for example, the ‘intracellular membrane bound organelle’ is
a term denoting a membrane-bound organelle and an intracellular organelle. Figure is a modified GenNav image
(http://mor.nlm.nih.gov/perl/gennav.pl).
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sequence identity percentage is required for proteins

to share all four EC numbers, and a very low (30% or

less) sequence identity percentage is required to share

the first [18]. Earlier research has shown that at 35%

sequence identity, 60% of aligned enzymes share four

EC numbers [19]. Clearly, sequence similarity is

correlated to functional similarity, but exceptions are

seen on both ends of the similarity scale. A related

form of erroneous transfer is due to domain shuffling:

the addition, deletion and redistribution of domains

[20, 21]. Errors in annotations can be caused because

database hits with significant e-values may occur, but

the query and hit may have a different overall

domain structure.

The second aspect of the breakdown of

homology-based annotation transfer is that

sequence-based tools are not sensitive enough to

discover similarity between proteins, especially when

not only the databases are growing in size, but the

diversity of sequences is growing as well (Figure 2).

In other words, we are not only collecting more

sequences, we are collecting more new and different

sequences. Homology-based transfer is even less

effective since the number of clustered similar

proteins for which we do not have a single annotated

reference sequence is rapidly growing.

The third aspect is the propagation of erroneous

annotations throughout the database. As more

sequences enter the database, more are annotated

by homology transfer, which increases the ability of

errors to propagate and be amplified based on a single

erroneous annotation [22, 23] Strangely, some of

these errors can be the result of over-annotation by a

misuse of the ontology method, for example, the

misinterpretation of partial EC numbers such as

‘1.1.1.-’ and consequently, the assignment of a

wrong last EC number [24*]. An alarming estimate

of the prevalence of incompatibility between

different annotations of M. genitalium [25**] (and

by implication, errors) has prompted some of the

error-control mechanisms discussed subsequently,

such as the evidence codes in GO.

Pfam [26] is arguably the database of choice for

those seeking order within the protein sequence

universe. Pfam 18 (2005) contains 7973 families

composed of aligned sequences, out of which 1979

(25%) are annotated as having an unknown function.

As we shall see, Pfam annotation is used by function

prediction programs, either by directly querying

Pfam or by using umbrella databases that include

Pfam information such as InterPro [27]. SMART

[28, 29], CDD [30], and PRODOM [31] are other

databases consisting of multiple alignments of protein

domains. All these databases have proteins arranged

in homologous clusters, which, when possible, are

annotated. These databases are often deferred to when

producing homology-based annotation transfers. It

should be emphasized that the use of these databases

for homology transfer should be done with caution,

as they annotate proteins on a domain level. A multi-

domain query aligned to Pfam, for example, should

be carefully checked for mis-annotations due to

domain shuffling, as mentioned eariler. Also, the

‘granularity’ of these databases varies. For example, a

single Pfam family may contain several proteins

which perform the same enzymatic reaction on

different substrates.

On a side note, adding yet more complexity to

the fray, enter the meta-genomics projects: the

sequencing of DNA extracted from the Azores

seawater, South Pacific islands topsoil, and the

subway vents of New York City have added a

new level of diversity to our current body of

knowledge [32, 33]. Venter and coworkers [35]

have found that many gene families are much more

diverse than previously thought. It has been

proposed that for prokaryotic gene families, associa-

tion with habitat rather than with taxonomic identity

is much more informative [34]. Thankfully, the

database curators did not include those sequences

in the ‘brand name’ in databases, so as not to

Figure 2: Increase of sequence diversity over time.
GenPept sequences from the years1997,1999, 2001, 2003
and 2005 were clustered at 60% sequence identity, sepa-
rately for each year. X-axis: cluster size, in number of
sequences per cluster.Y-axis: log10 of number of clusters
in a cluster size. As can be clearly seen, the diversity of
sequences, represented by the number of clusters popu-
latedby few sequences, is growing. Sequenceswere clus-
teredusing CD-HIT [132].
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confuse and overload those databases with organism-

dissociated sequence data. They are available,

though, and harboring a trove of information on

the diversity of protein families, their annotation is a

massive task yet to be fully appreciated.

The programs reviewed in this section rely

primarily, but not exclusively, on homology-based

annotation transfer for function prediction. Mostly,

programs that produce an ontological or keyword

output were considered for this review. Naturally,

there are many similarity-based search programs,

which have been reviewed frequently in literature

and will not be covered here.

PFP is a simple server that initially uses

homology-based transfer for function prediction to

establish function (http://dragon.bio.purdue.edu/

pfp/pfp.html). It uses three iterations of PSI-

BLAST against UniProt [35], and the results are

cross-referenced against UniProt’s GOA to produce

a function prediction with a probability score.

Additionally, Hawkins and Kihara have analysed

the probabilistic associations in UniProt between

different GO terms using function association

matrices (FAMs). A FAM entry contains a score

representing the strength of the association between

any two GO terms per ontology, per database. This

means that for every GO term, the probability of its

being associated with another GO term can be

looked up. Given a homology-based function

prediction produced by PSI-BLAST, additional

functions may be associated with a known degree

of probability. Thus, sensitivity is increased by this

association, but specificity is not compromised as the

method uses a low number of PSI-BLAST iterations.

To be clear, ‘sensitivity’ denotes the fraction of true-

positive GO-term predictions out of all true

positives, and ‘specificity’ addresses the fraction of

true positives out of all predictions (true and false-

positives). The low number of PSI-BLAST iterations

is important, as it was shown that above a certain

number of PSI-BLAST iterations, alignment accu-

racy drops remarkably, compromising the ability to

perform an accurate homology transfer [36].

GOPET [37] uses multiple support vector

machines (SVMs) to classify predictions into ‘correct’

and ‘incorrect’ categories. The features used for

classification include sequence similarity measures,

frequency of GO terms, quality of annotation of

homologs, and annotation level within the GO

hierarchy. Initially, each training sequence—assigned

with known GO terms—is BLASTed against

protein databases. The annotations of the retrieved

sequences are compared with the standard of truth

of the training annotations and are classified as either

‘correct’ or ‘incorrect,’ and the features listed

previously are noted. Those features are then used

to construct an SVM to differentiate between the

correct and incorrect GOAs. Given a training

sequence, the GOAs of the resulting sequences are

noted, and their features are calculated and mapped

into the feature space. Then, the correct/incorrect

labels are assigned. Prediction accuracy is further

enhanced using a voting approach to combine

information from different classifiers. With more

classifiers pointing to a given GO term, the predic-

tion is considered more reliable. OntoBlast [38] and

GOblet [39, 40] provide a GO-based output of

BLAST, with BLAST’s e-value used for scoring the

results. GOtcha [41] offers a high-sensitivity search

using BLAST—the probability for each GO term

is normalized by its frequency in the genome, and

a sub-DAG of the GO nodes is provided for each

query with the term probabilities assigned.

PHYLOGENOMIC
CONSIDERATIONS
The output of BLAST is a list of proteins ordered by

increasing e-value, roughly corresponding to a

descending similarity score between the query

sequence and those found similar to it in the

database. Intuitively, the top sequence would be

taken as the basis for annotation transfer to the query

sequence. This may not always be the correct thing

to do. This is because the sequence most similar to

the query is not necessarily the one identical in

function. The reason is that when gene duplication

occurs in an organism, the duplicate, termed a

paralog, is ‘free’ to assume a new function, whereas

in orthologs—homologs due to speciation—func-

tion is more likely preserved. However, due to

database bias or unequal evolution rates, highly

similar sequences may not be from orthologous

proteins, not sharing the same function, and thus,

promoting erroneous annotation transfers (Figure 3).

This is where phylogenomic considerations come

into play. The term phylogenomics, coined in 1998

by Jonathan Eisen [42**], denotes the application of

phylogenetic information to genomic studies.

Phylogenomics states that the evolutionary history

of putative homologs must also be considered when

assigning function. In practical terms, annotation
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transfer is performed from the closest ortholog,

not from the most similar sequence. There are

several methods based on this insight, known as

phylogenomics-based methods. These methods are

ideally used when BLAST produces two or more

different annotations, and the way to discriminate

and decide which one is correct is by considering the

evolutionary history of the homologs in question.

RIO [43] and SIFTER [44] check whether a protein

has orthologs, by inferring gene duplications on a

gene tree by comparing it with a species tree, thus

sorting out the orthologous and paralogous events.

Annotation transfer is performed from those with

a good orthology score, not with a good similarity

score. OrthoStrapper [45] uses the same principle,

but the phylogenetic tree is inferred from many

bootstrapped trees. A recent review of phylogenomic

methods outlining a generic method to perform

phylogenomic analyses was written by Kimmen

Sjölander [46**].

THEUSEOF SEQUENCE PATTERNS
Proteins that share a common function but are

otherwise diverse will usually share one or more

common sequence or structure patterns necessary to

maintain their structure and function. This is because

proteins perform their functions using a relatively

small part of their structure—of the 100–300 amino

acids in a domain, only fewer than 10 may make up

the ‘business ends’ of the protein that are the binding

and catalytic sites. Therefore, to predict a protein’s

function, in many cases there is no need to use

annotation transfer from a homologous protein. All

that is required is to identify a sequence- or

structure-based signature or feature that can be

associated with a function. This signature can either

be located in one place along the sequence or be a

‘fingerprint’ composed of several such patterns. The

canonical PROSITE [47] is a well-established

database of such patterns, constructed by manual

curation of multiple sequence alignments. The

PROSITE language uses a regular-expression-like

syntax consisting of the one-letter codes for amino

acids. However, there are many different techniques

for collating, compiling and recognizing sequence

patterns. These include variations on regular expres-

sion syntax, multiple sequence alignment profiles,

and hidden Markov models, to name a few. This is a

well-established field in bioinformatics and is too

broad to be included in this review. It is mentioned

because sequence patterns are essential in the makeup

of many recent function prediction servers. Also, the

umbrella sequence databases, such as InterPro,

provide functional information based on the

presence of canonical sequence motifs.

Databases of sequence patterns usually contain

cross-references to whole protein chains and their

possible function. PROSITE is one, and PRINTS is

another motif (or ‘fingerprints’) database [48]. Some

databases integrate the information from others. One

of the first was BLOCKS [49], which had its own

motifs generated using the PROTOMAT program,

but also integrated PRINTS, PROSITE, and Pfam

information. Currently, one of the most compre-

hensive and heavily used resources is InterPro, which

was mentioned earlier. InterPro contains multiply

aligned ungapped segments corresponding to the

most highly conserved regions of proteins auto-

matically generated from PRINTS. PRINTS is an

annotation resource that includes ‘signatures’

(another synonym for sequence patterns) from

PROSITE and whole-domain signatures from

A1
B1

B2

A B

B1, B2: Paralogs

A1, B1: Orthologs

Query sequence

Figure 3: Similar as opposed to orthologous. Given
two organisms A and B.Genes B1and B2are paralogous,
as they share a common ancestor prior to a duplication
event. A1 is orthologous to B1, B2. B1 is more similar to
B2 than either B proteins are to A1. However, B1and B2
have different functions, and A1actually shares the same
functionwith B1.Therefore, givenB1as a query sequence,
annotation transfer by similarity would produce
an error, as it will transfer function from B2. Given
knowledge of the evolutionary tree, A1 should be used
for functional annotation transfer.
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PANTHER [50], Pfam and TIGRFAM. As we shall

see, databases such as InterPro are often used for

predicting protein structure by annotation transfer.

Due to this ‘cross talk’ between the databases, it is

crucial that the information be kept correct and

up-to-date.

GENOMIC CONTEXT-BASED
PREDICTIONS
One exciting class of methods for assigning function

using sequence, but without using homology-based

transfer, is the genomic context-based predictions.

This technique has also been dubbed phylogenomic

or phylogenetic profiling, but to avoid confusion

with the phylogenomic methods described earlier,

I shall use the term ‘context-based’. The inter-

genomic profile of a gene is a vector of bits, each bit

representing the presence or absence of a homolog in

a given genome. Two proteins with identical or

nearly identical inter-genomic profiles are considered

to have evolved together, and it is very likely

that they are functionally associated [51*–54**, 55].

Furthermore, in prokaryotic genomes, functionally

related genes also tend to be co-located on the

chromosome. These two observations have been

translated into function-prediction algorithms, using

co-evolution, chromosomal proximity, or both as

functional predictors. Function is inferred by match-

ing the inter-genomic profiles of the unknown

protein to those which are known. The Phydbac2

server [56, 57] makes use of this trait for functional

annotation. However, in addition, Phydbac2 uses

chromosomal proximity and gene fusion analysis. In

bacteria, having two genes co-located on a chromo-

some and both homology and co-location preserved

in many genomes, indicates a functional association,

and thus may be used for function prediction.

Additionally, certain genes may fuse into two

domains on the same gene, clearly showing a

functional association. SNAP [58] takes this approach

one step further and builds a graph of altering

similarity and neighborhood relationships in com-

pletely sequenced bacterial genomes—that is, groups

of genes are typified both by their co-location on

genomes and by homology, although co-location

need not necessarily imply actual genomic proxim-

ity. Genes with similar similarity–neighborhood

graphs (SN-cycles) are considered to be functionally

associated. In a more recent study, Barker and Pagel

[59] have incorporated the phylogeny of 15 studied

species into the absence/presence data of gene pairs

to produce functional association predictions.

It should be noted that other contextual predic-

tion methods exist, notably by inference from

protein–protein interactions. However, this review

surveys the genomic contextual methods. For

comprehensive reviews on functional inference by

interactions, see the recommended reading list at the

end of this article.

STRUCTURE ALIGNMENTAND
STRUCTURE PATTERNS
The structure of a protein is much more informative

than the amino acid sequence alone. Knowing the

structure allows us to explain the biochemical

mechanism by which the protein implements its

functionality. If the function is unknown, a three-

dimensional (3D) structure-based similarity to other

structures can reveal more about its function. If the

3D structure is of a known fold, then that protein

may have a function similar or identical to other

proteins inhabiting this fold. Furthermore, structure

is much better preserved than sequence, so many

proteins with little or no sequence similarity still have

a structural similarity [60, 61**]. There are a few

folds that are inhabited by many proteins performing

many different functions, but most folds we know of

are associated with a single function, though this may

be simply due to an uneven sampling of sequence

space [62]. Also, those folds that are functionally

diverse are in many cases within a given functional

milieu—TIM barrels are usually enzymes that

catalyse a reaction that has something to do with

oligo- or polysaccharides. After aligning the novel

protein with those from its fold, the functional

transfer may be assessed for plausibility by examining

the similarity of the catalytic site, which should have

conserved amino acids and side-chain orientations.

Programs that scan PDB for structural similarity

given a query sequence include CE [63], DALI/

FSSP [64, 65], FATCAT [66], VAST [67], FAST

[68], Matras [69, 70], DaliLite [71], GRATH [72],

and AnnoLite. A critical review of several structure

alignment servers has been performed, with the

conclusion that multiple methods should be used as

no single method is completely accurate [73].

Of the methods mentioned here, Annolite

was written explicitly as a structure alignment-

based function-prediction tool. Annolite (http://

www.salilab.org/�marcius/beta_dbali/?page¼tools
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&action¼f_annolitechain) accepts a query structure

and provides GOA along with a probability score.

This is done by annotation transfer from similar

structures.

However, even when confronted by a protein

with a novel fold or with low similarity to a known

fold, it is still possible to tease out functional

information. This can be done by analysing structure

patterns of the protein. The rationale for structure

patterns is the same as for sequence-based patterns—

identify unique markers associated with a function.

However, structure patterns by nature are markedly

different from sequence patterns. As we have seen,

sequence patterns are short amino acid stretches,

similar over different proteins, associated with a

function. These can be represented as consecutive

short regular expressions or profiles derived from

multiple sequence alignments. Structure patterns are

best described as identifiable spatial regions within

the protein’s structure, which leaves much more

room for descriptive methods. Those range from

identification of 3D shapes completely dissociated

from the amino acids, to a string of characters

representing amino acids and their physical environ-

ment. A typical prediction by the 3D motif method

contains the following elements: an algorithm to

generate a 3D motif library, a library of 3D patterns,

and a search algorithm designed to scan that library.

The rest of this section reviews existing methods.

It should be noted that most of them fall short of

being full AFP methods as they do not produce a

functional prediction for the query protein. Rather,

they show the mapping of putative functional sites,

leaving the final compilation of results up to the user.

Nevertheless, they are reviewed here due to their

importance in providing functional annotation.

A table reviewing some of these methods is main-

tained by Martin Jambon at (http://martin.jambon.

free.fr/search-protein-3D-sites.html). The functional

association of structure fragments is very strong and

has been shown to transcend different folds [74, 75].

(Patterns In Non-homologous Tertiary Structures

(PINTS) [76] allows the comparison of a protein

structure against a database of patterns, or a PDB

format pattern against a pattern database.

PHUNCTIONER [77] extracts conserved residues

and associates them with GO terms. Several more

such databases and associated search algorithms exist,

including the Catalytic Site Atlas [78**], PDBFun

[79], PDBSite and PDBSiteScan [80, 81], SuMo

[82, 83], pvSOAR [84], SARIG [85], FEATURE

[86, 87], RIGOR [88] and PatchFinder [89] (Table 2).

By default, structures are represented as a

collection of thousands of 3D coordinates, which

represent the atoms making up the protein. This

representation is computationally expensive. To

reduce this expense, many algorithms seek to

represent the 3D structure more simply while

preserving the necessary spatial and physicochemical

information. For example, SuMo uses a chemical

group representation for residues, arranged in

triangles, and graph theory to superimpose them

for database searching. FEATURE defines micro-

environments in the protein structure as a series of

concentric spheres, or alternatively as a 3D cubic

lattice. Each spatial partition (cube or sphere) is then

examined for physicochemical properties of the

residues enclosed in it, and based on those, a feature

vector is assigned to it. SeqFEATURE [87] further

automates the process of site creation by enabling the

creation of structure patterns from known sequence

patterns. Theoretical Microscopic Titration Curves

Table 1: Function prediction by database scanning using structure alignment

Name Description URL Reference

Global structure similarity search
DALI Search and optimal alignment

using distance matrices
http://www.ebi.ac.uk/dali/ [64, 65]

VAST Vector alignment http://www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html [67]
CE Combinatorial extension http://cl.sdsc.edu/ [63]
FATCAT Flexible alignment of

protein backbone
http://fatcat.burnham.org/ [60]

AnnoLite Homology transfer
from functionally
annotated databases

http://salilab.org/DBAli/?page¼tools&action¼f_annolitechain

Matras Markov transition model
of evolution

http://biunit.aist-nara.ac.jp/Matras/ [69]
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(THEMATICS) [90, 91] uses computed pH titration

curves of residues on a protein structure to locate

active residues and differentiate between different

proteins that may share similar structures but

different functions.

Locating the functional amino acid residue

positions can be done through evolutionary con-

siderations. Evolutionary Trace (ET) ranks residue

importance by correlating amino acid variations in a

multiple sequence alignment with evolutionary

divergences in a phylogenetic tree [92]. As such, it

is reminiscent of (although predating) the phylo-

genomic methods. The obvious difference being

that ET maps groups of residues rather than whole

proteins. ET has been shown to correlate well with

functional sites and as such serves as the basis for

several methods for structure-based functional site

detection [93–95].

A good structure feature-based prediction method

will be able to recognize structural features in a given

protein and integrate that information into a

functional prediction. It is up to the algorithm

designer to locate the important cues for function-

ality and use them to deliver a good prediction for

which bits are important. It bears repeating that the

programs listed in this section are not strictly function

predictors as they do not produce a list of keywords/

ontology terms or free text as their output, but rather

are a stepping stone toward understanding a protein’s

function.

EXPRESSIONMICROARRAY-
BASED PREDICTIONS
‘Birds of a feather flock together’ (conversely, ‘guilt

by association’ [96**]) is the motto underlying this

category of function-prediction methods. When

gene-expression data are clustered, genes involved

in the same pathways tend to cluster together. Eisen

et al. [97*] proposed a metric based on correlation of

expression intensity and then proceeded to show

that genes involved in similar cellular functions are

co-expressed. From their results they suggested that

unknown genes, co-expressing with known genes,

can be annotated by virtue of association. Other

methods based on the same rationale have been

proposed [98*]. It is clear that this method is useful

for annotating the cellular pathway aspect of

function rather than the molecular function itself.

If we find an unknown gene in the cluster of

genes responsible for cholesterol metabolism, we can

safely infer that it too has to do with cholesterol

metabolism. Pinpointing its exact biochemical

function, however, is still problematic.

Expression microarray analysis for the purpose of

function prediction will not be covered here since

even a proper introduction to the subject is beyond

the scope of this review. A review of ontological

analysis of gene-expression data was recently

published and is recommended reading for under-

standing the current scope of the tools that mediate

an understanding of the biological phenomena

underlying gene-expression data [99]. Many

GO-based tools are available for this type of analysis

from the GO site (http://geneontology.org/GO.

tools.microarray.shtml).

OTHER PREDICTIONMETHODS
This section offers an overview of several ‘canonical’,

and also recently described function-prediction

servers and available software, mostly those that

produce ontological output—exclusively or in

addition to other functional output—in response to

a structure- or sequence-based input.

Table 2: Structuremotif findingmethods

Name Functional site representation URL

SuMo Triplets of functional groups http://sumo-pbil.ibcp.fr/
PINTS Selected atoms http://www.russell.embl.de/pints/
PDBFun Sidechain centroid http://pdbfun.uniroma2.it/
PDBSite Backbone centroid http://wwwmgs.bionet.nsc.ru/mgs/gnw/pdbsitescan/
SARIG
RIGOR C-alpha http://portray.bmc.uu.se/cgi-bin/spasm/scripts/spasm.pl
pvSOAR Side chain centroids of cavity amino acids http://pvsoar.bioengr.uic.edu/
WEBFEATURE Concentric spheres http://feature.stanford.edu/webfeature/
THEMATICS Predicted pH titration curves No server associated yet.
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GeneQuiz [100] was probably the first high-

profile function-prediction server, having been the

first available, and one of the best known by virtue

of seniority. It used a variety of global sequence and

sequence pattern search strategies (mainly from the

BLAST family).

PropSearch [101] is probably the first method to

use a purely feature-oriented approach to function

prediction. ProtFun [102**] is the current best-

known player in this category. Sequence homology-

based methods classify proteins within sequence

space, and structure-based methods classify them

within structure space. In contrast to those, a mixed-

feature method such as PropSearch or ProtFun uses a

series of predicted biophysical and localization signals

as well as post-translational modification features to

classify proteins. Among the attributes ProtFun uses

are a number of positively or negatively charged

residues, grand average of hydrophobicity [103],

secondary structure prediction, low-complexity

regions, and predicted glycosylation sites. ProtFun

uses a neural network in which those features are

used in calculating the probability a query sequence

belongs in any one of twelve biological processes

(e.g., ‘energy metabolism’ or ‘replication and

transcription’ as outlined in [7]) as well as classifying

it as an enzyme or non-enzyme and, if the former,

assigning it a top-level EC classification. Although

ProtFun uses a controlled vocabulary, the predictions

provided are coarsely grained and are more suitable

for a statistical overview of a large group of genes or a

whole genome or for obtaining preliminary func-

tional hints for later analysis.

Spearmint [104] generates rules for annotation

based on SwissProt keywords rather than on GOA.

The classifying attributes are taken from pattern

databases such as PROSITE, Pfam and PRODOM,

and an association between these and SwissProt

keywords is determined and put in the form of a

C4.5 decision tree [105]. Rulebase is similar to

Spearmint in essence, only differing in that the rules

are generated by manual curation rather than by an

automated approach. However, this rule-based

association is reliable as long as the SwissProt

keyword annotation is reliable, which is often not

the case; thus, both Rulebase and Spearmint may

introduce erroneous annotations. For this reason,

Xanthippe, a rule-based system aimed to detect and

flag annotation errors, was constructed [106] to

check inconsistencies in rule associations. (Xanthippe

was Socrates’s critical and shrewish wife).

Proteome Analyst (PA) uses BLAST and then

assigns a set of attributes to the protein, based on

SwissProt keywords drawn from the nearest homo-

log; it also enables the user to create custom classifiers

[107, 108].

ProKnow [109] is a hybrid server utilizing

information from sequence and structure (if avail-

able). Using multiple sequence alignment, multiple

structure alignment, and Bayesian statistics, it outputs

GO terms along with associated probability scores

and strength of evidence (or ‘clues’) outlining how

the predictions were made. ProFunc [110] is a mixed

method that uses fold matching, residue conserva-

tion, surface cleft analysis, and functional 3D

templates to identify both the protein’s likely active

site and its possible homologs in the PDB. Although

ProKnow does not produce a prediction per se, it
does collate and present information in a systematic

way. JAFA is an aggregate server that queries other

programs (currently GOtcha, PhydBac, GOblet,

InterproScan and GOfigure) and presents the final

results using GO in a concise, non-redundant fashion

(http://jafa.burnham.org).

STRING [111**, 112] integrates information

from genomic proximity conserved along genomes,

high-throughput experiments, co-expression con-

served along genomes, phylogenetic profiling and

literature mining. It predicts functional associations

as well as direct interactions.

FSSA [113] is a method to discriminate between

proteins that share the same overall fold but may

have different functions. FSSA does so by locating

positions that are highly conserved in multiple

structural alignments. Then, it locates those that

may be conserved to maintain function only, versus

those that are conserved to maintain structure.

It does so by calculating the conservation within

a SCOP [114]-fold versus the conservation in

a superfamily (more closely related proteins of the

same or highly similar functions). The rationale is

that structure-maintaining positions will be con-

served in multiple alignments throughout the fold,

whereas function-maintaining positions will be

conserved only within a superfamily.

Assessment of automated function
prediction
In the last section of this review, we will consider

ways to assess how well AFP programs are perform-

ing. Annotation quality assessment is necessary to

obtain an impression of the prediction quality of each
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server and of how well the field is performing in

general. GASP, launched in 1999, was arguably the

first genome-wide annotation quality assessment

of its kind [115]. However, the participants noted

that as no ‘gold standard’ for function exists, it is

impossible to assess the quality of functional annota-

tion. Another quality asessment was held as part of

the BioCreAtIvE (Critical Assessment of Information

Extraction for Biology) biological text-mining

competition [116, 117]. Here, the organizers used

GO-annotated genes with a good evidence code,

and the function-prediction challenge (task 2, part 3

of BioCreAtIvE) was to assign a GO term using text

mining. The CASP6 [118] assessment was not of

AFP methods but rather of those that were

handcrafted and submitted in addition to the main

focus of CASP, namely that of protein structure

prediction. Another assessment was conducted

as part of the meeting on AFP that took place in

2005 (http://BioFunctionPrediction.org). The AFP

assessment tested predictions for proteins whose

functions were experimentally determined but

were not yet public knowledge. As such, the AFP

assessment had a ‘gold standard,’ and it was masked

from the assessors.

For evaluating assessments, the measure used at

the AFP 2005 meeting was semantic similarity as

applied to gene ontologies [119**]. Each GO term is

assigned a frequency based on its frequency in the

corpus of proteins and the cumulative frequency of

its children nodes. Thus, the root node of the

ontology (molecular function, biological process,
or cellular location) always has a frequency of one.

In order to measure the distance between any two

nodes, the minimal subsuming node is found, and its

frequency is translated into a similarity measure—the

higher the frequency, the lesser the similarity. This

reflects the observation that if two terms have a

minimal subsumer relatively common in the corpus,

that is, if they have a high frequency, then that

parent is not a very informative term. For example, if

‘enzyme activity’ is the minimal subsumer of the two

terms in question, then the terms are not very similar.

If ‘tyrosine kinase activity’ a less-frequent term, is the

minimal subsumer, then the terms would be more

similar than in the former example. See Figure 4 for

details. This similarity measure has been shown to be

well correlated with sequence similarity [119**].

Other similarity scores have been suggested for

assessing functional similarity based on DAG levels

[120] and on frequency in the corpus [121*, 122].

A completely different assessment scale was

suggested by Ouzounis and Karp [123]—the transi-

tive annotation-based scale (TABS), for assessing

functional annotation. The difference between

TABS and the methods described earlier is that

TABS does not rely on an association between the

functional terms, such as a tree or a DAG, for

deriving a distance measure. TABS is an ordinal scale

ranging from 0 (a complete agreement between the

original annotation and the predicted annotation),

Figure 4: Semantic similarity between two GO
terms.Using themethod developed in [119**], each node
is annotated with its frequency in UniProt.This includes
the sum of the probabilities of all the nodes it subsumes,
thus the root, ‘molecular_function’; in this case, it has
P¼1. Semantic similarity between any two nodes is
inversely proportional to the probability of the minimal
subsuming node of the two nodes in question.Thus, the
semantic similarity distance between more specific
terms,‘His-NH3-lyase activity’ and ‘Ser-NH3-lyase activ-
ity’ (subsumed by ‘NH3-lyase activity’), is shorter than
‘NH3-lyase activity’ and ‘C-S lyase activity’ (subsumed
by ‘lyase activity’), even though the number of edges
counted is the same.The actual equation used to calcu-
late the distance is: sim(c1, c2)¼�ln(Pms(c1, c2)).Where c1
and c2 are the two terms between which the distance
is being measured, Pms is the probability of the minimal
subsumer of c1 and c2, and sim(c1, c2) is the similarity
score. See [119**] for a full description.

236 Friedberg

http://BioFunctionPrediction.org


through 3 (under prediction), to 7 (false positive, see

Table 3). TABS is used to locate ‘problem spots’

along a genome by comparing annotation schemes

and seeing which locations receive the worst TABS

scores.

However, there is great variance in the predictive

scope of different methods [19, 25**]. For example,

the phylogenomic-based methods are particularly

suited when there are several choices for the function

through homology-based annotation transfer, but

the correct choice needs to be resolved [44, 46**].

This is because phylogenomic methods are able to

make the distinction between similar proteins and

directly orthologous ones and provide the correct

sequence for orthology (and not merely similarity)-

based transfer. In contrast, phylogenomic methods

are not suited when a gene’s function is completely

unknown and cannot be found by homology-based

transfer. Structural similarities (if a solved structure

exists), phylogenetic profiling, or guilt-by-association

microarray-based predictions might be more suitable.

Additionally, some methods do not even propose to

predict molecular function,but are concerned with

pathway information, or subcellular location [1].

The main difference between the AFP2005

assessment and the CASP6 assessment was that in

the case of CASP6 there was no ‘functional gold

standard’ as the targets provided were used primarily

for structure prediction (CASP’s main interest) and

had little or no knowledge regarding true function.

As such, the CASP6 endeavor was geared toward

setting standards for function prediction rather than

assessing performance. Additionally, the predictions

were generally not automatic but handcrafted as is

the norm in CASP’s main venue, assessment of

structure predictions. Based on the discussions that

took place in the CASP6 meeting, the conclusions

of Soro and Tramontano [118] were as follows:

(1) molecular function-prediction assessment should

be limited to enzymes, where ambiguity is mini-

mized and the framework provided by EC enables a

good comparison and (2) making the prediction

results useful for the experimental community is a

top priority, and as such, a reliability ranking should

be given to the predictions. BioCreAtIvE was

focused on text-mining capabilities, and function

prediction (using text-mining tools) was merely one

in a large number of tasks.

DISCUSSION
There are several goals that function prediction needs

to meet in the genomic era, the obvious one being

improvement of annotation quality and genomic

coverage—the proportion of genes and gene pro-

ducts in a genome which are annotated. Progress in

function annotation will be measured chiefly by

improvements upon these two traits. A less obvious

but equally important goal is that of maintaining a

good standard for information exchange. Programs

dealing with sequences, sequence alignments, mole-

cular structures and microarray data, all have one

standard or a few standards for communicating

information. This enables, for example, one program

to read a set of sequences from a database, another

to perform a multiple alignment, and yet a third to

resolve conserved positions in the alignment.

In contrast, with respect to function annotation,

Table 3: Transitive annotation-based scale (TABS): a qualitative distance scale for the assessment of annotation
reproducibility in genome projects

Score Description Comment

7 False positive Original annotation predicts function without any supporting evidence.
6 Over-prediction Original annotation predicts a specific biochemical function without sufficient supporting evidence.
5 Domain error Original annotation overlooks different domain structure of query and reference proteins.
4 False negative Original annotation does not provide predicted function although there is sufficient evidence to

characterize the query protein.
3 Under-prediction Original annotation predicts a nonspecific biochemical function although a more detailed prediction

could have been made.
2 Undefined source Original annotation contains undefined terms, non-homology-based predictions, and so on.
1 Typographical error Original annotation contains typographical errors that may be propagated in the database.
0 Total agreement Original annotation is correct, but annotations may be only semantically (but not computationally) identical.

Score, the scorebetween two assignments; Description, a description of thepotential disagreementbetween twoprojects; Comment, explanatory
comments for ranking/scores.We consider scores of 0^3 as relativelybenign comparedwith scores of 4^7 as the latter have amuchmore significant
impact on genome sequence and database quality.
Copyright 2001Genome Biology, table, and legend reproducedwith kind permission fromGenome Biology. doi:10.1186/gb-2002-3-2-comment2001.
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we are just beginning to set the standards for

information exchange. Part of it is because—as it is

with any young field defining itself—there are

several conflicting suggestions being put forth,

some of which will eventually propagate and be

accepted. Nevertheless, a large part of the problem is

due to the ambiguous and multifaceted character of

biological function. This ambiguity makes it all the

more difficult to set rigorous standards for prediction

quality assessment without seeming unduly arbitrary

and exclusive. Ontologies, chiefly GOs, have been

gaining ground as the standard for information

exchange about function, especially within the

milieu of microarray data analysis. Even with the

acceptance of GO, technical problems such as

assessment of prediction quality are not yet satisfac-

torily resolved, as discussed in the ‘Assessment of

automated function prediction’ section. A working

information exchange standard is necessary in order

to be able to ‘plug in’ function-prediction programs

into the grander scheme of genomic analysis.

Function-related information is rarely complete,

different functional aspects are slow to reveal

themselves. Moreover, the scope of function anno-

tation incompleteness is unknown. This is best

exemplified in ‘moonlighting proteins,’ which per-

form several different functions in a context-

dependent manner, and it can sometimes take years

to discover that a protein having one function also

possesses another [124**]. This is in contrast to

sequence and structure information in which, barring

small errors, the information is completely known

(sequence), or at the very least the scope of what is

unknown is well demarcated and may sometimes be

correctly filled in by predictive schemes, such as loop

prediction in structures.

Distinct classes of function prediction are leading

to the emergence of aggregate programs such as

ProKnow, STRING and ProFunc, which use several

data sources and/or algorithms to predict the

function. Intuitively, aggregate methods are espe-

cially well suited for function prediction as they

would need to use a wide set of features to predict

different functional aspects. For example, while

prediction of biochemical function can be well

addressed by analysing sequence motifs, the physio-

logical aspect might be better done by looking at the

genomic context.

As for any predictor, feature selection is of utmost

importance. The term ‘feature selection’ is used in

machine learning to describe the selection of traits,

or ‘features’ used in any classification problem.

For example, when classifying schoolchildren into

age groups, height is a good classifying feature.

Studies assessing the best features for function

prediction are only emerging now [125–128*].

Better feature-selection systems will not only

enable us to create better predictors, but will also

enable us to understand which chemical and physical

elements in the protein are important for establishing

function. Several good reviews about function

prediction have been published recently, and those

are recommended for additional information and

other perspectives on the subject [1, 2, 21, 22,

129–131].

The expectations from AFP should be on

a practical level, as by definition any controlled

(or ‘limited’) vocabulary cannot capture the complex

and multifaceted nature of function as well as natural

language. Having entered the genomic era, the life

sciences community faces a formidable task—to

annotate the hundreds of genomes being sequenced

and the structures being solved. AFP will play a

pivotal role in this effort. Happily, computational

biologists are gearing up to meet this challenge, as

attested to by the many different methods surveyed

in this article.
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Key Points

� Few functional annotations are derived by experiments,
and most functional annotations are automated. The
exponential growth in sequence diversity means that
themethodof choice, homology transfer, is notperform-
ing as well as it used to.

� Nucleotide or amino acid sequence, sequence patterns,
protein structure patterns, chromosomal location, phy-
logenetic information, expression data, molecular inter-
action data and gene co-evolution are all being used for
function prediction.

� Different methods are better at predicting certain func-
tional aspects. Combined approaches drawing on the
strengths of differentmethods are currently emerging.

� Functional annotation can be confusing and ambiguous;
ontologies are the tool of choice for standardizing
annotation.
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