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Types of Network

Regulatory
Protein-interaction
Metabolic
Signaling
Co-expressing
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Relationship between genes

Gene/protein/enzyme



Example

« We can create a network where actors and
actresses are the nodes

« Two actors are joined if they co-stared in a film
« Kevin Bacon game
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Example

« We can create a network where actors and
actresses are the nodes

« Two actors are joined if they co-stared in a film
« Kevin Bacon game

— On average, two actors can be linked by 3.65 films

— Christopher Lee is actually more highly connected than
Kevin Bacon

Watts, D. J., and S. H. Strogatz. 1998. Collective dynamics of
'small-world' networks. Nature 393:440-442.



Example—Protein interaction
networks

* Many or most proteins bind to other
proteins

— Generally not covalent

— But can still be
* Long term (multi-peptide enzyme complexes)
« Short term (signal transduction)

— Generically treat this as protein interactions



Methods to identify protein
Interactions

» Lots of small-scale experiments

* We will discuss the “"genome-scale”
methods

 Earliest: yeast two-hybrid

— Uses yeast as a tool—can be done for
proteins from any organism

— But has been done at genome scale in yeast
©



Introduce a

plasmid with a
reporter gene:
turns colonies

blue If Lacz s
Transcription
on and a

_ LacZ reporter gene galactose-

analog (“X-gal”)
IS present

 Originally, the transcription factor induced
transcription of the gene and turned the
colonies blue



The different
domains of the
TF can function
independently

o

=3
-

B, ¢ bromoter

LacZ reporter gene

* TF now functions If the two pieces are
“close”

* Note however that the two pieces do not
“stick together” on their own



Tether each
piece of the TF

Transcription to another

' protein
g L aC promoter LacZ reporter gene

* We are testing If the bait and prey interact

* If they do, they will bring the two halves of
the TF close enough to turn on LacZ

* If the colonies turn blue, the two proteins
Interaction



Yeast two-hybrid results

* > 60% of the proteins In the yeast genome
have been tested for some interactions

* Question, if there are 5000 unigue proteins
In yeast, what Is the possible number of
Interactions?

* Problems with two-hybrid method

— We've altered the proteins—false negatives
and false positives



Yeast two-hybrid results

* Problems with two-hybrid method (cont.)

— Probably won't be able to sample all possible
Interactions

— Doesn’t account for time of protein expression
or location
« We could infer that two proteins interact when they

are in fact never at the same place at the same
time



Mass-spec. methods

« Start by adding a tag to the “bait” protein
of Interest:

pmmm  Baitgene g

TAP tag

* Now grow cells with this construct: copies
of the bait protein will be tagged



Interactions vs. complexes

* Two-hybrid methods find pairwise protein
Interactions

* Here, we are looking at larger groups of
proteins, aka complexes
 Complex is a somewhat vague term

— Length of residue?
— Functional?



Mass spec. continued

« Extract the cell proteins without disturbing
the protein complexes

* From those proteins, extract any
complexes with a member having the tag
— Several steps
— Uses an antibody to the tag for identification

* Result is complexes that have the bait
protein as a member



Actual mass spec

* We now have a group of complexes which
the bait protein is a member of

» What other proteins are present?

Unfolded protein § J—

N SN

Proteolytic cleavage

Many short peptide
fragments



y

Separation of fragments

* Magnetic field
separates fragments
based on:

— Charge
— Mass

 Result s a list of Ions
with mass and
change that are
present

//////



ldentifying the ions

1. The mass spectrometer gives us a list of
peptide fragment masses and charges

2. You search the genome for all possible

peptide fragments and calculate their
mass and charge

3. Match 1 to 2!
— Obviously this is a computational challenge



Mass-spec protein complexes

* We put the bait-centered protein
complexes into the mass-spec and identify
the peptides present

* Look those up in the genome to identify
the proteins present

* This gives us a list of the proteins in the
complex for that bait protein




Gavin, A. C. et al., 2002. Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature 415:141-147.



In yeast

« ~590 proteins used as bait

« ~ 232 complexes found among these

— ~130 proteins used as baits did not return a
complex

— But complexes can also interact with each
other



Building networks

* Protein interaction data has lots of uses
* One Is to study biological networks

 Networks are an abstraction of the
relationship among entities!



N. Oltvai. 2001. Lethality and centrality in protein
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Network Measurements

« Simple: Degree distribution
— How many edges”?
— Expressed as a distribution



Network Measurements

« Simple: Degree distribution
— How many edges”?
— Expressed as a distribution
« Common degree distributions:
— Normal: Mean number of edges is u
— Exponential
* P(X)=eX
* Power-law
— P(x) = x®



Comparing exponential and
1 b}
scale-free” networks
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Other statistics

Mean path length
Longest path (aka diameter)

Clustering coefficient

— Number of connections between your
“neighbors” over the possible number of
connections

Number of components



Features of protein interaction

networks

“Small world”

There are a few proteins with very many
Interactions (hubs)

Proteins are “cliquish’:

— If you and | interact, and | interact with Susan
— It is more likely you and Susan will interact

Most proteins “talk” to every other protein
In very few steps



Uses of interaction networks

* Predict disease-related genes

— The density of protein interactions that a
protein shares with other proteins can be
used to predict whether it is likely to influence
a particular disease

* Follow cell-signaling?



Predictions from interaction

networks

* The scale-free character of biological
networks suggests that hub nodes may be
more evolutionarily important

» Jeong et al., tested this by asking if genes
for yeast protein interaction hubs were
more likely to kill the cell when "knocked
out” than other genes

—Jeong, H., S. P. Mason, A.-L. Barabasi, and
Z. N. Oltval. 2001.Nature 411:41-42.
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Other kinds of networks

Regulatory networks
Metabolic Networks
Neural networks

Gene expression
networks

Matabhodism
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Why study gene expression?

* |dentify genes associated with pathways
or diseases

* Diagnostics of disease
* Reconstruct the gene regulatory network



Inferring the yeast regulatory
network
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Network “Motifs”

« \We've looked at the “macro” structure of
networks—what about their “micro”
structure”

 Milo et al., defined the set of "motifs” for a
network
— Aka “subgraphs”

— Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii., and U. Alon. 2002. Science
298:824-827.



Fig. 1. (A} Examples
of imteractions repre-
sented by directed
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present study. These
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Tabde 1. Metwork motifs found in biclogical and technological networks. The numbers of nodes and edges
for each network are shown. For each motif, the numbers of appearances in the real network (W, ) and
in the randomized networks (M, * 50, all walues rounded) {77, 18} are shown. The # value of all motits
is F < 0,07, as determined by comparson to 1000 randomzed netaorks (100 in the case of the World
‘Wide Web). As a qualitatee measure of statistical significance, the £ score = (N, = N, )¢50 is shown.
WE, not significant. Shown are motifs that occur at least U = 4 bmes with comgletely different sets of
nodes. The networks are as folloees | 78): transcription interactions between regulatony proteins and genes
in the bactenwm £ col (TT) and the yeast 5. cevensize [20]; synaphec connections Between neurons in
€. elegavs, mcluding mewrons connected by at least five synapses (24); trophic interactions in ecological
food webs (22), representing pelagic and benthec species [Litthe Rock Lake), bards, fishes, invertebrates
[¥than Estuary), primarily larger fishes [Chesapeake Bay), Uzards (5t Martin lsland), primarly inverte-
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in a single doman (4] (only three-node motifs are showr). e, multiplied by the power of 10 (eg., 14608
= 148 = 10°).



UNDERSTANDING
REGULATORY NETWORKS



Genes have “switches”

* Transcription is controlled at a number of
levels

« Conceptually, there are proteins
(transcription factors) that bind to specific
non-coding DNA near transcribed genes

* These proteins can turn on transcription or
turn off transcription

* The transcription factors themselves
respond to various cellular signals




Metabolic networks

* Two types of entities

— Metabolites: Compounds the cell degrades or
synthesizes

— Enzymes: Proteins that do this
* First work: Complete catalog of all
enzymes in yeast and E. coll

— Still don’t have effective methods to detect all
metabolites
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Human metabolic network

Two versions

~1475 to ~2269 genes coding for
enzymes

2478-3188 metabolites named
1052-3732 reactions

Duarte et al., PNAS. 104:1777
Ma et al.,Molecular Systems Biology 3:135.
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