
Jianlin Cheng, PhD

Professor
Department of EECS
Informatics Institute

University of Missouri, Columbia
2019

Template Free Protein Structure Modeling



Outline

• Traditional template-free (ab initio) 
modeling

• Distance-based ab initio modeling 
empowered by deep learning



Protein Energy Landscape & 
Free Sampling

http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html



Two Approaches for 3D Structure 
Prediction

•Ab Initio Structure Prediction

•Template-Based Structure Prediction

Physical force field – protein folding
Contact map - reconstruction
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Select structure with
minimum free energy
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Query protein
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Funnel-shaped landscape

Demo of Our Protein Structure 
Prediction Software (FUSION)



Part I. Traditional Ab Initio 
Modeling Methods



Energy Functions

• T. Lazaridis, M. Karplus. Effective energy functions for 
protein structure prediction. Current Opinion in Structural 
Biology. 2000

• A. Liwo, C. Czaplewski, S. Oldiej, H.A. Scheraga. 
Computational techniques for efficient conformational 
sampling of proteins. 2008

• K. Simons et al. Assembly of protein tertiary structures 
from fragments with similar local sequences using 
simulated annealing and Bayesian scoring functions. JMB. 
1997.  (Rosetta – a case study)  -- reading assignment due 
Feb. 26



Protein Energy Function

• The native state of a protein is the state of 
lowest free energy under physiological 
conditions

• This state corresponds to the lowest basin 
of the effective energy surface.

• The term ‘effective energy’ refers to the 
free energy of the system (protein plus 
solvent)



Two Kinds of Energy 
Functions

• Physical effective energy function (PEEF): 
fundamental analysis of forces between 
particles

• Statistical effective energy function: data 
derived from known protein structures (e.g., 
statistics concerning pair contacts and 
surface area burial)



Statistical Effective Energy 
Function (SEEF)

• Less sensitive to small displacements
• Because of their statistical nature, they can, 

in principle, include all known and 
unrecognized, physical effects.

• Works better for protein structure prediction



SEEF
• Employ a reduced representation of the 

protein: a single interaction center at Ca or 
Cb for each residue.

• Basic idea:  log (Pab / Pa * Pb). Pab: is the 
observed probability that residues a and b 
are in contact. Pa is frequency of a and Pb is 
the frequency of b

• Energy = -log (Pab / Pa * Pb)
• More info: use secondary structure, solvent 

accessibility, distance as conditions. 



Energy Terms

• Pairwise contact potentials
• Hydrogen bonds
• Torsion angle
• Burial energy (solvation energy)
• Sidechain orientation coupling, rotamer 

energy



Rotamer Energy

http://dunbrack.fccc.edu/scwrl4/



Physical / Statistical Effective 
Energy Function (PEEF)

• CHARMM implementation 
(http://www.charmm.org )

• AMBER implementation (http://ambermd.org )
• Dfire energy: http://sparks-lab.org/tools-dfire.html

(program)
• RW energy: 

http://zhanglab.ccmb.med.umich.edu/RW/
(program available)

http://www.charmm.org
http://ambermd.org
http://sparks-lab.org/tools-dfire.html
http://zhanglab.ccmb.med.umich.edu/RW/


Benchmark

• Can a function select a native structure from 
a large pool of decoys?

• Can a function be used effectively in 
conformation sampling to generate a high 
proportion of near-native conformations?



Representation for 
Conformation Sampling

How to change position of one residue?

ITASSER: http://zhanglab.ccmb.med.umich.edu/I-TASSER/

http://zhanglab.ccmb.med.umich.edu/I-TASSER/


Torsion Angles

How to change position of one residue?



Vector Space



Simulated Annealing

• Accept a move based on a probability related to 
temperature, e.g., P ~ e^ (-ΔE / T)

• Temperature (T) controls the degree of exploration. 
Higher temperature, more exploration? Why?

• Temperature decreases as the sampling process 
progresses (from iteration to iteration): cooling 
schedule



An Example



Pseudo Code



A TFM Example: Rosetta

• K. Simons, C. Kooperberg, E. Huang, D. 
Baker. Assembly of protein tertiary 
structures from fragments with similar local 
sequences using simulated annealing and 
Bayesian scoring functions. JMB, 1997.

Rosetta: https://www.rosettacommons.org



Basic Idea

• Short sequence segments are restricted to 
the local structures adopted by the most 
closely related sequences in the PDB

• Use the observed local conformations of 
similar local sequences to reduce sampling 
space



Fragment Assembly (e.g. Rosetta) 

SDDEVYQYIVSQVKQYGIEPAELLSRKYGDK
AKYHLSQ

(X, Y, Z)

Angles Coordinates

Fragment Angles
SDDEQYQRK (130,-120, …)

….
….

9-Residue Fragment DB
Randomly
pick 9 residues

Find a similar fragment
Replace angles

Reduce 
search 
space!



Two ways of obtaining fragments

• Database-based approach: 
https://www.rosettacommons.org

• Model-based approach: 
http://sysbio.rnet.missouri.edu/FRAGSION/

https://www.rosettacommons.org
http://sysbio.rnet.missouri.edu/FRAGSION/


Shortcomings of Fragment Assembly Approach
Based on Database Search

• Computationally expensive

• Incomplete coverage

~80,000 proteins • Restricted to small proteins
Fragment
Structure
Database



IOHMM (Input-Output Hidden 
Markov Model)

to model protein conformational space 

Bhattacharya & Cheng, Bioinformatics, 2016
Bhattacharya & Cheng, Scientific Reports, 2015
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Parameter Learning
using EM algorithm

• 1,740 experimentally solved proteins

• 270,350 observations

• Training using stochastic EM algorithm

Bhattacharya et al. 2015; Van et al. 2005; Paluszewski et al. 2010 



Selecting optimal model
using information theory

Bhattacharya et al. 2015; Burnham et al. 2002

L(d|m) :	
likelihood 
d : data
n : 
parameters

30 hidden nodes
7,812 parameters

AIC(n) = −2 log(L(θ | d)+ 2n





Function of IOHMM Model of 
Protein Conformation

• Sample the conformation of a (sub) sequence of any size
• Software: Fragsion: 

http://sysbio.rnet.missouri.edu/FRAGSION/

http://sysbio.rnet.missouri.edu/FRAGSION/


Protein Folding Video

• https://www.youtube.com/watch?v=HBON
CqN9U4k

https://www.youtube.com/watch?v=HBONCqN9U4k


Scoring Functions of Selecting 
Local Conformations

• Knowledge-based potential functions
• Bayesian scoring function

One native assumption is P(structure) = 1 / # of structures. 



P(a structure)

• 0 for configurations with overlaps between 
atoms

• Proportional to exp(-radius of gyration^2) 
for all other configurations. 

• Independent of secondary structure 
elements





Considering Beta-Sheet Pairing



Scoring – P(Sequence | 
Structure)

Ei can represent a variety of features of the local structural 
environment around residue i.

(8)



Implementation

• Second term: for pairs separated for more 
than 10 residues along the chain

• Buried environment: >16 other Cb atoms 
within 10 Angstrom of the Cb atom of the 
residue; otherwise, exposed



Negative Log of 
Interaction 
Probability 

Function



Structure Generation

• Initialization:

Splicing together fragments of proteins of 
known structure with similar local sequences 
and evaluating them initially using equation. 



Simulated Annealing
• Low scoring conformations with distributions 

of residues similar to those of known proteins 
are resampled by simulated annealing in 
conjunction with a simple move set that 
involves replacing the torsion angles of a 
segment of the chain with the torsion angles 
of a different protein fragment with a related 
amino acid sequence.

• The simulated conformation is evaluated by 
(8) 



Methods

• Structures are represented using a simplified 
model consisting of heavy atoms of the main-
chain and the Cb atom of the side chain.

• All bond lengths and angles are held constant 
according to the ideal geometry of alanine 
(Engh & Huber 91); the only remaining 
variables are the backbone torsional angles.



Fragment Databases

• Nimers / trimers (sequences) and their 
conformations extracted from known 
structures in the database

• Identify sequence neighbors: simple amino 
acid frequency matching score.  



Simulation
• The starting configuration in all simulations was the fully 

extended chain. 
• A move consists of substituting the torsional angles of a 

randomly chosen neighbor at a randomly chosen position 
for those of the current configuration.

• Moves which bring two atoms within 2.5 Angstrom are 
immediately rejected; other moves are evaluated according 
to the Metropolis criterion using the scoring equation. 

• Simulated annealing was carried out by reducing the 
temperature from 2500 to 10 linearly over the course of 
10,000 cycles (attempted moves).



Simulated Structure Examples













Rosetta Software



Part II. Distance-Based Ab 
Initio Modeling Empowered by 

Deep Learning



• Work better on small, simple topology 
• Low accuracy (0.2 – 0.3 GDT-TS score)
• Huge bottleneck (30% proteins)

Walk in 
darkness 
without much 
clue!



Protein Contact Map

http://gremlin.bakerlab.org/gremlin_faq.php



Eickholt et al., 2011



Residue-Residue Contact Prediction
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Residue-Residue Contact Prediction

N

C

Anti-parallel beta strands
1 2 3 …                                                   100

1
2
3
.
.
.
.

100

2
1

4
3

Contact map



Residue-Residue Contact Prediction
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Residue-Residue Contact Prediction
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Residue-Residue Contact Prediction
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Residue-Residue Contact Prediction

Objective:
Predict if two residues (i, j) are in contact, i.e. distance(i, j) < 8 Å, 
for |i-j| >= 6

SDDEVYQYIVSQVKQYGIEPAELLSRKYGDKAKYHLSQRW
i j
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Objective:
Predict if two residues (i, j) are in
contact (spatially close), i.e.
Distance(i, j) < 8 Angstrom

SDDEVYQYIVSQVKQYGIEPAELLSRKYGDKAKYHLSQRW
1D Sequence

3D Structure
Cheng, Baldi, 2007; Eickholt, Cheng, 2012



ConEVA Demo

• ConEVA: http://iris.rnet.missouri.edu/cgi-
bin/coneva/main_v2.0.cgi

• A protein structure: CASP13 target - T0958

http://iris.rnet.missouri.edu/cgi-bin/coneva/main_v2.0.cgi


Protein Contact Distance Prediction – A 
Major Breakthrough in Ab Initio 

Protein Structure Prediction in the Last 
20 Years

• Contact prediction (1994) 
• Contact prediction until 2010 (little attention)
• Co-evolution and deep learning (2011 and 2012 

in CASP10) – two major advances
• Contact prediction improved ab initio structure 

prediction (CASP11, 2014 and CASP12, 2016)
• CASP13 (Google’s AlphaFold, MULTICOM, 

etc)



Breakthrough I – Residue-
Residue Co-evolutionary 

Analysis



MetaPSICOV
Dr. David Jones at 
University College London 
(UCL) 

CMAppro
Dr. Pierre Baldi
UC Irvine

GREMLIN
Dr. David Baker at 
University of Washington 

CCMpred
Dr. Johannes Söding at 
University of Munich 

FreeContact
Dr. Burkhard Rost at 
Technische Universität München 
(TUM)

DNcon / SVMcon / NNcon
Dr. Jianlin Cheng at 
University of Missouri 
Columbia

EVFOLD
Dr. Chris Sander at Memorial 
Sloan Kettering Cancer 
Center

EVFOLD
Dr. Debora Marks
Harvard Medical School

Contact Prediction

Distill
Dr. Gianluca Pollastri
U. College. Dublin



Direct Co-Evolutionary Coupling 
Analysis

Calculate direct correlation caused by co-evolution (Marks 

et al., 2011)

Co-evolution plus neural networks (Jones et al., 2014; 

CASP11)



How to Get Multiple Sequence 
Alignment

• Hhblits – search a sequence against UniRef 
protein sequence database: 
https://github.com/soedinglab/hh-suite

• Jackhmmer – search a sequence aginast 
UniRef protein sequence database: 
http://hmmer.org

https://github.com/soedinglab/hh-suite
http://hmmer.org/


CCMpred

https://github.com/soedinglab/CCMpred



CCMPred

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201158/

How to generate co-evolutionary scores

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201158/


Breakthrough II

• Deep Learning for Contact Prediction 
(DNCON1) (Eickholt, Cheng, 2012)

• No. 1 in CASP10, 2012
• One of the first deep learning methods 

for bioinformatics



Deep Learning Revolution



Jesse Eickholt

Zheng Wang
Algorithm



SDDEVYQYIVSQVKQYGIEPCSAELLSRKYGDKAKYHLSQRW

Residue identity, secondary structure, solvent accessibility, …

A Vector of ~400 Features (numbers between 0 and 1)

Probability that V and Y are in contact?

Cheng & Baldi, 2007; Tegge et al., 2009; Eickholt, Cheng, 2012 

i j



SDDEVYQYIVSQVKQYGIEPCSAELLSRKYGDKAKYHLSQRW
i j

A    10000000000000000000
C    01000000000000000000
D    00100000000000000000

.

.

.

.

.

.

.
Y    00000000000000000001

Strand

Helix

Coil

Helix     100
Strand   010
Coil       001

Exposed

Buried

Exposed     10
Buried         01

20 binary numbers 3 numbers 2 numbers

25  * 18 = 400 features for a pair (i, j)



A Vector of ~400 Features (numbers between 0 and 1)

~400 input nodes

~500 nodes

~500 nodes

~350 nodes

wi,j
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[0,1]

1239 Proteins for Training
Residue Pairs (|i-j| >= 6)



Speed up training by 
CUDAMat and GPUs

Train DNs with over 1M 
parameters in about an 
hour
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Final output of ensemble 
is a performance weighted 
sum of individual DN 
outputs.

Eickholt and Cheng, Bioinformatics (2012)
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Accuracy of top L, L/5, or 
L/10 predictions for various 
ranges of sequence separation 
(medium- and long-range):  [ 
TP/(TP+FP) ]



Metric Acc. L/5 Acc. L/5 
(one
shift)

Short Range
(6 <= |i-j| <12)

0.51 0.79

Medium
Range
(12 <= |i-j| <24)

0.38 0.65

Long Range
(|i-j| >= 24)

0.34 0.55

An Example:



Method Acc. L/5

DNcon 0.30

SVMcon 0.19

Method δ Acc. L/5

DNcon 1 0.53

SVMcon 1 0.37

DNcon 2 0.62

SVMcon 2 0.45

Exact match (96 proteins, long-range contacts)

Inexact match with minor shifts

9-fold better than random



Target      : T0716 (CASP10)
Length     : 71
RMSD      : 4.3A 
GDT-TS    : 0.58
Contacts : DNcon (filtered and 
selected 0.4L)
Selection: Best Structure

Contact selection 
and 

filtering



Deep Learning 

• Deep Learning 
(CASP10; Eickholt and 

Cheng, 2012)

• 2D Convolutional 
Neural Networks 
(CASP12; Wang et al., 2017; 

Adhikari et al., 2017)

Contact 1

Contact 2



Deep Convolutional Neural 
Network

• Automatic feature extraction without hand crafting

• Feature composition from local (low level) to global (high 
level)

Google Image



A Convolution Example

Deep Learning lecture, Google



2D Convolutional Neural Network for Contact 
Prediction (DNCON2)

i j

• Co-evolution
• Secondary structure
• Solvent accessibility
• Mutual information
• Contact potentials
• …

2D Input Matrices

Adhikari et al., 2017

L x L
L x L

L x L
L x L

L x L
L: sequence 
length



Two-Level Deep Convolutional Neural Networks

• Training dataset:     1426 proteins with known contact maps
• Validation dataset:  196 proteins
• Test datasets:          CASP10, CASP11 and CASP12 datasets
• Implementation:      Keras and TensorFlow
• Hardware:                Tesla K20 Nvidia GPUs

Adhikari et al., 2017

Level 1 Level 2



• Use global information

• Capture correlation between 
contacts (high-level contact 
patterns / clusters)

Local Window

Contact 1

Contact 2

Key advantages: 



Test on CASP Datasets

Method Accuracy of top L/5 contacts 
on 115 CASP13 domains

DNCON2 (deep learning) 75%
CCMpred (co-evolution) 45%



What are deep learning methods 
doing that other methods do not?

• Use more long-range 
information (CNN, RNN, 
LSTM, ResNet, …)

• One deep model for 
proteins of variable length

• Capture correlations 
between contacts (clusters), 
signal reinforcement, chain 
propagation

• Recall missing contacts and 
remove noise

• More powerful in 
recognizing weak patterns 
(deep learning versus 
shallow learning)

Top 5 Top L/5 Top L

CCMpred 60 59 33

DNCON2 100 75 61

Co-Evolution VS Deep Learning: T0953S2
(blue: true; red: predicted)

Jianlin Cheng - University of Missouri - Columbia

DNCON2CCMpred



When did the deep learning 
methods perform well or poorly? 

• Key factor: num. of 
effective sequences 
(high versus low)

• Other features: 
secondary structure, 
solvent accessibility, 
etc (accurate versus 
inaccurate)

• Topology of protein 
structure (alpha, 
beta, alpha/beta, 
alpha+beta, and 
non-globular)

Jianlin Cheng - University of Missouri - Columbia

Accuracy of top L/5 predictions VS 
num. of effective sequences (Neff) in 
CASP13



Fig 1. Illustration of our deep learning model for contact prediction where L is the sequence length of one 
protein under prediction.

Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLOS 
Computational Biology 13(1): e1005324. https://doi.org/10.1371/journal.pcbi.1005324
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

RaptorX

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324


Bioinformatics, Volume 34, Issue 19, 26 April 2018, Pages 3308–3315, https://doi.org/10.1093/bioinformatics/bty341
The content of this slide may be subject to copyright: please see the slide notes for details.

The architecture of the neural network 
models used for DeepCov. 



DeepCov at GitHub: https://github.com/psipred/DeepCov



DMPFold



ResTriplet

http://predictioncenter.org/casp13/doc/presentations/Pred_CASP13_contacts_Re
sTriplet_TripletRes_Redacted.pdf



AlphaFold of Google 
DeepMind



http://predictioncenter.org/casp13/doc/presentations/Pred_CASP13-
DeepLearning-AlphaFold-Senior.pdf



















Reconstruct 3D protein structures 
from contacts / distances

• Fragment Assembly + Contact Distances (Rosetta, 
FUSION, UniCon3D)

• CONFOLD
• DMPfold
• AlphaFold





Fragment Assembly + Contact 
Distances

Advantage: using fragment information
Disadvantage: contact distance plays an indirect role; 
sampling fails for large/complicated protein structures



CONFOLD

Advantage: directly translating distances into structures; contact 
distances play dominant role
Disadvantage: fail if there is no sufficient amount of accurate distances



CONFOLD: Residue-residue contact-guided ab initio protein folding

Proteins: Structure, Function, and Bioinformatics, Volume: 83, Issue: 8, Pages: 1436-1449, First published: 13 May 2015, DOI: (10.1002/prot.24829) 

Best models reconstructed for the protein 5p21 using Modeler (A), reconstruct 
(B), customized CNS DGSA protocol (C), and CONFOLD (D). All models are 
superimposed with native structure (green). The TM-scores of Models A, B, C, and 
D are 0.53, 0.86, 0.88, and 0.94, respectively. Model D reconstructed by CONFOLD 
has higher TM-score and also much better secondary structure quality than the 
other models.



Distribution of TM-scores of the best models 
reconstructed by the four methods for 150 FRAGFOLD 
proteins.



CONFOLD VS EVFOLD

Best predicted models for the proteins RNH_ECOLI (A) and 
SPTB2_HUMAN (B) using EVFOLD (purple) and CONFOLD (orange) 
superimposed with native structures (green). The TM-scores of 
these models are reported in Table IV. CONFOLD models have 
higher TM-score and better secondary structure quality than 
EVAFOLD.



Distribution of model quality of the EVFOLD models and the 
models built by CONFOLD. Distribution of models built in 
first stage of CONFOLD (Stage 1), second stage with contact 
filtering only (rr filter), and second stage with β-sheet 
detection only (sheet detect) are also presented. Each curve 
represents the distribution of 400 times 15 models.



Contact Filtering

Contact filtering from Stages 1 to 2 for the protein 1NRV. (A) Superimposition of the best 
model in stage 1 reconstructed with top-0.6 L contacts by CONFOLD (orange) with the 
native structure (green). The model has TM-score of 0.50. Among the top-0.6 L (60) 
contacts, 5 out of 8 erroneous contacts that were removed in Stage 2 are visualized in 
the native structure along with the distance between their Cβ-Cβ atoms. The filtered, 
predicted contacts (20–59, 53–73, 30–36, 49–56, and 88–93) have Cβ-Cβ distances of 
23, 23, 20, 12, and 9 Å, respectively, in the native structure. Each pair of residues 
predicted to be in contact is denoted by the same color. (B) Superimposition of the best 
model in Stage 2 reconstructed with reduced/filtered top-0.6 L contacts by CONFOLD 
(orange) with the native structure (green). TM-score of the model is 0.61.



Comparison on T1000 – FM Domain (residues: 282-523)

TM-score: 0.80
GDT-TS-score: 0.64

TM-score: 0.33
GDT-TS-score: 0.23

DNCON2 (red) VS Native (blue)
(L/5: 100%,  L: 79%,  2L: 50%)

CONFOLD (red) VS Native
(L/5: 67%,  L: 65%,  2L: 55%)

Rosetta-Con (red) VS Native
(L/5: 20%,  L: 18%,  2L: 17%)

Top L/5 contacts on native structure

Purple: model
Green: native

Red: model
Green: native



(1) Success of Building Models for T1021s3-D1 (FM) by CONFOLD
DNCON2 (red) VS Native (blue) CONFOLD (red) VS Native (blue)

Top L/5 long-range contacts on native structure
Blue: predicted; Green: native

TM-score: 0.50     GDT-TS-score: 0.41 

Top 5 Top L/10 Top L/5 Top L/2 Top L

Acc. 100% 94% 97% 88% 61%

Top 5 Top L/10 Top L/5 Top L/2 Top L

Acc. 80% 47% 52% 51% 46%



(2) Success of Building Models from Contacts with Rosetta 
When Failing to Identify Templates for T1019s2 (TBM)

TM-score: 0.68    GDT-TS-score: 0.67Top L/5 long-range contacts on native structure

DNCON2 (red) VS Native (blue) Rosetta-Con (red) VS Native (blue)

Top L/10 Top L/5 Top L/2 Top L
Acc. 78% 61% 39% 26%

Top L/10 Top L/5 Top L/2 Top L

Acc. 56% 56% 39% 36%

Purple: predicted
Green: native



(2) Failure of predicting / using contacts (T0998 FM)

Top L/10 Top L/5 Top L/2 Top L

Acc. 6% 6% 5% 5%

Top L/5 medium-range contacts on native structure

DNCON2 (red) VS Native (blue) Model (red) VS Native (blue)

# of effective
sequences = 2

TM-score: 0.21  GDT-TS-score: 0.15 

Top L/10 Top L/5 Top L/2 Top L

Acc. 6% 6% 6% 4%

Red: model
Green: native



DMPfold



https://arxiv.org/pdf/1811.12355.pdf





AlphaFold

http://predictioncenter.org/casp13/doc/presentations/Pred_C
ASP13-Structure-AlphaFold-Jumper.pdf





















Project 2
• Develop a simple prototype of contact 

distance-based ab initio protein structure 
prediction system

• You may use existing contact prediction 
tools and distance-based model 
reconstruction tools or develop you own 
tools (e.g. gradient descent based model 
construction tools).

• Test it on three CASP12 or CASP13 targets



Timeline

• March 18: discussion of the plan
• March 20: presentation of the plan
• April 3rd, presentation of the results
• April 8th, report due



Discussion of Project Plan
• Select targets (two easy, one hard?)
• Contact prediction (co-evolution-based methods, 

deep learning methods (DNCON2, DeepCov))
• Contact-based modeling (CONFOLD2, Rosetta, 

UniCon3D, Modeller, your own gradient descent)
• Model Refinement
• Evaluation and Analysis
• Visualization (contact map, 3D structures, 

modeling movies)
• Project management / task assignment



Technical Resources

• DNCON2: https://github.com/multicom-toolbox/DNCON2
• DeepCov: https://github.com/psipred/DeepCov
• CCMpred: https://github.com/soedinglab/CCMpred

Contact Visualization
• ConEVA: http://iris.rnet.missouri.edu/coneva/index.php

Contact prediction

https://github.com/multicom-toolbox/DNCON2
https://github.com/psipred/DeepCov
http://iris.rnet.missouri.edu/coneva/index.php


Technical Resources
Model reconstruction

Model Refinement (both software and web servers)

CONFOLD2: https://github.com/multicom-toolbox/CONFOLD2

Rosetta: 
https://www.rosettacommons.org/manuals/archive/rosetta3.4_
user_guide/index.html

UniCon3D: https://github.com/multicom-toolbox/UniCon3D

i3DRefine: http://protein.rnet.missouri.edu/i3drefine/
3DRefine: http://sysbio.rnet.missouri.edu/3Drefine/index.html

https://github.com/multicom-toolbox/CONFOLD2
https://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/index.html
https://github.com/multicom-toolbox/UniCon3D
http://protein.rnet.missouri.edu/i3drefine/
http://sysbio.rnet.missouri.edu/3Drefine/index.html

