Protein-Protein Docking

Jianlin Cheng

2018

Slides Adapted from Prof. Ora Schueler-Furman at The Hebrew University of Jerusalem

Announcement

- Presentation of the plan of Project 2 is on March 7 (Wednesday)
- Reading assignment:
- <u>http://www.loria.fr/~ritchied/papers/ritchie_c</u>
 <u>pps_2008.pdf</u>
- D. Ritchie. <u>Recent progress and future</u> <u>directions in protein-protein docking</u>. Current Protein and Peptide Science, 2008.
- Reading assignment is due on March 14 (Wednesday)

Protein Complex

Prediction of protein-protein interactions

- 1. How do proteins interact?
- 2. Can we **predict** and **manipulate** those interactions?
- 3. Prediction of protein quaternary structure

Docking vs. ab initio modeling

Protein-protein docking

Aim: predict the structure of a protein complex from its partners

Monomers change structure upon binding to partner

Solution 1: Tolerate clashes

Solution 2: Model changes

✓ Fast

 Weak discrimination of correct solution

↓ Slow✓ Precise

Protein-protein docking

Sampling strategies

- Initial approaches: Techniques for fast detection of shape complementarity
 - 1. Fast Fourier Transform (FFT)
 - 2. Geometric hashing
- Advanced high-resolution approaches: model changes explicitly
 - 3. Rosettadock
- Data-driven docking
 - 4. Haddock

Find shape complementarity: 1. Fast Fourier Transform (FFT)

Ephraim Katzir

Assign value to each cell:

Exterior: a(i,j) =	0
--------------------	---

- Surface: a(i,j) = +1
- Interior: a(i,j) = -15

- Exterior: b(i,j) = 0
 - Surface: b(i,j) = +1

Interior: b(i,j) = +15

Find shape complementarity - FFT

Ephraim Katzir

where b' is the grid for the ligand after rotation and translation

Translation X

Find shape complementarity: Fast Fourier Transform (FFT)

Ephraim Katzir

Test all possible positions of ligand and receptor:

- For each rotation of ligand (*R*)
 - evaluate all translations
 (*T*) of ligand grid over
 receptor grid

$$S(R,T) = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} a(i,j,k)b'(i+T_x,j+T_y,k+T_z)$$

= correlation product: can be calculated by FFT

What is the time complexity in terms of N?

Parameters

- Grid interval size (η): 0.7 0.8 Angstrom
- Surface thickness: 1.5 2.5 Angstrom
- Angular step: 20°
- $N^*\eta$ > the size of the complex

Find shape complementarity: Fast Fourier Transform (FFT)

Ephraim Katzir

Fast Fourier Transformation

• A simple correlation calculation is O(N⁶), but ...

$$X_{o,p,q} = \sum_{l=1}^{N} \sum_{m=1}^{N} \sum_{n=1}^{N} \exp[-2\pi i (ol + pm + qn)/N] \cdot x_{l,m,n},$$
[4]

where $o, p, q = \{1 ..., N\}$ and $i = \sqrt{-1}$. The application of this transformation to both sides of Eq. 3 yields (21)

$$C_{o,p,q} = A^*_{o,p,q} \cdot B_{o,p,q},$$
 [5]

where C and B are the DFT of the functions \overline{c} and \overline{b} , respectively, and A^* is the complex conjugate of the DFT of

In mathematics, complex conjugates are a pair of complex numbers, both having the same real part, but with imaginary parts of equal magnitude and opposite signs

Katchalski-Katzir et al, PNAS, 1991.

Fast Fourier Transformation

 \overline{a} . Eq. 5 indicates that the transformed correlation function C is obtained by a simple multiplication of the two functions A^* and B. The inverse Fourier transform (20) (IFT), defined as

 $\overline{c}_{\alpha,\beta,\gamma} =$

$$\frac{1}{N^3} \sum_{o=1}^{N} \sum_{p=1}^{N} \sum_{q=1}^{N} \exp[2\pi i (o\alpha + p\beta + q\gamma)/N] \cdot C_{o,p,q}, \quad [6]$$

is used to obtain the desired correlation between the two original functions \overline{a} and \overline{b} . The Fourier transformations can be performed with the fast Fourier transform algorithm (20), which requires less than the order of $N^3 \ln(N^3)$ steps for transforming a 3D function of $N \times N \times N$ values. Thus, the overall procedure leading to Eq. 6 is significantly faster than the direct calculation of \overline{c} according to Eq. 3.

Finally, to complete a general search for a match between the surfaces of molecules **a** and **b**, the correlation function \overline{c} has to be calculated for all relative orientations of the molecules. In practice, molecule **a** is fixed, whereas the three Euler angles defining the orientation of molecule **b** (*xyz* convention in ref. 22) are varied at fixed intervals of Δ degrees. This results in a complete scan of $360 \times 360 \times$ $180/\Delta^3$ orientations for which the correlation function \overline{c} must be calculated.

The entire procedure described above can be summarized by the following steps:

(i) derive \overline{a} from atomic coordinates of molecule **a** (Eq. 2), (ii) $A^* = [DFT(\overline{a})]^*$ (Eq. 4),

(iii) derive \overline{b} from atomic coordinates of molecule **b** (Eq. 2),

(*iv*) $B = DFT(\overline{b})$ (Eq. 4),

(v)
$$C = A^* \cdot B$$
 (Eq. 5),

(vi) $\overline{c} = IFT(C)$ (Eq. 6),

(vii) look for a sharp positive peak of \overline{c} ,

(viii) rotate molecule b to a new orientation,

(*ix*) repeat steps *iii-viii* and end when the orientations scan is completed, and

(x) sort all of the peaks by their height.

Some FFT-based docking protocols

- Zdock (Weng)
- Cluspro (Vajda, Camacho)
- PIPER (Vajda, Kozakov)
- Molfit (Eisenstein)
- DOT (TenEyck)
- HEX (Ritchie) FFT in rotation space

Shape complementarity: 2. Geometric hashing (patchdock, Wolfson & Nussinov)

- Matching of puzzle pieces
 - Define geometric patches (concave, convex, flat)
 - 2. Surface patch matching
 - 3. Filtering and scoring

Hashing: alpha shapes

- Formalizes the idea of "shape"
- In 2D an "edge" between two points is "alpha-exposed" if there exists a circle of radius alpha such that the two points lie on the surface of the circle and the circle contains no other points from the point set

Hashing – sparse surface representation

Slide from Jens Meiler

Docking with geometric hashing

PATCHDOCK

- Fast and versatile approach
- Speed allows easy extension to multiple protein docking, flexible hinge docking, etc
- A extension of this protocol, FIREDOCK, includes side chain optimization (RosettaDocklike) – very flexible, fast and accurate protocol

3. High-resolution docking: Explicit modeling of conformational changes

➢ Parameters:

- energy function (Native structure should be near global energy minimum conformation, GMEC)
- sampling strategy (Locate energy minimum efficiently)
- energy function and sampling strategy are coupled

Rosettadock algorithm

Choosing starting orientations

1. Global search

- Random Translation
- Random Rotation

- 1. Tilt direction [0..360°]
- 2. Tilt angle [0:90°]
- 3. Spin angle [0..360°]

 Angles are independent and guarantee nonbiased search

Choosing starting orientations

2. Local Refinement

- Translation 3Å normal, 8Å parallel
- Rotation 8⁰

- 1. Tilt direction $[0\pm 8^{\circ}]$
- 2. Tilt angle
- 3. Spin angle

Overview of docking algorithm

Low-resolution search

- 1. Perturbation
- 2. Monte Carlo search
- **3**. Rigid body translations and rotations
- 4. Residue-scale interaction potentials

Protein representation:

backbone atoms + *average centroids*

Mimics physical diffusion process

Markov Chain Monte Carlo (MCMC)

Score	Representation	Physical Force
Contacts	r _{centroid} < 6 Å	Attractive van der Waals
Bumps	$(r - R_{ij})^2$	Repulsive van der Waals
Residue environment	-In(P _{env})	Solvation
Residue pair	$-\ln(P_{ij})$	Hydrogen bonding electrostatics, solvation
Alignment	-1 for interface residues in Antibody CDR	(bioinformatic)
Constraints	varies	(biochemical)

Overview of docking algorithm

High resolution optimization: Monte Carlo with Minimization (мсм)

Energy-based model selection

Low-energy models are accurate

Protocol depends on:

1. Sampling Strategy

Sample near-native conformation

2. Energy Function

Energy Function and Sampling are coupled

3. Sampling Intensity

Full-atom scoring

Score	Form / Source	Discriminatory z-value
Repulsive van der Waals	Modified Lennard-Jones 6-12	73.0
Attractive van der Waals	Lennard-Jones 6-12	45.0
Surface area solvation	Surface area (see Tsai 2003)	28.5
Gaussian solvent-exclusion	Lazaridis & Karplus, 1999	27.2
Rotamer probability	Dunbrack & Cohen, 1997	19.6
Hydrogen bonding	Empirical, Kortemme <i>et al</i> . 2003	14.9 & 6.8 (BB/BB)
Residue pair probability	Empirical, Kuhlman & Baker 2000	6.9
Electrostatics	Coulomb model with simple charges	0.4-15.1 (LR rep)

Overview of docking algorithm

Filters

Low resolution

- Antibody profiles
 - Antigen binding residues at interface
- Contact filters
- Biological information
 - Interface residues
 - Interacting residue pair

High resolution

 Energy filters speed up creation of low energy models

Energy filters

Enrichment = Fraction of "good decoys" after applying filter Fraction of "good decoys" before applying filter

	Pass filter	Do not pass filter
"bad decoys" high final energy	FP	TN
"good decoys" low final energy	TP	FN

ROC curve

Overview of docking algorithm

Clustering

• Compare all top-scoring decoys pairwise

Assessment 1: Benchmark studies

Benchmark set contains 54 targets for which bound and unbound structures are known

http://zlab.bu.edu/zdock/benchmark.shtml

Bound-Bound

 Start with bound complex structure, but remove the side chain configurations so they must be predicted

Unbound-Unbound

 Start with the individuallycrystallized component proteins in their unbound conformation

Bound-Unbound (Semibound)

trypsin + inhibitor

lysozyme + antibodies

hemagglutinin + antibody

actin + deoxyribonuclease I

Assessment of method on benchmark

(54 proteins, Gray et al., 2003)

funnel - 3/5 top-scoring models within 5A rmsd

RosettaDock benchmark performance

Docking Benchmark	Bound Docking Perturbation ¹	Unbound Docking Perturbation ²	Unbound Docking Global ³
Enzyme/Inhibitor	<mark>21</mark> /22	18/22	17/18
Antigen/Antibody	<mark>10</mark> /16	<mark>9</mark> /16	8/9
Others	<mark>5</mark> /10	5/10	3/5
Difficult	<mark>6</mark> /6	0/6	N/A
Total	<mark>42</mark> /54	<mark>32</mark> /54	28/32

1. More than **three** of top **five** decoys (by score) that have rmsd less than **5** Å

2. More than three of top five decoys (by score) that predict more than 25% native residue contacts

3. The rank of the first cluster with >25% native residue contacts

Benchmark: R. Chen et al, 2003;

RosettaDock: Gray et al , 2003

Limitation of "rotamer-based" modeling

Orange and red: native complex; Blue: docking model.

PDB code: 1CHO

Improved side chain modeling at interface

Rtmin: rotamer trial with minimization

- Randomly pick one residue.
- Screen a list of rotamers.
- Minimize each of these rotamers.
- Accept the one that yields the lowest energy.

Additional rotamers

 Include free side chain conformation in rotamer library

More accurate side chain modeling improves predictions

 Rotamer trial minimization and inclusion of free side chain conformations increases normalized energy gap between correct and incorrect models (Z-score)

RosettaDock simulation

1 model/simulation: energy vs RMSD (structural similarity to starting model)

 Final model selected based on *energy* (and/or *sample density*)

Rigid body orientations: RMSD to arbitrary starting structure (Å)

RosettaDock simulation

1. Initial Search

2. Refinement

Side chain flexibility is important

CAPRI Target 12
Cohesin-Dockerin
0.27Å interface rmsd
87% native contacts
6% wrong contacts
Overall rank 1

red,orange– xray blue – model; green – unbound

Carvalho et. al (2003) PNAS

Details of T12 interface

red,orange– xray blue - model

Energy landscapes with funnels

Correct model can be selected based on energy criteria only

Similar landscapes for different Rosetta predictions

Energy function describes well principles underlying the correct structure of monomers and complexes

Schueler-Furman et. al (2005) Science

A Challenging Target RF1-HEMK (T20)

Challenge:

- Large complex
- RF1 to be modeled from RF2
- Disordered Q-loop

Hope:

- Q235 methylated
- A Gln analog in HemK crystal

Strategy:

 Trimming – Docking – Loop Modeling - Refining

Keys to success: Location of interface with truncated protein Separate modeling of large conformational change in key loop

Prediction of large conformational change

Docking with backbone minimization

Docking with loop minimization

Minimize rigid-body and loop simultaneously

Correctly predicted loop conformation

Red, orange – bound (1T6G, Sansen, S. *et al,* J.B.C.(2004)); Blue – model; Green – unbound (1UKR, Krengel U. *et al,* JMB (1996))

Docking with loop rebuilding

Flexible backbone protein-protein docking using ensembles

- Incorporate backbone flexibility by using a set of different templates
- Generation of set of ensembles: with Rosetta relax protocol, from NMR ensembles, etc

Sampling among conformers during docking

• Exchange between templates during protocol

Evaluation of 4 different protocols

- 1. key-lock (KL) model rigid-backbone docking
- 2. conformer selection (CS) model ensemble docking algorithm
- 3. induced fit (IF) model energy-gradient-based backbone minimization
- combined conformer selection/induced fit (CS/IF) model

Can teach us about the possible binding mechanism (e.g. induced fit vs key-lock)

Brown: high-quality decoys Orange: medium-quality decoys

RosettaDock - summary

- First program to introduce general (side chain) flexibility during docking
- Advanced the docking field towards unbiased high-resolution modeling
- Many other protocols have since then incorporated RosettaDock as a high-resolution final step
- Targeted introduction of backbone flexibility can improve modeling dramatically

4. Data-driven docking

- Challenges:
 - Large conformational space to sample
 - Conformational changes of proteins upon binding
- Approach: restrict search space by previous information
 - HADDOCK (High Ambiguity Driven protein-protein Docking)

Scheme of Haddock Bonvin, JACS 2003

 Information about complex can be retrieved from several sources

Docking – summary & outlook

- Efficient search using
 - fast sampling techniques (e.g. FFT, Geometric hashing), or/and
 - Restraints to relevant region (e.g. biological constraints, etc)
- Challenge: conformational changes in the partners
- Introduction of flexibility has improved modeling to high resolution
 - Full side chain flexibility (Rosetta)
 - Targeted introduction of backbone flexibility

Preliminary CAPRI Assessment

Rank	Group	T46	T47 (Water- mediated interactions)	T48	T48 (Trimer)	T49	T49 (Trimer)	Т50	T51.1	T51.2	T51.3	Т53	T54	T57 (Not T58 (with #Ti assessed SAXS data) yet)	immary: argets / *** + ** +
1	Bonvin	•	**		*		*	**	*			**		* 8/	3 ** + 5 *
2	Bates		**	•		•		•		•		•		** 7/	2 ** + 5 *
3	Fernandez-Recio		•		•		•	**				**		** 6/	3 ** + 3 *
3	Shen		*	**	**	**	**	*				**	*	6 /	3 ** + 3 *
5	Vakser		**	•	•	•	•	•					•		1 ** + 5 *
6	Vajda		**		**		•	**				•••		5/	1 *** + 3 ** + 1 *
7	Eisenstein		**		**	•	•	**				•			3**+2*
7	Zou		***	**	•	•	•	•						* 5/	1 *** + 1 ** + 3 *
9	Zacharias		***		•		•	•				•		5/	1 *** + 4 *
10	ClusPro				**		•	**				**		4 /	3 ** + 1 *
10	Grudinin		**					**				•		** 4/	3**+1*
12	Nakamura		***						•			•	•	4 /	1 *** + 3 *
13	Weng		•			•	•	•				**		4/	1**+3*
14	Gray		**									•		** 3/	2** + 1 *
14	Seok		**									**		• 3/	2**+1*
16	HADDOCK	•	**				•							3/	1 ** + 2 *
16	PIE/DOCK				•		•	**						3/	1**+2*
16	SwarmDock											•	•	** 3/	1 ** + 2 *
16	Wolfson		•	•	**	•	•							3/	1 ** + 2 *
20	Zhou		•	•	•		•							3/	3*
21	Elber				•			**						2/	1**+1*
21	Fernandez-Fuentes							**				•		2/	1**+1*
21	Ritchie		**											* 2/	1**+1*
24	Camacho							**						1/	1 **
24	Cui			•	**									1/	1**
24	LZerD											**		1/	1 **
24	Ten Eyck											**		1/	1**
24	Wang		**											1/	1 **
29	Kihara													• 1/	1*
29	Luethy							•							1*
29	Pal							•							1*
29	Poupon											•			1*
29	SurFit											٠			1*
29	Zhang											•			1*
35	About 24 Others														0*

Notes:

- 1. All assessments are official results according to the <u>CAPRI website</u>. Tied teams are given the same rank and alphabetically ordered.
- 2. For all targets but T47, predictions are classified as * (acceptable), ** (medium), and *** (high). Blank space means that no acceptable predictions were submitted.
- 3. The only, slight exception in classifying predictions was for T47, where the real challenge is the prediction of water-mediated interactions between a given protein sequence and an unbound protein. Here, the classification is * (fair), ** (good), *** (excellent), and **** (outstanding).

CASP11 Ranking

# ♦	GR code ✦	GR name 🗢	Domains Count ◆	SUM Z- score (>-2.0) ◆	Rank SUM Z- score (>-2.0)
1	204	Zhang	78	76.4117	1
2	169	LEE	78	68.7497	2
3	290	MULTICOM	78	66.7849	3
4	044	LEER	78	66.5034	4
5	277	Zhang-Server	78	65.9858	5
6	425	Seok-refine	78	63.2947	6
7	499	QUARK	78	59.5585	7
8	065	Jones-UCL	75	58.0721	8
9	042	TASSER	78	56.5341	9
10	338	ProQ2	78	56.3264	10
11	132	ProQ2-refine	78	55.5291	11
12	333	Kiharalab	76	55.0840	12
13	347	Wallner	78	54.3184	13
14	358	Skwark	78	53.0744	14
15	067	CNIO	78	51.5664	15
16	282	PML	77	48.9282	16
17	144	Mufold	78	46.3855	17
18	438	QA-RecombineIt_H	74	43.2909	18
19	241	SHORTLE	75	42.5868	19
20	364	QA-RecombineIt_WFH	72	39.8400	20
21	064	BAKER	78	39.7843	21
22	162	McGuffin	78	35.8029	22
23	038	nns	78	35.5076	23
24	482	wfMix-KPa	72	35.1184	24
25	434	QA-Recombinelt H2	72	31.8436	25

CASP12 Ranking

#	♦ ^{GR} code	♦ GR name	Domains Count	♦SUM Zscore (>-2.0)
1	247	BAKER	68	78.7676
2	450	LEEab	68	71.8219
3	004	Zhang	68	70.4689
4	011	LEE	68	63.1914
5	417	VoroMQA-select	67	57.5234
6	393	MESHI	68	56.8638
7	439	MULTICOM	68	55.3083
8	017	McGuffin	68	53.4839
9	479	Zhang-Server	68	52.4657
10	324	MUFOLD	68	52.2983
11	203	ProQ2	68	52.2124
12	411	Pcomb-domain	67	50.5645
13	396	PML	68	50.1474
14	183	QUARK	68	48.4123
15	005	BAKER- ROSETTASERVER	68	45.1116
16	486	TASSER	68	44.6962
17	239	wfAll-Cheng	65	43.9017
18	073	Wallner	68	43.4806
19	243	Seok-refine	68	40.3590
20	325	wfRosetta-MUfold	68	39.3197

Project 3

- Apply three docking tools to two CAPRI targets (see 2016 CAPRI presentation: <u>http://predictioncenter.org/casp12/doc/presentations/C</u> <u>ASP12_CAPRI_Lensink.pdf</u>)
- CASP12 target list: <u>http://predictioncenter.org/casp12/targetlist.cgi</u>
- Combine tools to improve accuracy if possible
- Assess the performance using a few complementary measures (% true contacts, RMSD)
- Discussion of plan (April 2nd)
- Presentation of plan (April 9th)
- Discussion of results (April 16th)

Questions

- Which two targets to select?
- Which tools to select to do docking?
- How to use them to generate docking poses?
- How to select your docking poses?
- How to combine them to improve quality?
- How to assess the accurate of your predictions?
 What tools to use? How to visualize them?
- How to analyze all the conformations in your simulation? How to present them?
- How to compare the docking tools?
- How to divide tasks and what is timetable?
- What do you expect to learn from this project?