Template Based Protein Structure Modeling

Jianlin Cheng, PhD

Professor
Department of EECS
Informatics Institute
University of Missouri, Columbia 2019

Sequence, Structure and Function

Protein Structure Determination

- X-ray crystallography
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- Cryo-Electron Microscopy
- X-ray: any size, accurate (1-3 Angstrom $\left(10^{-10} \mathrm{~m}\right)$), sometime hard to grow crystal
- NMR: small to medium size, moderate accuracy, structure in solution

X-Ray Crystallography

A protein crystal

Diffraction

Diffractometer

Mount a crystal

Protein structure

Kendrew and Perutz won 1962 Nobel Prize

Pacific Northwest National Laboratory's high magnetic field (800 MHz , 18.8 T) NMR spectrometer being loaded with a sample.

Wikipedia, the free encyclopedia

- Key idea: measure the distance between atoms in protein
- Build 3D structures by satisfying the distance between atoms using computational tools such as Crystallography and NMR system (CNS).

- Kurt Wüthrich, Switzerland: Nobel Prize in
Chemistry 2002, "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"

- Cryo-EM equipment

- Key idea: generate 2D images of proteins from different angles, and them assemble them into one 3D structure. A lot of imaging techniques used.

The Nobel Prize in Chemistry 2017

\bigcirc © Nobel Media AB. Photo: A. Mahmoud Jacques Dubochet Prize share: $1 / 3$

© Nobel Media AB. Photo: A. Mahmoud Joachim Frank Prize share: $1 / 3$

(C) Nobel Media AB. Photo: A.

Mahmoud
Richard Henderson
Prize share: $1 / 3$

Storage in Protein Data Bank

Search Demo: Human P53 protein - 1KVP

http://www.rcsb.org/pdb/explore/explore.do?structureId=4KVP

PDB Format (2C8Q, insulin)

```
HEADER HORMONE 06-DEC-05 2C8Q
TITLE INSULINE (1SEC) AND UV LASER EXCITED FLUORESCENCE
COMPND MOL_ID: 1;
COMPND }2\mathrm{ MOLECULE: INSULIN A CHAIN;
COMPND 3 CHAIN: A;
COMPND 4 MOL ID: 2;
COMPND 5 MOLECULE: INSULIN B CHAIN;
COMPND 6 CHAIN: B
SOURCE MOL_ID: 1;
SOURCE }2\mathrm{ ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE 3 ORGANISM_COMMON: HUMAN;
SOURCE 4 ORGAN: PANCREAS;
SOURCE }5\mathrm{ MOL_ID: 2;
SOURCE 6 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE }7\mathrm{ ORGANISM_COMMON: HUMAN;
SOURCE 8 ORGAN: PANCREAS
KEYWDS LASER, UV, CARBOHYDRATE METABOLISM, HORMONE, DIABETES
KEYWDS 2 MELLITUS, GLUCOSE METABOLISM
EXPDTA X-RAY DIFFRACTION
AUTHOR X.VERNEDE,B.LAVAULT,J.OHANA,D.NURIZZO,J.JOLY, L.JACQUAMET,
AUTHOR 2 F.FELISAZ,F.CIPRIANI,D.BOURGEOIS
REVDAT 1 08-MAR-06 2C8Q 0
JRNL
JRNL
JRNL
JRNL
JRNL
JRNL
JRNL
REMARK
    2
REMARK 2 RESOLUTION. 1.95 ANGSTROMS.
REMARK 3
REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : REFMAC 5.2.0005
REMARK 3 AUTHORS : MURSHUDOV,VAGIN,DODSON
REMARK 3
REMARK 3 REFINEMENT TARGET : MAXIMUM LIKELIHOOD
```


Structure Visualization

- Rasmol
(http://www.umass.edu/microbio/rasmol/getras.ht m)
- MDL Chime (plug-in)
(http://www.mdl.com/products/framework/chime/)
- Jmol: http://jmol.sourceforge.net/
- JSMol: java script version
- Pymol: http://pymol.sourceforge.net/
- Chimera: https://www.cgl.ucsf.edu/chimera/

JSMol (4KVP, Human P53)

- JSMol:
- JMOL: 1VJP
- Identify residues
- Recognize atoms
- Recognize peptide bonds
- Identify backbone
- Identify side chain
- Analyze different visualization style

Protein Folding
http://www.youtube.com/watch?v=fvBO3TqJ6FE\&feature=fvw

Computational Protein Folding by MULTICOM (Demo)

Funnel-shaped energy landscape

Bhattacharya \& Cheng, 2015

AlphaFold Movie

- https://deepmind.com/blog/alphafold/\#gif-242

Alpha-Helix

Jurnak, 2003

Beta-Sheet

Anti-Parallel

Parallel

Beta-Sheet

Non-Repetitive Secondary Structure

Beta-Turn

Announcement - Next Class

Data-driven modeling of protein structure, 3D genome and gene regulatory network

Jianin Cheng

Hosted by:
Dr. Zezong Gu

Monday, Feburary, 11, 2019
 4:00 p.m.

Pathology Conference Room
 MA223 Medical Sciences Building Annex

Refreshments provided at 3:50 pm

myoglobin

tertiary structure (all atom)

Quaternary Structure: Complex

Structure Analysis

- Assign secondary structure for amino acids from 3D structure
- Generate solvent accessible area for amino acids from 3D structure
- Most widely used tool: DSSP (Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Kabsch and Sander, 1983)

DSSP server: http:/bioweb.pasteurffiseseqaal/interfaces/dsp-simple.html DSSP download: http:/swift.cmbi.ru.n/gv/dssp/

DSSP Code:

$\mathrm{H}=$ alpha helix
$\mathrm{G}=3$-helix (3/10 helix)
$\mathrm{I}=5$ helix (pi helix)
$\mathrm{B}=$ residue in isolated beta-bridge
$\mathrm{E}=$ extended strand, participates in beta ladder
$\mathrm{T}=$ hydrogen bonded turn
$\mathrm{S}=$ bend
Blank = loop

DSSP Web Service

DSSP : Definition of secondary structure of proteins given a set of 3D coordinates (W.Kabsch, C. Sander)

```
Reset Rundssp jjianlin.cheng@gmail.com your e-mail
```


\# RESIDUE AA STRUCTURE BP1 BP2 ACC

$\mathrm{N}-\mathrm{H}-->0$	$\mathrm{O}-->\mathrm{H}-\mathrm{N}$	TCO	KAPPA ALPHA	PHI	PSI
0, 0.0	0, 0.0	0.000	360.0360 .0	360.0	125.7
37,-0.1	37,-0.2	-0.235	360.0-108.7	-87.0	151.4
1,-0.0	$2,-0.3$	-0.593	34.7-132.0	-72.2	128.3
35,-0.2	$2,-0.4$	-0.639	26.0179.	-86.4	132.7
-2,-0.3	2,-0.5	-0.991	13.3-156.	-129.4	131.5
-2,-0.4	$2,-0.4$	-0.910	14.8-173.2	105.2	126.8
-2,-0.5	2,-0.5	-0.983	11.9-162	124.9	124.4
-2,-0.4	$2,-0.6$	-0.931	6.5-159.	-100.8	130.8
-2,-0.5	2,-0.5	-0.955	13.2-169.0	-109.5	117.1
-2,-0.6	$2,-0.3$	-0.926	34.871	116.5	129.9
-2,-0.5	69,-0.2	-0.921	$70.2-50$.	169.	-146.4
-2,-0.3	$3,-0.6$	-0.023	78.2 -51.	111.5	-151.8
1,-0.2	4,-1.5	0.803	130.257 .8	-67.3	-28.8
1,-0.2	-1, -0.2	0.884	108.546 .5	-68.2	-33.2
64,-0.2	-2,-0.2	0.900	111.152 .2	-68.9	-41.4
30,-0.1	-1,-0.2	0.774	110.8-127.0	-62.6	-26.6
-5,-0.2	8,-0.4	0.741	36.4-174.6	83.1	25.3
1,-0.3	-2,-0.0	-0.199	$68.4 \quad 29.2$	-54.0	135.4
159,-0.1	162,-0.2	0.121	86.2120 .8	94.7	-21.4
160,-0.2	-1,-0.3	-0.706	48.9-160.5	-79.7	117.6
$0,0.0$	159,-0.0	0.677	91.860 .1	-70.9	-17.3
3,-0.0	158,-0.0	0.426	105.0-132.3	-87.9	-3.3
$-6,-0.2$	$-6,-0.0$	0.730	80.298 .1	62.8	28.1

$-2,-0.5$ $-2,-0.6$
$-2,-0.5$ $-2,-0.3$
$1,-0.2$
$1,-0.2$
64,-0. 2
$30,-0.1$
$-5,-0.2$
$1,-0.3$
159,-0.1
$160,-0.2$
$0,0.0$
$-6,-0.0$
0.73

Z-CA

$\mathrm{X}-\mathrm{CA}$	$\mathrm{Y}-\mathrm{CA}$	$\mathrm{Z}-\mathrm{CA}$
-8.6	43.0	43.9
-7.5	41.4	40.6
-4.3	39.5	39.6
-2.0	41.5	37.4
-0.7	39.9	34.2
1.6	41.6	31.8
1.7	40.3	28.2
3.9	41.2	25.3
2.7	40.2	21.8
5.6	40.1	19.4
5.3	39.9	15.6
4.2	41.6	12.4
1.2	43.5	11.1
-1.2	40.8	12.2
-0.0	41.1	15.7
-0.3	45.0	15.4
-3.9	44.5	14.2
-3.4	46.6	11.0
-6.7	47.0	9.2
-8.9	46.8	12.4
-10.9	50.1	12.6
-11.4	49.4	16.3
-7.6	49.4	16.9

Solvent Accessibility

Size of the area of an amino acid that is exposed to solvent (water).

Maximum solvent accessible area for each amino acid is its whole surface area.

Hydrophobic residues like to be Buried inside (interior). Hydrophilic residues like to be exposed on the surface.

Dihedral / Torsional Angle

- http://en.wikipedia.org/wiki/Dihedral_angle

Project Groups

- 19 students?
- Form 4 groups (4-5 students per group)

Protein Structure 1D, 2D, 3D

B. Rost, 2005

Goal of Structure Prediction

- Epstein \& Anfinsen, 1961: sequence uniquely determines structure
- INPUT: sequence
- OUTPUT:

CASP - Olympics of Protein Structure Prediction

- Critical Assessment of Techniques of Protein Structure Prediction
- 1994,1996,1998,2000,20 02,2004,2006, 2008, 2010, 2012, 2014, 2016, 2018
- Blind Test, Independent Evaluation

- CASP13 (http://predictioncenter.org/casp13/index.cgi)

CASP13 Demo

- http://predictioncenter.org/casp13/inde

X.cg1

1D: Secondary Structure Prediction

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Deep Learning

(D) RCNN

(E) CRMN

(F) FractalNet

Machine Learning Workflow

(A)

(B)

Method	Q3(\%)	Sov(\%)
DNSS2_CNN	80.29	72.1
DNSS2_RCNN	81.83	73.97
DNSS2_ResNet	81.53	73.71
DNSS2_CRMN	81.91	73.37
DNSS2_FractalNet	82.02	73.8
DNSS2_InceptionNet	82.74	75.3
DNSS2	83.84	75.5

Table 3. Performance of the six different deep learning architectures (CNN, RCNN, ResNet, CRMN, FractalNet, and InceptionNet) and their ensemble (DNSS2) on DNSS1 validation dataset and the updated protein sequence database.

	All		TBM		FM	
Method	Q3 $(\%)$	SOV $(\%)$	Q3 $(\%)$	SOV $(\%)$	Q3 $(\%)$	SOV $(\%)$
SSPro5.2	76.73	69.94	78.16	71.32	76.12	70.88
PSSpred	78.8	67.85	81.32	72.11	76.99	64.55
MUFOLD	79.58	71.74	79.71	74.13	79.8	70.79
DeepCNF	80.24	69.5	82.34	73.68	78.36	65.55
PSIPRED	80.7	72	83.67	76.72	78.41	68.14
SPIDER3	81.73	74.39	84.84	78.31	78.89	71.1
Porter5	82.07	74.61	84.79	78.98	79.42	70.3
DNSS1	77.06	70.40	79.48	73.58	75.46	68.79
DNSS2	82.2	73.03	85.37	76.98	79.82	70.56

Table 5. Comparison of methods on the CASP13 dataset in terms of all CASP13 targets, template-based targets, and template-free targets.

2D: Contact Map Prediction 3D Structure 2D Contact Map

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

DNCON2: Protein Contact Prediction Using Deep CNN

Submit Your Job

[Please submit maximum two sequences at a time]

Run DNCON2

Download DNCON2 code here.

Download DNCON2's predictions for CASP 10, 11, and 12 datasets here.

Download DNCON2's training/testing dataset (fastas and lists) here.

Contact Prediction

- PISCOV: http://bioinfadmin.cs.ucl.ac.uk/downloads/PSI COV/
- DNCON2: https://github.com/multicomtoolbox/DNCON2
- DeepCov https://github.com/psipred/DeepCov

Protein tertiary structure

 prediction is a space sampling / simuation / optimization problem.
Protein Energy Landscape \& Free Sampling

http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

Protein Structure Space \& Target Sampling

Two Approaches for 3D Structure Prediction

-Ab Initio Structure Prediction
Physical force field - protein folding
Contact/distance map - reconstruction
-Template-Based Structure Prediction

MWLKKFGINLLIGQSV...

Select structure with
minimum free energy

[^0]
Template-Based Structure Prediction \longleftrightarrow KNN Learning

1. Template identification
2. Query-template alignment
3. Model generation
4. Model evaluation
5. Model refinement

Notes: if template is easy to identify, it is often called comparative Modeling or homology modeling. If template is hard to identify, it is often called fold recognition.

TARGET

TEMPLATE

> ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

How to find templates? How to get alignments?

A. Fisher, 2005

Modeller

- Need an alignment file between query and template sequence in the PIR format
- Need the structure (atom coordinates) file of template protein
- You need to write a simple script (Python for version 8.2) to tell how to generate the model and where to find the alignment file and template structure file.
- Run Modeller on the script. Modeller will automatically copy coordinates and make necessary adjustments to generate a model.

How to Get Templates and Alignments

- PSI-BLAST
- Hhblits
- Sequence/profile databases curated from the Protein Data Bank (PDB)

An PIR Alignment Example

Structure File Example (1SDMA.atm)

ATOM	1	N	LYS	1	-3.978	26.298	113.043	1.00	31.75	N
ATOM	2	CA	LYS	1	-4.532	25.067	113.678	1.00	31.58	C
ATOM	3	C	LYS	1	-5.805	25.389	114.448	1.00	30.38	C
ATOM	4	0	LYS	1	-6.887	24.945	114.072	1.00	32.68	0
ATOM	5	CB	LYS	1	-3.507	24.446	114.631	1.00	34.97	C
ATOM	6	CG	LYS	1	-3.743	22.970	114.942	1.00	36.49	C
ATOM	7	$C D$	LYS	1	-3.886	22.172	113.644	1.00	39.52	C
ATOM	8	CE	LYS	1	-3.318	20.766	113.761	1.00	41.58	C
ATOM	9	NZ	LYS	1	-1.817	20.761	113.756	1.00	43.48	N
ATOM	10	N	ILE	2	-5.687	26.161	115.522	1.00	26.16	N
ATOM	11	CA	ILE	2	-6.867	26.500	116.302	1.00	22.75	C
ATOM	12	C	ILE	2	-7.887	27.226	115.439	1.00	21.35	C
ATOM	13	0	ILE	2	-7.565	28.200	114.770	1.00	20.95	0
ATOM	14	CB	ILE	2	-6.513	27.377	117.523	1.00	21.68	C
ATOM	15	CG1	ILE	2	-5.701	26.563	118.526	1.00	21.13	C
ATOM	16	CG2	ILE	2	-7.782	27.875	118.200	1.00	18.96	C
ATOM	17	CD1	ILE	2	-5.368	27.325	119.787	1.00	21.39	C
ATOM	18	N	ARG	3	-9.120	26.737	115.461	1.00	22.04	N
ATOM	19	CA	ARG	3	-10.214	27.327	114.693	1.00	23.95	C
ATOM	20	C	ARG	3	-10.783	28.563	115.400	1.00	22.82	C
ATOM	21	0	ARG	3	-10.771	28.645	116.629	1.00	22.62	0
ATOM	22	CB	ARG	3	-11.327	26.290	114.510	1.00	26.34	C
ATOM	23	CG	ARG	3	-11.351	25.586	113.161	1.00	30.68	C
ATOM	24	CD	ARG	3	-10.004	25.034	112.771	1.00	35.43	C
ATOM	25	NE	ARG	3	-10.104	24.072	111.672	1.00	43.37	N
ATOM	26	CZ	ARG	3	-10.575	24.350	110.458	1.00	46.04	C
ATOM	27	NH1	ARG	3	-10.997	25.572	110.168	1.00	48.68	N
ATOM	28	NH2	ARG	3	-10.627	23.400	109.532	1.00	48.37	N
ATOM	29	N	VAL	4	-11.278	29.524	114.630	1.00	20.49	N
ATOM	30	CA	VAL	4	-11.853	30.724	115.225	1.00	17.59	C
ATOM	31	C	VAL	4	-13.082	31.211	114.471	1.00	18.31	C
ATOM	32	\bigcirc	VAL	4	-13.030	31.446	113.264	1.00	16.37	0
ATOM	33	CB	VAL	4	-10.834	31.872	115.272	1.00	19.94	C
ATOM	34	CG1	VAL	4	-11.512	33.168	115.759	1.00	15.64	C
ATOM	35	CG2	VAL	4	-9.668	31.489	116.168	1.00	15.45	C

Modeller Python Script (bioinfo.py)

Output Example

Command: mod8v2 bioinfo.py

Template Based Modeling Methods

- Comparative Protein Modeling by Satisfaction of Spatial Restraints by Andrej Sali and Tom L. Blundell
- 3D Model is obtained by satisfying spatial restraints derived from alignment with a known structure, which are expressed as probability density functions (pdfs) of the restraints.
- Pdfs serve as an objective function for optimization

Probability Density Functions of Features

Tlawes-3s

- $\mathrm{Ca}-\mathrm{Ca}$ distances
- Main-chain N-O distance
- Main-chain dihedral angles
- Side-chain dihedral angles
- A protein pdf is a combination of individual pdfs of features of the whole protein

Optimization Procedure

- Objective: the pdf of a protein derived from restraints extracted from templates and alignments
- Initial input: initial (x, y, z) of each residue satisfying bond length / angle restraints
- Optimization: adjust $\mathrm{x}, \mathrm{y}, \mathrm{z}$ to maximize the pdf (i.e. probability), i.e. reduce the violations of feature restraint as much as possible

Topic 1 - Template Based Modeling

- CASP12/CASP13 TBM targets
- Known templates at CASP12/CASP13 web sites
- Develop a homology-based algorithm / tool to build models from templates (gradient descent algorithm preferred)
- Assess the quality of models
- Implement from scratch
- Form your group

Feature Restraints from Template Data

- Given the information (a distance between two amino acids) in template, what can we know about the target?
- Feature constraint is represented as conditional distribution. E.g. P(ca-ca distance in target | ca-ca distance in template, residue type 1, residue type $2, \ldots), \mathrm{P}(\mathrm{psi}$ angle of a residue in target | psi angle of an equivalent residue in template, ...)

How to quantify the

information? Function Fitting from Known Data - Learning

- A probability density function: $\mathrm{P}(\mathrm{y} \mid \mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots)$
- Distribution form: normal distribution?
- Estimate the mean and standard deviation?
- Get some known data (template, target structures)
- Fitting algorithm: Levenberg-Marquardt algorithm for non-constrained least-squares fitting of a non-linear multidimensional model

An Example of Generating a pdf for one feature (phi angle)

Residue A in target	Residue B in template	Angle in Template	Angle in Target
A	C	50	$58,60,49, \ldots$
A	C	70	$67,82,87$
A	K	10	$9.5,11$, $10.8 \ldots$
\ldots	\ldots	\ldots	\ldots

A database of 17 family alignments including 80 proteins was constructed to obtain feature statistics (training/fitting).

Levenberg-Marquardt algorithm

Calculate mean from the function

Estimate standard deviation

1	r	Amino acid residue type
2	Φ	Main-chain dihedral angle Φ
3	Ψ	Main-chain dihedral angle Ψ
4	t	Secondary structure class of a residue
5	M	Main-chain conformation class of a residue
6	α	Fractional content of residues in the main. chain conformation class A
7	χ_{i}	Side-chain dihedral angle $\chi_{i}, i=1,2,3,4$
8	c_{i}	Side-chain dihedral angle χ_{i} class, $i=1,2,3,4$
9	a	Residue solvent accessibility
10	\bar{a}	Average accessibility of two residues in one protein
11	s	Residue neighbourhood difference between two proteins
12	\bar{s}	Average residue neighbourhood difference between two proteins
13	i	Fractional sequence identity between two proteins
14	d	$\mathrm{C}^{\alpha}-\mathrm{C}^{\alpha}$ distance
15	Δd	Difference between two ($\left.{ }^{\alpha}\right)^{(1 \pi}$ distances in two proteins
16	h	Main-chain $\mathrm{N}-\mathrm{O}$ distance
17	Δh	Difference between two main-chain N - $\mathbf{\theta}$ distances in two proteins
18	b	Average residue $B_{\text {iso }}$
19	R	Resolution of X-ray analysis
20	g	Distance of a residue from a gap in alignment
$\because 1$	\bar{g}	Average distance of a residue from a gap

Side Chain \& Main Chain

- Main-chain and side-chain modeling can be separated or carried out simultaneously
- Many tools model main chain first and then use SCWRL to add side chains in order to simplify the problem.
- All-atom modeling is more complex and time consuming, but can be more accurate sometime.

Usefulness of Features

- The most useful pdf is the one that predicts the unknown feature most accurately, measured by the entropy of a pdf.
- Two kinds of features: (1) generic features for all proteins and (2) features specific for the target protein

Stereochemical Restraints (Generic for any protein)

- Obtained from sequence of a protein
- Bond distance, bond angle, planarity of peptide groups, side-chain rings, chiralities of Ca atoms and side-chains, van der Waals volumes (radii values)
- Mean value and standard deviations for bond lengths, bond angles, and dihedral angles are obtained from GROMOS86

Bond Length and Angles (harmoic model)

The classical harmonic model for the bond length between two atoms gives the vibrational potential energy of the bond as:

$$
\begin{gather*}
E(b)=\frac{1}{2} c\left(b-b_{o}\right)^{2} \tag{19}\\
p^{b}(b)=\frac{1}{\sigma_{b} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{b-\bar{b}}{\sigma_{b}}\right)^{2}\right]=N\left(\bar{b}, \sigma_{b}\right)
\end{gather*}
$$

Van der Waals Repulsion

(only non-harmonic feature)

(ii) van der Waals repulsion
van der Waals repulsion is the only stereochemical feature which is not described by the harmonic model. Instead, the following pdf is used for two atoms:

$$
p^{v}(d)=c \cdot \begin{cases}N\left(d_{o}, \sigma_{w}\right) ; & d \leq d_{o} \tag{22}\\ \frac{1}{\sigma_{w} \sqrt{2 \pi}} ; & d_{o}<d<d_{\max }\end{cases}
$$

where d is the distance between the two atoms, d_{o} is the sum of their van der Waals radii and σ_{w} is the standard deviation of the Gaussian part of the whole pdf (usually $0.05 \AA$). $d_{\text {max }}$ is the maximal possible linear dimension of a protein and constant c is chosen so that $p^{v}(d)$ integrates to 1 . This pdf does not differentiate between contact distances larger than d_{o}, but it does select against distances smaller than d_{o}. This is achieved by imposing a repulsive harmonic potential on atoms that are less than d_{o} apart.

Ca-Ca Distance Features (protein specific)

$$
\left.\left.\begin{array}{rl}
p^{d}\left(d / \bar{g}, i, \bar{a}^{\prime}, d^{\prime}\right)= & \sigma\left(\bar{g}, i, \overline{\bar{a}^{\prime}}, \overline{d^{\prime}}\right) \sqrt{2 \pi} \\
& \times \exp \left[-\frac{1}{2}\left(\overline { \sigma } \left(\overline{\bar{g}}, \overline{i, d^{\prime}}\right.\right.\right. \\
\left.\bar{a}^{\prime}, d^{\prime}\right)
\end{array}\right)^{2}\right]
$$

Standard deviation depends on solvent accessibility, gaps of alignment, and sequence identity.

Combine pdfs of a Feature (Ca-Ca distance) from Multiple Templates

- Weighted sum of the same type of pdfs from multiple known structures
The last step in the derivation of the feature pdf is to include the van der Waals restraint. Since all stereochemical restraints have to be satisfied in all structures, these restraints are multiplied into the feature pdf and we obtain the final feature pdf:

$$
p^{D}(d)=\left[\omega_{1} p_{1}^{d}(d)+\omega_{2} p_{2}^{d}(d)\right] p^{v}(d)
$$

Derivation of a molecular pdf from individual feature pdfs

- Combine all feature pdfs into a molecular pdf $\quad P=\prod_{i} p^{F^{k}\left(\mathcal{j}_{i}\right)}$.
- 3D structure of a protein is uniquely determined if a sufficient large number of its features, f_{i}, are specified
- The goal is to find the 3 D structure that is consistent with the most probable values of individual features f_{i}, i.e. to maximize the molecular pdf or its logarithm.

Optimization

- Optimize the logarithm of molecular pdf - the objective function F.

$$
\begin{equation*}
F=-\ln (P), \tag{35}
\end{equation*}
$$

- All the features of the molecular pdf is expressed in terms of atomic Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- F is more suitable for optimization because multiplication is converted into addition and the problem of floating point overflow is smaller for F.

Successive Optimization

- The optimum of the molecular pdf is found by successive optimization of increasingly more complex target function till the whole molecular pdf.
- From local restraints to long-range restraints to all the restraints
- Restraints is ordered by the sequence distance between atoms / residues ($1,2, \ldots \mathrm{~N}-1$), N is the sequence length.
- Successively adding restraints with $<=$ sequence distance i at each step i.

Initial Conformation of Step i

- At step 1, initial conformation can be an extended chain, or a conformation derived from the extended chain by rotation of dihedral angles
- At step i, the initial conformation is the final conformation of step i-1.
- An ensemble of conformations will be produced by using different initial conformations.

Optimization: Gradient Descent

Wikipedia

Gradient Descent

$$
\begin{aligned}
& x^{t+1}=x^{t}+d^{t} \\
& d^{t}=-\eta \frac{\partial f}{\partial x^{t}}
\end{aligned}
$$

An Example - distance

- Probability of distance obeys normal distribution. $-\log (\mathrm{P})$
- Square of distance error $=f=(\operatorname{sqrt}((x 1-$ $\left.\left.\mathrm{x} 2)^{\wedge} 2+(\mathrm{y} 1-\mathrm{y} 2)^{\wedge} 2+(\mathrm{z} 1-\mathrm{z} 2)^{\wedge}\right)-\mathrm{d} 0\right)^{\wedge} 2$
- $\frac{\partial f}{\partial x 1}, \frac{\partial f}{\partial y 1}, \frac{\partial f}{\partial z 1}, \frac{\partial f}{\partial x 2}, \frac{\partial f}{\partial y 2}, \frac{\partial f}{\partial z 2}$
- Partial derivative of angles is more complicated.

Gradient Descent

- Random Initialization: $\left(\mathrm{x}_{1}{ }^{\mathbf{0}} \mathrm{y}_{1}{ }^{\mathbf{0}}, \mathrm{z}_{\mathbf{1}}{ }^{\mathbf{0}}\right),\left(\mathrm{x}_{2}{ }^{\mathbf{0}} \mathrm{y}^{\mathbf{0}}, \mathrm{z}_{2}{ }^{\mathbf{0}}\right), \ldots,\left(\mathrm{x}_{\mathrm{N}}{ }^{\mathbf{0}} \mathrm{y}_{\mathrm{N}}{ }^{\mathbf{0}}\right.$, $z_{N}{ }^{0}$)
- Update:

$$
\begin{aligned}
& \mathbf{X}_{1}{ }^{\mathbf{t + 1}}=\mathrm{X}_{1}{ }^{\mathrm{t}}-\boldsymbol{\eta}^{*} \Delta \mathrm{X} \quad \mathrm{Y}_{1}{ }^{\mathrm{t}+1}=\mathrm{Y}_{1}{ }^{\mathrm{t}}-\boldsymbol{\eta}^{*} \Delta \mathrm{Y} \quad \mathrm{Z}_{1}^{\mathrm{t}+1}=\mathrm{Z}_{1}{ }^{\mathrm{t}}-\boldsymbol{\eta}^{*} \Delta \mathrm{Z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{N}}{ }^{\mathbf{t + 1}}=\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{t}}-\boldsymbol{\eta}^{*} \Delta \mathbf{X} \quad \mathbf{Y}_{\mathrm{N}}{ }^{\mathbf{t + 1}}=\mathbf{Y}_{\mathbf{1}}{ }^{\mathbf{t}}-\boldsymbol{\eta}^{*} \Delta \mathbf{Y} \quad \mathbf{Z}_{\mathrm{N}}{ }^{\mathbf{t + 1}}=\mathbf{Z}_{\mathbf{1}}{ }^{\mathbf{t}}-\boldsymbol{\eta}^{*} \Delta \mathbf{Z}
\end{aligned}
$$

Trieu, Cheng, 2014

Conjugate Gradient Descent

$$
\begin{aligned}
x^{t+1} & =x^{t}+\eta d^{t} \\
d^{t} & =-\frac{\partial f^{t}}{\partial x^{t}}
\end{aligned} \quad d^{t}=-\frac{\partial f^{t}}{\partial x^{t}}+d^{t-1}
$$

A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps where n is the size of the matrix of the system (here $n=2$).

Spatial restraints used to model trypsin

Ту>e	Basis pdfs ${ }^{\text {a }}$	Feature pdfs ${ }^{\text {b }}$	Violations ${ }^{\text {c }}$	r.m.s. ${ }^{\text {d }}$	r.m.s. ${ }^{\text {e }}$
Bond lengths	1659	1659	0 (0.1 \AA)	0.005 A	$0.005 \AA$
Bond angles	2250	2250	$5\left(10^{\circ}\right.$)	$2.00{ }^{\circ}$	2.100°
Diheedral angles ${ }^{\mathrm{f}}$	919	919	$1\left(20^{\circ}\right)$	$3 \cdot 40^{\circ}$	$3 \cdot 40^{\circ}$
van der Waals contacts ${ }^{8}$	531	531	$0(0.2 \mathrm{~A})$	$0 \cdot 02$ A	$0 \cdot 02 \mathrm{~A}$
${ }^{12}{ }^{2}{ }^{2}$ d distances	23,538	11.914	26 (1.5A)	$0 \cdot 22$ A	$0 \cdot 47$ A
Main-chain $\mathrm{N}-\mathrm{O}$ distances	7480	3832	19 (1.5A)	0.31 A	0.51 A
Main-chain Φ dihedral angles	1110	222	$2\left(20^{\circ}\right)$	$10.8{ }^{\circ}$	$21.2{ }^{\circ}$
Main-chain Ψ dihedral angles	1332	222	$\left.9(21)^{\circ}\right)$	$10.6{ }^{\circ}$	$20.3{ }^{\circ}$
Side-chain χ_{1} dihedral angles	528	176	5 (25)	84°	$16.8{ }^{\circ}$
Side-chain χ_{2} dihedral angles	264	103	3 (250)	$10.2{ }^{\circ}$	$13.0{ }^{\circ}$
Side-chain χ_{3} dihedral angles	92	32	$2\left(25^{\circ}\right)$	$11.9{ }^{\circ}$	$48.1{ }^{\circ}$
Side-chain χ_{4} dihedral angles	48	16	0 (25)	45°	$21.9{ }^{\circ}$
Disulphide bridge bonds	6	6	$0\left(0 \cdot{ }^{\circ}\right.$)	0.007 A	$0.007 \AA$
Disulphide bridge angles	12	12	$0\left(10^{\circ}\right)$	$3 \cdot 7^{\circ}$	$3.7{ }^{\circ}$
Disulphide bridge dihedral angles	6	12	$0\left(20^{\circ}\right)$	$10.0{ }^{\circ}$	$12.9{ }^{\circ}$
cis-Peptides ${ }^{\mathbf{h}}$	0	0			

Group Formation

- Group 1:
- Group 2:
- Group 3:
- Group 4:

Project 1

- Design and develop a template-based protein structure modeling tool
- Assess its performance on a few TBM targets used in CASP12 or CASP13 benchmark
- Reference programs: (see later slides)

Project Directory

- Project1
- ---- src: source code
- ---- bin: binary
- ---- lib: library
- ---- data: data
- ---- training: training
- ---- test: test cases
- ---- doc: document / references / presentation / report
- ---- other: third-party programs

Discussion of Your Project Plan

- Data preparation \& data sharing (cloud computing)
- Algorithm development (initialization, restraints extraction \& representation, sampling, optimization): creative, alternative, plural
- Implementation: interface, design, platform, languages, code base / from scratch, task assignment, timeline, progress track
- Evaluation plan (metrics, tools, data, objective, comprehensive, expectation)
- Challenges, Technical Hurdles, Feasibility, Strength, weakness, Risks
- Visualization
- Software Package (installation, test cases)

Useful Tools

- Tools convert between (x,y,z) coordinates and (phi, psi) angles: a Rosetta function. Rosetta can also create model loops.
- ModLoop a web server for loop modeling based on Modeller
- Add side chains to main chain - SCWRL
- An open source template-based modeling tool - MTMG

Modeller

- httos://salilab.org/modeller/
- A widely used, well-documented templatebased modeling tool

Integrative Modeling Platform

- IMP: httos://integrativemodeling.org
- It implements all kinds of optimization methods including gradient descent. (you may refer to some source code there)

MTMG

- A stochastic point cloud sampling method for template-based protein comparative modeling. Scientific Reports, 2016.
- Source code is available:
http://sysbio.met.missouri.edu/multicom to olbox/tools.html

Workflow of MTMG

Can model unaligned loops

Handle Gaps

Sampling points for gaps. The radius of the outside circle is $4.5 \AA$, and the radius of the inner circle is $3.5 \AA$.

The sampling algorithm randomly samples point between the two circles. In the region circled by red, the gap is at the N -terminal.

The distance d1 between an accepted sampled point and the first covered residue is between $3.5 \AA$ and $4.5 \AA$.

In the region circled by blue, the three-residue gap is in the middle, and the distance between the two ends of the gap (dAB) is $8.2 \AA$. The distance d 2 between an accepted sampled point and the last covered residue before the gap is between $3.5 \AA$ and $4.5 \AA$. The distance d 3 between an accepted sampled point and the first covered residue after the gap is between $4.1 \AA$ and $11.4 \AA$.

Figure 5: Comparison of GDT-TS score between the MTMG models and the Modeller models from three aspects on CASP11 targets.

(a) MTMG performed better than Modeller on targets with <0.7 template coverage. (b) MTMG performs better than Modeller on targets covered by <10 templates. (c) MTMG performs better than Modeller on targets containing multiple domains.

Key Milestones of Project 1

- Class discussion on Feb. 20
- Presentation of your plan on Feb. 25
- Presentation of your results on Mar. 6

[^0]: Protein Data Bank

