2D and 3D Genome Structure Modeling

Jianlin Cheng, PhD

Department of EECS
Informatics Institute
University of Missouri, Columbia 2018

Genome - Code of Life

Genome Sequencing (1D)

The Genomic Era

Collins, Venter, Human Genome, 2000

Personal Genome

Sequencing Revolution

http://images.google.edu

Genome

 מCFGATGMTCAGAMCGMTTOGTCAGGGTIOCCRCFAGGGCPMAFAFGATTAGGGCCATG

 GсжтCGA, АТGTCCCACOCCTNCA

>95\% non-coding regions of a genome are not junk!!

Genome Conformation

 MGEARGCACAGCMATANGGZCAMCAATARGN

 PORCATPACCTOCACCPCAんACACAAんC2AFI
 GCAMGNGCGTGOKTAFAFCAMTGANGCNCAT
 TCGChCTAOGCOTAA ATGAFRCTTSサFTCOTSCATTATSCNGGNCAT

 САGСATTOETTGACTCFTGROATMCOGFRACA TAAOGOLAEIATTAAGOAGOCCAAFAITTG БAGCTMTTTCATMTGCCACAGGんACROGGCT PCAAGAOCGFTAAOGGAGGRAMGOGCAATAAT

 FTATEATGTAG

Liberman－Aiden et al．， 2009

3D Genome Structure is Important

- Spatial gene regulation
- Transcription efficiency
- Genome interpretation
- Function implication (ENCODE)
- Disease diagnosis \& treatments
- Drug design

Gene Expression State

Multi-Level Chromosome Structure

DNA double helix
DNA is further packaged. Nucleosomes are arranged together into a fiber approximately 30 nanometers in diameter. The precise structure of the chromatin fiber is not known. Chromatin fiber is further organized into chromatin loops, and chromatin loops are further organized into higher-order structures. It has been suggested that packaging plays a role in gene expression (gene expression may require associated DNA to open up and acquire an unpackaged conformation). The fully condensed chromosome structure is only seen during mitosis.

Model 1 (Riken)

The DNA is a remarkable molecule in many ways. It encodes our entire genome, and if stretched out in a thin thread would measure $1.8 \mathbf{~ m}$ in length.

Size of Elements

NM: 10^{-9} meter

A complex of DNA and basic proteins (such as histone) in eukaryotic cells that is condensed into chromosomes in mitosis and meiosis.

There are two types. Heterochromatic is densely-coiled chromatin that appears as nodules in or along chromosomes and contains relatively few genes. Euchromatic is the lesscoiled and genetically active portion of chromatin that is largely composed of genes.

Size of Elements

A ona

Chromosomes

http://www.copernicusproject.ucr.edu/ssi/HSB iologyResources.htm

Two Compartments

Linear chromosome:
Active genes: orange
Inactive genes: blue

Chromatin looping between active genes and regulatory elements and clustering of genes at the site of active transcription facilitates formation of chromatin globules.

Active gene cluster associate with other expressed genes in active neighborhoods while inactive genes cluster in silent neighborhoods.

Active and silent neighborhoods associate in cis and in trans to form larger active and inactive compartments.

Nuclear organization reflects clustering of active and inactive loci in distinct compartments forming a fractal globule.
A. Sanyal et al., Current Opinion in Cell Biology, 2011

Chromosome Conformation Capturing Techniques

Chromosome Conformation Capturing (Hi-C)

Hi-C Protocol

- Cells are cross-linked with formaldehyde
- DNA is digested with a restriction enzyme and ligated, resulting enriched with cross-linked elements with a biotin marked at the junction
- Shearing DNA and selecting biotin-containing fragments to create a Hi-C library
- Sequence the library to create a catalog of interacting fragments

Genomic Spatial Interaction (Contact) Data

Intra- / inter-chromosome contact map
Wang et al., 2013

Hi-C Data Analysis Pipeline

Hits \#: 2
Case 2:

Hits \#: 1

Case 3:

Case 4:

A pair of reads were mapped to every chromosome independently

2D Chromosome Contact Map

A Observed

Chromosome Conformation Capturing

Construct 3D Shape of Genome

Images.google.com

Data Set I

- A normal human lymphoblastoid cell line (Bcell)
- 8.4 million read pairs uniquely mapped to the human genome reference sequence
- 6.7 million corresponded to long-range contacts between segments > 20 kb apart

Genome Wide Contact Map

- Divide genome into 1-Mb regions (loci)
- M_{ij} : number of contacts between loci i and j
- The matrix reflects an ensemble average of the interactions in the original sample of cells
- Represented as a heat map

B

HindIII

C HindIII (repeat)

(B) Hi-C produces a genome-wide contact matrix. The submatrix shown here corresponds to intrachromosomal interactions on chromosome 14. (Chromosome 14 is acrocentric; the short arm is not shown.) Each pixel represents all interactions between a $1-\mathrm{Mb}$ locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick marks appear every 10 Mb . (C) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range from 0 to 50 reads]. Correlation is 0.99 .

Relation between Euclidean Distance

and Genomic Distance

- Average intrachromosomal contact probability $\mathbf{I}_{\mathrm{n}}(\mathbf{s})$ for pairs of loci separated by a genomic distance s on chromosomen.
- $I_{n}(\mathbf{s})$ decreases monotonically on every chromosome
- Even at distances > $200 \mathrm{Mb}, \mathrm{I}_{\mathrm{n}}(\mathbf{s})$ is always much greater than the average contact probability between different chromosomes

Implication:
Chromosome territory

Probability of contact decreases as a function of genomic distance on chromosome 1, eventually reaching a plateau at $\sim 90 \mathrm{Mb}$ (blue). The level of interchromosomal contact (black dashes) differs for different pairs of chromosomes; loci on chromosome 1 are most likely to interact with loci on chromosome 10 (green dashes) and least likely to interact with loci on chromosome 21 (red dashes). Interchromosomal interactions are depleted relative to intrachromosomal interactions.

Observed/expected number of interchromosomal contacts

 between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, generich chromosomes tend to interact more with one another, suggesting that they cluster together in the nucleus.Human chromosomes
expected number of contacts between chromosome i and j was calculated by:

$$
E_{i, j}=R_{i} \times R_{j} \times N_{I N T E R},
$$

where R_{i} and R_{j} are the fractions of inter-chromosomal reads associated with i and j, respectively, and $N_{I N T E R}$ is the total number of inter-chromosomal reads for a cell sample. The actual observed number of inter-chromosomal contacts between chromosomes i and j divided by the expected number $E_{i, j}$ indicates the enrichment or depletion of interchromosomal contacts between them.

Normalizing Contact Map by Expected Number of Contacts at Genomic Distance

B Observed/Expected

Dividing each entry in the contact matrix (M) by the genome-wide average contact probability for loci at that genomic distance. The normalized matrix shows many large blocks of enriched and depleted interactions, generating a plaid pattern

Pearson Correlation Map

If two loci (here 1-Mb regions) are nearby in space, we reasoned that they will share neighbors and have correlated interaction profiles.

This process dramatically sharpened the plaid pattern; 71\% of the resulting matrix entries represent statistically significant correlations ($\mathrm{P} \leq 0.05$).

The plaid pattern suggests that each chromosome can be decomposed into two sets of loci (arbitrarily labeled A and B) such that contacts within each set are enriched and contacts between sets are depleted.

Principle Component Analysis

The first two principal components (PC) clearly corresponded to the
 plaid pattern (positive values defining one set, negative values the other).

The entire genome can be partitioned into two spatial compartments such that greater interaction occurs within each compartment rather than across compartments.

FISH Validation of Two Compartments

E

L1 - L3: Compartment A
L2 - L 4: Compartment B

\# Contacts and Physical Distance

Measured by FISH

- A strong correlation was observed between the number of $\mathrm{Hi}-\mathrm{C}$ reads m_{ij} and the 3D distance between locus i and locus j as measured by FISH [Spearman's $r=-0.916, \mathrm{P}=0.00003$], suggesting that Hi-C read count may serve as a proxy for distance.
- Pairs of loci in compartment B showed a consistently higher interaction frequency at a given genomic distance than pairs of loci in compartment A. This suggests that compartment B is more densely packed.

Contact Probability VS Genomic Distance (Power Law Distribution)

Contact probability as a function of genomic distance averaged across the genome (blue) shows a power law scaling between 500 kb and 7 Mb (shaded region) with a slope of -1.08 (fit shown in cyan).

When plotted on log-log axes, I(s) exhibits a prominent power law scaling between $\sim 500 \mathrm{~kb}$ and $\sim 7 \mathrm{Mb}$, where contact probability scales as s^{-1}. This range corresponds to the known size of open and closed chromatin domains.

Genome 3D Model

- Power-law dependencies can arise from polymer like behavior.
- Equilibrium globule: a compact, densely knotted configuration originally used to describe a polymer in a poor solvent at equilibrium
- Fractal Model: This highly compact state is formed by an unentangled polymer when it crumples into a series of small globules in a "beads-on-a-string" configuration. These beads serve as monomers in subsequent rounds of spontaneous crumpling until only a single globule of globules-of-globules remains.

Fractal Model

- Lack knots and would facilitate unfolding and refolding, for example, during gene activation, gene repression, or the cell cycle.
- In a fractal globule, contiguous regions of the genome tend to form spatial sectors whose size corresponds to the length of the original region.
- In contrast, an equilibrium globule is highly knotted and lacks such sectors; instead, linear and spatial positions are largely decorrelated

Comparison of Two Models

FOLDED POLYMER

Cross-section view

Cross-section view

Consistency Checking

- The equilibrium globule model predicts that contact probability will scale as s-3/2, which we do not observe in our data.
- We analytically derived the contact probability for a fractal globule and found that it decays as \mathbf{s}^{-1}; this corresponds closely with the prominent scaling we observed ($\mathrm{s}^{-1.08}$).
- 3D distance between pairs of loci: $s^{1 / 2}$ for an equilibrium globule, $\mathrm{s}^{1 / 3}$ for a fractal globule. Although 3D distance is not directly measured by Hi-C, we note that a recent paper using 3D-FISH reported an $\mathrm{s}^{1 / 3}$ scaling for genomic distances between 500 kb and 2 Mb

MCMC Simulation Validation

- Monte Carlo simulations to construct ensembles of fractal globules and equilibrium globules (500 each).
- Contact probability (for fractal globules, s^{-1}, and for equilibrium globules, $\mathrm{s}^{-3 / 2}$)
- 3D distance (for fractal globules $s^{1 / 3}$, for equilibrium globules $\mathrm{s}^{1 / 2}$)
- Lack of entanglements and the formation of spatial sectors within a fractal globule.

Hi-C Data Analysis II

Z. Wang, R. Cao, K. Taylor, A. Briley, C. Caldwell, J. Cheng. The Properties of Genome Conformation and Spatial Gene Interaction and Regulation Networks of Normal and Malignant Human Cell Types. PLoS ONE. 2013

Data Sets

- Primary human acute lymphoblastic leukemia (B-ALL) B-cell
- The MHH-CALL-4 B-ALL cell line (CALL4)
- The follicular lymphoma cell-line (RL)
- Sequenced by Illumina HiSeq 2000

Number of Reads of the samples

Samples	Total number of reads	Utilized for analysis
Normal B cell	$12,887,282$	YES
RL1	$60,272,006$	NO
RL2	$61,043,078$	NO
RL3	$65,579,872$	NO
RL4	$125,256,746$	YES
Call4_1	$62,741,712$	NO
Call4_2	$62,607,906$	NO
Call4_3	$133,542,778$	YES
ALL B-Cell	$77,888,742$	YES

Read coverage

	Read coverage of gene region	Read coverage of non-gene region	Read length
Call4 cell line	2.81129121903121	2.35780895	100
RL cell line	1.47413416423764	1.14648699	100
Normal B-cell	0.186290512630489	0.1725446	76
ALL B-cell	1.788587532589	1.49037874	120

Read Quality

$\begin{gathered}\text { Quality Scores for Solexa/s-7-2_sequence.tst }\end{gathered}$
(1st and 91st percentiles, 2nd and 3 3rd quartiles, and nedian, shoun per position)

The sequencing quality score at a position is calculated as $Q_{\text {solexa }}=-10 \log _{10} \frac{p}{1-p}$, where p is
the probability of a sequencing error at the position. A score 30 means the probability of a sequencing error at the position is ~ 0.001. A score 20 or above may be considered acceptable.

Mapping Reads to Human Genome

UCSC Genome Browser on Human Mar. 2006 (NCBI36/hg18) Assembly move $\lll \ll \ggg$ zoom in $1.5 x$ $3 x$ 10x base zoom out $1.5 x$ $3 x$ 10x position/search chr7:27,104,502-27,212,501 gene jump clear size 108,000 bp. configure

Un-normalized intrachromosomal heat maps for primary ALL BCell

Chromosome 1

Chromosome 6

Chromosome 11

Chromosome 16

Chromosome 2

Chromosome 7

Chromosome 12

Chromosome 17

Chromosome 22

Chromosome X

Chromosome 14

Chromosome 10

Chromosome 15

Chromosome 19

Chromosome 20

Chromosome 4

Chromosome 9

Chromosome 21

Chromosome 13

Chromosome 18

Chromosome 3

Chromosome 8

chromosomal heat maps for primary

 All B-Cell
Sequential Component Normalization: M[i,j] / | M[i]|

M[i,j] / | M[j] || Repeat until symmetric

Chromosome 2

Chromosome 7

Chromosome 11

Chromosome 16

Chromosome 21

Chromosome 6
-

Chromosome 12

Chromosome 17

Chromosome 22

Chromosome 3

Chromosome 13

Chromosome 18

Chromosome 14

Chromosome 19

Chromosome 5

Chromosome 10

Chromosome 20

Chromosome 4

Chromosome X

Contact Correlation Between Cell Types

	MHH-CALL-4 Cell Line	RL-Cell Line	Normal B-Cell	Primary B-ALL
MHH-CALL-4 Cell Line	1	0.9509	0.9315	0.9769
RL-Cell Line	0.9509	1	0.8536	0.9136
Normal B-Cell	0.9315	0.8536	1	0.9548
Primary B-ALL	0.9769	0.9136	0.9548	1

Correlate intra-contact numbers of 23 pairs of chromosomes

Inter-Chromosome Contacts and Chromosome Translocation

Cancer Causing Chromosome Translocation

Comparison of Inter-Chromosome Contact Profiles of Different Cells

C MHH-CALL-4 Cell Line

B Primary $\underset{1}{\text { B-ALL }}$

D RL-Cell Line

$E_{i, j}=R_{i} \times R_{j} \times N_{\text {NTER }}$

Gene-Gene

Contact Map of
HoxA Gene

Cluster:

HoxA gene region
(27,104,502 -
$27,212,501$) on chromosome 7,

Transcription
factor controlling embrynoic development

Hi-C Databases

- 4DN data portal: https://data.4dnucleome.org
- ENCODE database: https://www.encodeproject.org

3D Genome Structure Modeling

Trieu, Cheng, 2014

Spatial Representation of Chromsome or Genome

- Divided into N equal-size (e.g. 1MB) consecutive units sequentially
- The center of a unit is denoted by a point and its coordinate (x, y, z)

Contact Driven Structure Modeling

Normalized Contact Map

Opportunities

- Chromosome contact data can be generated easily and cheaply
- Chromosome contact data is rather reliable
- A 3D model of a genome is very valuable in studying spatial regulation of gene expression and methylation

Challenges

- Genome and chromosome is very large (3 billion nucleotide of human genome)
- Genome structure is very dynamic
- No known experimental genome structure other than some point distance data generated by FISH
- Relationship between contact and distance is not deterministic
- Hi-C data is noisy

Maximum Likelihood or DistanceBased Approaches

- Convert interaction frequency (contact number) into distance

$$
\begin{aligned}
& \mathrm{d} \propto 1 / \mathrm{IF}^{\mathrm{a}} \\
& \text { or } \\
& \mathrm{IF} \propto 1 / \mathrm{d}^{\mathrm{a}}
\end{aligned}
$$

- Translate distance into (x, y, z) coordinates

A MCMC Approach

M. Rousseau, J. Fraser, M.A. Ferraiuolo, J. Dostie, M. Blanchette. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 2011.

MCMC5C

- Formulate a probabilistic model linking 5C/Hi-C data to physical distances
- Markov chain Monte Carlo (MCMC) approach called MCMC5C to generate a representative sample from the posterior distribution over structures from IF data.

MCMC5C

- Structural properties (base looping, condensation, and local density) were defined in the models
- Applied these methods to a biological model of human myelomonocyte cellular differentiation and identified distinct chromatin conformation signatures corresponding to each of the cellular states.
- run on $\mathrm{Hi}-\mathrm{C}$ data and produce a model of human chromosome 14 at 1 Mb resolution that is consistent with previously observed structural properties as measured by 3D-FISH.

Other Existing Methods

- 5C3D (Fraser et al.): translates IF values into physical distance estimates and then uses a gradient descent approach to find the 3D conformations.

Other Existing Methods

- Bau et al. Interactions are modeled with springs whose equilibrium length depends on the observed IF values, subject to certain constraints based on the structure of the $30-\mathrm{nm}$ fiber, optimized by Integrative Modeling Platform.

Other Existing Methods

- Duan et al., convert interaction frequencies to Euclidean distances and then seek conformation minimizing the misfit, with addition of a set of clash avoidance constraints and a few prior known knowledge about the yeast genome organization. The constrained optimization problem is solved to find the best structure.

Possible Drawbacks of Existing

Methods

- Objective function (sum of square difference between predicted and derived distance) is debatable.
- Assume each IF is equally reliable.
- The absence of an underlying probabilistic model, preventing the calculation of confidence intervals on specific structural properties (e.g. distance between two genomic sites)

Probabilistic Model of Chromatin

 Conformation- A chromosome is modeled as a continuous piece-wise linear curve in 3D.
- Theoretical interaction frequency between fragment i an j, denoted IF(i, j), is inversely correlated with the distance between two fragments in 3D conformation: $\operatorname{IF}(\mathbf{i}, \mathbf{j})=$ $f\left(D_{s}(i, j)\right)$, where $D_{s}(i, j)$ is the Euclidean distance between sites i and j and f is an appropriately chosen function.

$$
f\left(D_{s}(i, j)\right) \propto 1 / D_{s}(i, j)^{\alpha}
$$

Probabilistic Model of Observed IF and Theoretical IF

$\widehat{I F}(i, j) \mid I F(i, j), \sigma(i, j)]=$
$N\left(\widehat{I F}(i, j) ; I F(i, j), \sigma(i, j)^{2}\right.$
re $N\left(x ; \mu, \sigma^{2}\right)$ is the normal density functic

Observed IF and Theoretical IF (Hi-C)

$$
\begin{equation*}
\operatorname{Pr}[\hat{r}(i, j) \mid r(i, j)]=N(\hat{r}(i, j) ; r(i, j), r(i, j)+k) . \tag{2}
\end{equation*}
$$

The role of κ, which we set to 10 , is to avoid having small read counts being assigned too low a variance.

Posterior Probability (Structure ||F data)

The observed data $\widehat{I F}$ defines a posterior distribution over the set of possible conformations of the chromatin: $\operatorname{Pr}[\mathbf{S} \mid \widehat{I F}]=\operatorname{Pr}[\widehat{I F} \mid \mathbf{S}] \cdot \operatorname{Pr}[\mathbf{S}] / \operatorname{Pr}[\widehat{I F}]$. Since there are no constraints imposed on the structure space and the probability of the observed data $(\widehat{I F})$ is constant with respect to \mathbf{S}, we get $\operatorname{Pr}[\mathbf{S} \mid \widehat{I F}]=\zeta \cdot \operatorname{Pr}[\widehat{I F} \mid \mathbf{S}]$, for some constant ζ, and thus

$$
\begin{aligned}
& \operatorname{Pr}[\mathbf{S} \mid \widehat{I F}]= \\
& \quad \zeta \cdot \prod_{i, j} \operatorname{Pr}\left[\widehat{I F}(i, j) \mid I F(i, j)=f\left(D_{\mathbf{S}}(i, j), \sigma(i, j)\right)\right] .
\end{aligned}
$$

Sampling Conformations from Posterior Distribution to maximize probability

- A random structure R_{0} is initially chosen to seed the process ($\mathrm{t}=0$), where each point is placed randomly in a cube of side length 10*avg(f(IF)).
- Repeat: The current structure R_{t} is randomly perturbed to obtain a new structure $R_{t^{\prime}}$. If $\operatorname{Pr}\left[R_{t^{\prime}} \mid I F\right]$ $>\operatorname{Pr}\left[R_{t} \mid I F\right]$, the perturbation is obtained and we set $R_{t+1}=R_{t^{\prime}}$. Otherwise, we set $R_{t+1}=R_{t}$.
- For values of t sufficiently large, find a structure with high probability: $\operatorname{Pr}[S \mid I F]$, let $R_{t}=S$.

Random Structure Perturbation

- Randomly choose one point $S(i)$ along the structure and moving it by a vector v randomly choosing within a sphere of radius r (e.g. $r=$ 0.25 nm)
- The likelihood of the resulting structure is then quickly obtained from that of the old by updating the terms corresponding to the pairs of points involving i .

Assessing Mixing

- R_{1}, \ldots, R_{k} of early iterations are highly dependent on R_{0}.
- Determine at what point m, the Markov process has mixed, i.e., R_{m} is independent of R_{0}
- After mixing, i.e. for $k>=m$, any sample R_{k} is representative of the target distribution. For d sufficiently large, R_{k} and R_{k+d} are independent.

Convergence Determination

- Run two independent chains R and R^{\prime} in parallel, from independently chosen initial conformations R_{0} and R_{0}.
- Mixing is achieved if the samples $\left\{R_{k / 2}, \ldots R_{k}\right\}$ and $\left\{R_{k / 2}^{\prime}, \ldots, R_{k}^{\prime}\right\}$ cannot be distinguished from each other. Specifically, the average pairwise structural distances among R_{k} is compared to that between R_{k} and $R_{k^{\prime}}$.
- After mixing is achieved, collect samples every $\mathrm{d}=\mathrm{k} / 20$ iterations.

Clustering of Structure Ensembles

- Distance metric: $\mathrm{N}^{*} \mathrm{~N}$ intra-structure distance matrix Ds.
- The distance (S, T) between two structures S and T is:

$$
\operatorname{dist}(\mathbf{S}, \mathbf{T})=\sqrt{\sum_{i, j}\left(D_{\mathrm{S}}(i, j)-D_{\mathrm{T}}(i, j)\right)^{2}}
$$

Structure Clustering

- Hierarchical clustering
- Visualization: tree dendrogram
- Visual inspection is performed to determine the tree height cutoff and number of subfamilies
- Choose maximum likelihood structure from each cluster as representative and assigning it a weight proportional to the number of structures in its cluster.

Hierarchical Clustering

Convert IF to distance

- The most accurate model is the one that is best able to predict unseen pairwise interaction frequencies. For each of a set of possible a leave-one-out cross-validation was performed. Find a to minimize

$$
\left.\operatorname{MSE}(\alpha)=\frac{1}{n} \sum_{(i, j)}\left(D_{\mathcal{S}_{(i, j) ; \alpha}^{*}}(i, j)^{-\alpha}-\widehat{I F(i, j}\right)\right)^{2}
$$

Figure 3 Leave-one-out cross-validation. Value of the mean-squared-errors as a function of α, obtained for a leave-one-out cross-validation on the HB-1119 dataset. The minimum error is found for an exponent of 2.0, although values of α between 1 and 3 do not produce significantly worse errors.

C (Distance Scaling Factor) Calibration

Without physical measurement of the distance between pairs of points along the sequence, it is difficult to accurately estimate the value of C. However, based on the average IF value of pairs of fragments located less than 5 kb apart along the sequence and following Bystricky et al . [51] that packed chromatin has a physical length of 1 nm for every 110-150bp, C was estimated as approximately 50 nm .

Assessment of Mixing

Figure 4 Mixing of parallel MCMC5C runs (HB-1119 dataset). Distance between consecutive structures (sampled every 10^{6} iterations) from within one of two parallel MCMC5C runs (blue and red curves) or across the two runs (green curve), on the HB-1119 5C dataset. The runs converge to the same distribution very rapidly (in less than 250 seconds) and the cross-run distance (green) drops to within the same range as the within-run distances (blue and red curves) after 350×10^{5} iterations.

Experiment

- Figure 4 shows that mixing is achieved after approximately 350 * 10^{5} iterations, which requires less than 250 seconds of running time. Passed this point, structures sampled every 10^{6} steps from the two parallel runs are undistinguishable from each other and sample structures from the same distribution.
- 250 structures were sampled after burn-in from each of the two runs. The two ensembles of structures were then combined and the 500 structures were clustered based on their structural similarity
- Analysis of the two THP-15C datasets produced similar results, and runs of a larger number of parallel MCMC chains confirm that they all sample similar structures.

Simulation Verification

Gold structure: a computationally constructed 3D structure used to generated IF data.

Simulated structure: models constructed from the IF data of the gold structure.

Verification

by

 Sampling from Simulated True Structures

Figure 6 HB-1119 Structures from simulated data aligned to gold standard structure. The "gold standard" structure is used as a reference structure to which structures from four different parallel MCMC5C runs on simulated data generated from the gold standard structure are aligned. The gold standard structure is shown highlighted with a white glow and the transcription start sites for the HoxA genes are annotated. The structures found from the simulated data are shown in superimposition to the gold standard structure and show a high degree of alignment.

Structure Clustering and

 Sub-Structure Families.
Sub-structure families may

 correspond to chromatin
structures of cells

in different
stages

Figure 5 Mixing and subclustering of HB-1119 structures. Mixing and hierarchical clustering (Ward's method) of structure similarity. The five-hundred structures come from two parallel MCMC5C runs on the HB-1119 dataset (pools of 250 structures from each run were used). The colors along the top indicate which run each structure originated from (run one $=$ blue, run two $=$ red) and demonstrates that the sampling process has successfully mixed. The blocks in the heatmap and the dendrogram indicate the presence of sub-clusters of structures (numbered in the dendrogram). The two clusters (numbered 1 and 2) both contain structures from the two parallel runs (blue and red vertical bars), indicating that the structures are conserved across runs and are not an artifact of the bum-in process.

Conformations of HoxA in

 Undifferentiated and Differentiated
Conditions

Figure 7 Models of HoxA cluster before and after differentiation. Maximum likelihood structures found by MCMC5C from the undifferentiated and differentiated THP-1 datasets (A and B, respectively). The HoxA gene transcription start sites are annotated on each of the structures.

Figure 8 THP-1 clustering of undifferentiated and differentiated structures. Hierarchical clustering (Ward's method) of one-thousand structures from four parallel MCMC5C runs, two on the undifferentiated THP-1 dataset and two on the differentiated THP-1 dataset (250 structures each). The colors along the top indicate which state each structure originated from (undifferentiated run one $=$ blue, run two $=$ red; differentiated run one $=$ pink, run two $=$ orange) and demonstrate a clear distinction between the two states, indicating that the undifferentiated and differentiated cell states specify different structure signatures.

Structural Variation and Conservation

The subset of fragments that are the most conserved across the ensemble of structures are found to lie within the central core region of the structures. These fragments are spatially close to each other and may be involved in looping contacts that are important for the maintenance of the chromatin structure and are therefore highly conserved.

On Hi-C Data (Data Set II)

Model the long arm of human chromosome 14 (88.4 Mb region) from $\mathrm{Hi}-\mathrm{C}$ data published by Lieberman-Aiden et al . [18] at a 1 Mb resolution (89 fragments in total). Lieberman- Aiden et al . [18] proposed the existence of two physically disjoint compartments, whereby compartment A was found to correlate with open and actively transcribed chromatin, while compartment B was found to be more densely packed and repressed.

MCMC5C Availability

- MCMC5C modeling movie: https://www.youtube.com/watch?v=2alQvU DIGNc

Distance-based approach: convert IF to distance

- Duan et al., the resulting conversion approximately follows $\mathrm{d} \propto 1 / \mathrm{IF}$.
- Mateos-Langerak et al . [50] also suggest a relationship of the form $\mathrm{d} \propto 1$ / IF^{a}.
- Bau et al . [28] convert their IF via a linear transformation of the IF' s z-score.

Spatial Representation of A Genome Region at a Scale

- A genome region (e.g. a chromosome) is divided into N equal / variable size units sequentially
- The spatial position of the center of a unit is denoted by a point and its coordinate (x, y, z) and constraints on the size of unit (radius of sphere)
- The consecutive points are joined into fragments forming the folding trace of the region.

Structure Construction at One Scale

A Data Driven Optimization Approach

- Convert observed interaction frequencies into distance map

α : conversion parameter (positive number)
- Objective: Adjust positions (x, y, z coordinates) of beads in 3D space to satisfy converted expected distances as well as possible
- Challenges: approximated distances, noise, conflicts

Problem of Traditional Objective Functions

Square Error

- Very sensitive to noisy / conflicting distances
- Cannot build 3D models of large genomes involving noisy inter-chromosomal contacts

Deriving Soft Constraints by Lorentzian Function

- Use Lorentzian function to measure the satisfaction of a distance restraint

- Tolerate noisy restraints and maximize the satisfaction of feasible restraints

Objective Function

- Objective function
- Sum of all distance constraints
- Adjacent beads have maximum weight to enforce their proximity

$$
f n=\sum_{|\mathrm{i}-\mathrm{j}|=1} \frac{c * c * I F_{\max }}{c * c+\left(x_{\mathrm{ij}}-d_{\mathrm{ij}}\right)^{2}}+\sum_{|\mathrm{i}-\mathrm{j}| \neq 1} \frac{c * c * I F_{\mathrm{ij}}}{c * c+\left(x_{\mathrm{ij}}-d_{\mathrm{ij}}\right)^{2}}
$$

- c is set to average of d_{ij} to control gradient vanishing during optimization

Large-Scale Adaptive Step-Size Gradient Ascent

Correlation Between Reconstructed Distances and True Distances

—LorDG —NMDS —MDS2 —PM2 —ChromSDE ——Shrec3D —MOGEN

Yeast datasets (Duan et al. Nature 2010)

3D Genome Model for Human

A Open Source Tool－LorDG

－Github：https：／／github．com／BDM－Lab／LorDG

\square BDM－Lab／LorDG

© Watch
2

3D genome reconstruction with Lorentzian objective function
（1） $\mathbf{7}$ commits
\＆ 1 branch
1 release
20 contributors

Branch：master－	New pull request		Find file	Clone or download
（1）tuan add jar file to make contact matrices from raw HiC data in 2009			Latest commit f7db508 on Dec 7， 2017	
－bin		run 1 thread with the main thread		a year ago
E examples		initial commit		a year ago
－lib		add dependency library		a year ago
－make＿input		add jar file to make contact matrices from raw HiC data in 2009		4 months ago
－src		add dependency library		a year ago
目 README．md		add readme file		a year ago
目 paramaters＿s	tings．txt	initial commit		a year ago

国 README．md

Contact-Driven Modeling at Chromosome Scale

- Input: initial representation of chromosome, contact map, and physical distance restraints
- Objective: find 3D chromosome structures that satisfy the contact map and physical contact restraints as much as possible.
- Scoring Function
- Optimization
- Output: an ensemble of 3D shapes

Data Preparation

- Data Sets: Normal B-Cell, ALL B-Cell
- Unit Size: 1Mb
- Unit Number: Chr. 1, 248 Chr. 22, 50
- Contact map normalization: $\mathrm{C}_{\mathrm{ij}}{ }^{\prime}=\mathrm{C}_{\mathrm{ij}}$ / expected IF
- Remove noisy contacts with low interaction frequency

Normalized Interaction Frequencies (IF) on the normal B-Cell

Chromosome	Max IF	Min IF	Average IF
1	86.34	0.035	1.35
2	83.04	0.037	1.53
3	59.81	0.037	1.74
4	70.76	0.035	1.95
5	171.92	0.040	1.84
6	59.68	0.031	1.86
7	130.00	0.035	1.99
8	122.22	0.056	2.29
9	190.85	0.043	2.86
10	76.12	0.085	2.31
11	58.51	0.040	2.19
12	85.86	0.042	2.23
13	151.09	0.212	3.62
14	112.48	0.116	3.42
15	103.02	0.110	3.14
16	100.09	0.046	3.31
17	86.08	0.081	3.12
18	108.33	0.173	3.80
19	96.56	0.061	4.82
20	106.89	0.089	4.05
21	63.01	0.174	5.98
22	79.05	0.057	5.83

Scoring Function for Optimization

$$
\begin{aligned}
S & =\sum_{\substack{\text { contacts } \\
|i-j| \neq 1}}\left(\tanh \left(d_{c}-d(i, j)\right) * \frac{I F_{i j}}{T}+W 1 * \frac{\tanh \left(d(i, j)-d_{\min }\right)}{T}\right) \\
& +\sum_{\substack{\text { non-contacts } \\
|i-j| \neq 1}}\left(W 2 * \frac{\tanh \left(d_{\max }-d(i, j)\right)}{T}+W 3 * \frac{\tanh \left(d(i, j)-d_{c}\right)}{T}\right) \\
& +\sum_{|i-j|=1}\left(I F_{\max } * \frac{\tanh \left(d a_{\max }-d(i, j)\right)}{T}+W 1 * \frac{\tanh \left(d(i, j)-d_{\min }\right)}{T}\right)
\end{aligned}
$$

tanh: hyperbolic tangent function
$I F_{i j}$: interaction frequency between units i and j
T : total interaction frequencies
$\boldsymbol{d}_{\boldsymbol{c}}$: contact distance threshold
$\boldsymbol{d}_{\text {min }}$: minimum distance between two units
$\boldsymbol{d}_{\text {max }}$: maximum distance between two units
$d a_{\text {max }}$: maximum distance between two adjacent units
W1, W2, W3, W4: weight parameters in order to
maximize \% satisfied contacts $+\%$ satisfied non-contacts

Table S1 The weight parameters and the percent of contacts after removing nose for 23 pairs of chromosomes at 1 MB resolution.

Chromosome	Percentage of contact pairs	W_{1}	W_{2}	W_{3}	W_{4}
1	49%	2.0	1.0	1.0	1.0
2	55%	2.0	1.0	1.0	1.0
3	66%	1.2	1.0	1.0	1.0
4	65%	1.0	1.0	1.0	1.0
5	64%	1.0	1.1	1.1	1.1
6	70%	1.0	1.2	1.2	1.2
7	74%	1.0	1.5	1.5	1.5
8	77%	1.0	1.6	1.6	1.6
9	75%	1.0	2.2	2.2	2.2
10	78%	1.0	1.8	1.8	1.8
11	77%	1.0	1.8	1.8	1.8
12	75%	1.0	1.5	1.5	1.5
13	94%	1.0	4.6	4.6	4.6
14	86%	1.0	3.5	3.5	3.5
15	89%	1.0	3.0	3.0	3.0
16	86%	1.0	3.9	3.9	3.9
17	85%	1.0	3.0	3.0	3.0
18	97%	1.0	9.5	9.5	9.5
19	92%	1.0	4.0	4.0	4.0
20	93%	1.0	5.0	5.0	5.0
21	94%	1.0	6.0	6.0	6.0
22	96%	1.0	6.0	6.0	6.0
23	83%	1.0	2.0	2.0	2.0

Estimating Parameters

- FISH data (Mateos-Langerak et al., 2009) for physical distances of Chr. 1 and 11 at various genomic distances
- $\mathrm{d}_{\text {min }}, \mathrm{da}_{\max }$: min and max distance between pairs at 1 Mb away. ($0.2 \mathrm{um}, 1.8 \mathrm{um}$)
- $d_{\text {max }}$: max distance between all pairs
- d_{c} : a threshold resulting in the same percent of contacts in our data
- d_{c} and $\mathrm{d}_{\text {max }}$ are chromosome length dependent (1.73-2.24 um, $2.45-3.32$ um)

Steepest Gradient Ascent with Backtracking Line Search

- Random Initialization: $\left(x_{1}{ }^{0} y_{1}{ }^{0}, z_{1}{ }^{0}\right),\left(x_{2}{ }^{0} y_{2}{ }^{0}, z_{2}{ }^{0}\right), \ldots,\left(x_{N}{ }^{0} y_{N}{ }^{0}, z_{N}{ }^{0}\right)$ in [-0.5, 0.5]
- Update:

$$
\begin{array}{ccc}
\mathrm{X}_{1}^{\mathrm{t}+1}=\mathrm{X}_{1}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{X} & \mathrm{Y}_{1}^{\mathrm{t}+1}=\mathrm{Y}_{1}{ }^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Y} & \mathrm{Z}_{1}^{\mathrm{t}+1}=\mathrm{Z}_{1}{ }^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Z} \\
\mathrm{X}_{2}^{\mathrm{t}+1}=\mathrm{X}_{2}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{X} & \mathrm{Y}_{2}^{\mathrm{t}+1}=\mathrm{Y}_{2}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Y} & \mathrm{Z}_{2}^{\mathrm{t}+1}=\mathrm{Z}_{2}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Z} \\
\cdot & \\
\cdot & \\
\mathrm{X}_{\mathrm{N}}^{\mathrm{t}+1}=\mathrm{X}_{1}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{X} & \mathrm{Y}_{\mathrm{N}}^{\mathrm{t}+1}=\mathrm{Y}_{1}^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Y} & \mathrm{Z}_{\mathrm{N}}{ }^{\mathrm{t}+1}=\mathrm{Z}_{1}{ }^{\mathrm{t}}+\eta^{*} \Delta \mathrm{Z}
\end{array}
$$

Step size (η) is adjusted dynamically during iterations to avoid too big moves.

Structure Modeling Movie

Structure Modeling Movie

At YouTube without music: http://www.youtube.com/watch?v=C03R7A9kYc8

At NSF CAREER project web site with music: http://people.cs.missouri.edu/~chengji/genome modeling movie.mp4
J. Cheng, NSF CAREER Project Plan, 2011, 2012, 2013. T. Tuan made the movie.

Two Compartment Validation on Normal B-Cell

Chromosome 7

Purple and green denote regions in two different components using principle component analysis on contact correlation map

Model Selection

- Use TM-Score (zhang \& Skolnick, 2004) to superpose every pair of models in an ensemble of models
- Calculate GDT-HA score: percent of unit pairs within specific distance thresholds
- Choose centroid model as representative

Satisfaction of Contacts in

Representative Models of Normal B-Cell

Chromosome	Satisfied contact pairs (\%)	Satisfied Non-contact pairs (\%)
1	82	80
2	81	80
3	82	84
4	85	85
5	83	86
6	83	83
7	86	82
8	89	83
9	88	90
10	87	88
11	86	86
12	88	88
13	90	89
14	93	84
15	91	90
16	89	88
17	90	92
18	89	94
19	92	96
20	90	90
21	92	99
22	91	92

Violations of Contacts on Normal B-Cell

Chromosome	Average distance (unsatisfied contact pairs)	Average IF (unsatisfifed contact pairs)	Average distance (unsatisficd non-contact pairs)	d_{c}	Average IF
1	1.98	0.44	1.43	1.73	1.6
2	1.97	0.52	1.48	1.73	1.84
3	1.94	0.60	1.51	1.73	2.09
4	2.05	0.57	1.31	1.73	2.36
5	2.03	0.55	1.39	1.73	2.22
6	1.97	0.60	1.42	1.73	2.23
7	2.37	0.62	1.68	2.00	2.39
8	2.34	0.69	1.60	2.00	2.76
9	2.42	0.72	1.72	2.12	3.49
10	2.58	0.71	1.92	2.23	2.78
11	2.56	0.71	1.80	2.23	2.6
12	2.54	0.67	1.89	2.23	2.69
13	2.55	1.32	1.75	2.23	4.34
14	2.47	1.15	1.69	2.23	4.12
15	2.46	1.02	1.85	2.23	3.78
16	2.58	0.91	1.79	2.34	4.02
17	2.56	0.93	2.06	2.34	3.78
18	2.66	1.36	1.72	2.34	4.54
19	2.57	1.40	1.84	2.34	5.85
20	2.56	1.35	1.78	2.34	4.88
21	2.62	1.60	1.93	2.34	7.28
22	2.58	1.78	1.64	2.34	7.05

3D Models for 22
Chromosomes of Normal BCell

J. Cheng, NSF CAREER Project Plan, 2011, 2012, 2013

Models of Chr. 2 for Normal and Malignant Cells

Primary Leukemia B-Cell

Normal B-Cell
 GDT-HA scores. Y-axis denotes the similarity scores and X -axis the indices of chromosomes. 'Blue bars' represent the average GDT-HA scores of models within the same model ensemble constructed from the whole normalized data sets of the normal B-cell for each chromosome, 'red bars' the average GDTHA scores between models constructed from sampled data sets with those constructed from the whole data sets and 'green bars' the average GDT-HA scores between models of the leukemia B-cell and those of the normal B-cell.

The percentage of recovered contacts in all chromosomes in validation

Trieu T , and Cheng J Nucl. Acids Res. 2014;nar.gkt1411

The superimposition of the plots of IFs of all missing contacts and the plots of IFs of recovered contacts for chromosome 1 (left) and chromosome 11 (right).

The superimposition of the plots of IFs of all missing contacts and the plots of IFs of recovered contacts for chromosome 1 (left) and chromosome 11 (right). Y-axis denotes interaction frequencies and X-axis the indices of contacts. The green tails visualized the contacts that were not recovered and had lower IFs.

Average of spatial distances and IFs of region pairs within and across (between) compartments in chromosomes 1 and 11.

Trieu T , and Cheng J Nucl. Acids Res. 2014;nar.gkt1411

The contact scores and non-contact scores of the chromosomal models of the leukemia Bcell.

Trieu T , and Cheng J Nucl. Acids Res. 2014;nar.gkt1411

The models of chromosome 1 at resolution of $200 \mathrm{~K}(\mathrm{~A})$ and at resolution of $1 \mathrm{MB}(\mathrm{B})$.

Trieu T , and Cheng J Nucl. Acids Res. 2014;nar.gkt1411

$\{\gg \sqrt{3}+2$			
$5\{8 / 8$			
	$\left\{\sqrt[A]{A} \sum_{2}\right.$	$\Leftrightarrow k \sum^{2} \mid \operatorname{ded} \\|\{\theta$	
	$\{\sqrt{y} \sqrt{y}$		
	scy		

Pairwise comparison:

1 Mb versus 200 Kb

Scoring Function for Genome

Optimization

$$
\begin{aligned}
& F n=\sum_{\{(i, j):|i i-j| \neq 1\}}^{\text {contacts }}\left(W_{1}[\operatorname{chr} 1, \operatorname{chr} 2] * \tanh \left(d_{c}^{2}-d_{i j}^{2}\right) * \frac{F_{i j}}{\text { totaliF }}+\right. \\
& \left.W_{2}[\operatorname{chr} 1, \operatorname{chr} 2] * \frac{\tanh \left(d_{i j}^{2}-a_{\text {min }}^{2}\right)}{\text { totallF }}\right)+ \\
& \sum_{\{(i, j):|i-j|=1 \& c h r 1=c h r 2\}}\left(W_{1}[\operatorname{chr} 1, \operatorname{chr} 2] * I F_{\max } * \frac{\tanh \left(d a_{\max }^{2}-d_{i j}^{2}\right)}{\operatorname{totalIF}}+\right. \\
& \text { Contact Pairs } \\
& \left.W_{2}[\operatorname{chr} 1, \operatorname{chr} 2] * \frac{\tanh \left(d_{i j}^{2}-d_{\text {min }}^{2}\right)}{\text { totallF }}\right)+ \\
& \sum_{\substack{\text { \{(i,j): }|i-j| \mid \neq 1, \text { chrt } 1=c h r 2\}}}^{\text {non-ants }}\left(W_{3}[\operatorname{chr} 1, \operatorname{chr} 1] * \frac{\tanh \left(d_{\text {max_intra }}^{2}-d_{i j}^{2}\right)}{\text { totallF }}+\right. \\
& \left.W_{4}[\operatorname{chr} 1, \operatorname{chr} 1] * \frac{\tanh \left(d_{i j}^{2}-d_{c}^{2}\right)}{\operatorname{totaliF}}\right)+ \\
& \sum_{\{\{(i, j):|i-j| \neq 1, c h r 1 \neq c h r 2\}}^{\text {non-contacts }}\left(W_{3}[\operatorname{chr} 1, \operatorname{chr} 2] * \frac{\tanh \left(d_{\text {max } 1 \text { inter }}^{2}-d_{i j}^{2}\right)}{\text { totallF }}+\right. \\
& \left.W_{4}[\operatorname{chr} 1, \operatorname{chr} 2] * \frac{\tanh \left(d_{i j}^{2}-d_{c}^{2}\right)}{\operatorname{totallF}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d_{\min }^{2}=0.2 \mu m^{2}, d a_{\max }^{2}=1.8\left(\mu m^{2}\right) \\
& d_{c}^{2}=6 \mu m^{2}, d_{\text {max_intra }}^{2}=d_{\text {max }}^{2}=20 \mu m^{2} \\
& d_{\text {max_inter }}=13 \mu m
\end{aligned}
$$

Trieu, Cheng, Bioinformatics, 2016

Modeling of 3D Genome

Test on Simulated Data of the Yeast Genome Structure

Known Structure (Duan et al., 2010)

Reconstructed Model

A 3D Model of Genome of Human BCell in an Ensemble

Trieu, Cheng, Bioinformatics, 2016

Largely Conserved Chromosomal Structure, Dynamic Genome Structure

Chromosome 11
Pairwise structural similarity between chromosomal models: 0.71 Pairwise structural similarity between genome models: 0.16

Center - Periphery Architecture and

Dynamic Inter-chromosomal Interactions

(b)

(c)

- Small chromosomes in center
- Large chromosomes in periphery
- Genome structure ensemble (dynamics)
- Correlation of inter-chromosomal interactions
(0.48), p-value < e-16

Trieu, Cheng, Bioinformatics, 2016

Enriched Telomere and Centromere InterChromosomal Interactions

Trieu, Cheng, Bioinformatics, 2016

MOGEN: Model of Genome (Tool)

1. Reconstruction process video: http://calla.rnet.missouri.edu/mogen/video/3DGenome_Movie.mp4

2. Genome structures of healthy cells: http://calla.rnet.missouri.edu/mogen/normal_cell/
3. Genome structures of malignant cells: http://calla.rnet.missouri.edu/mogen/cancer_cell/
4. Experimental data on synthetic datasets: https://missouri.box.com/s/5cnwys9e1qgt8020pdh8544meb5myayo
5. MOGEN: Executable program - https://missouri.box.com/s/a8nynitxow4aixj6fd0k2xf6n4wof772
http://calla.rnet.missouri.edu/mogen/

MOGEN at GitHub

－https：／／github．com／BDM－Lab／MOGEN
－Trieu，Tuan，and Jianlin Cheng．＂MOGEN：a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data．＂Bioinformatics 32.9 （2015）：1286－1292．
－Secure https：／／github．com／BDM－Lab／MOGEN
The software for modeling the 3D structure of a genome using Hi－C chromosome conformation capturing data

（1） 19 commits		\＆ 1 branch	1 release	211 contributor		T0 GPL－3．0
Branch：master－	New pull request				Find file	Clone or download r
（2）tuan add buildfile				Latest commit 07e31c6 on Mar 10， 2017		
－bin		MOGE				2 years ago
－documents		add su	cument			a year ago
－examples／hic		remov				2 years ago
－src		add su	cument			a year ago
目 LICENSE		Initial				2 years ago
目 README．md		add qu				a year ago
目 build．xml		add bu				a year ago

国 README．Md

MOGEN：The software for modeling the 3D structure of a genome using Hi－C chromosome conformation capturing data

3D Structure of the Entire Genome

Smaller Chromosomes are Closer to the Center

A tool for 3D genome structure visualization
Brought to you by: avewells, jacknowo, xuelven

Description

GMOL is an application designed to visualize genome structure in 3D. It allows users to view the genome structure at multiple scales, including: global, chromosome, loci, fiber, nucleosome, and nucleotide. This software was built upon the pre-existing Jmol package.

GMOL Web Site >

Categories

Bio-Informatics, Visualization

License
GNU Library or Lesser General Public License version 3.0 (LGPLv3)

Features

- Interactively visualize genome structures in 3D
- Supports multiple scales/resolutions: global, chromosome, loci, fiber, nucleosome, nucleotide
- Measure distances and angles between points in the structure
- Rotate and scale models to analyze them even more
- Select parts of the structure based on index, scale, or sequence information
- Get DNA sequence for selected structures or portions of structures
- Includes existing Jmol functions

Featured Download
Why attend IBM Edge 2014?
750 technical sessions \& over 5500 of your peers. Sponsored by Intel®

輏音.

Register

*Progress
 GOT A PAIN IN THE SaaS?

We've got your SaaS data access cure.
FREE TRIAL

Recommended Projects

©3 Jmol
4. JSpecView Project

Open Virtual Machine Tools

Latest Tech Jobs

Powered by alce

Senior Java Developer (Job Title)

Senior PeopleSoft DBA

SA Technologies Inc - St. Louis, MO

GMOL - Multi-Scale Visualization of 3D Genome Structure

Project 4

- Apply a gradient descent method LorDG / MOGEN to build 3D models for human chromosome 7.
- References: (1) T. Trieu, J. Cheng. 3D Genome Structure Modeling by Lorentzian Objective Function. Nucleic Acids Research, accepted, 2016; (2) Trieu, Cheng. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Research, 2014; (3) T. Tuan, J. Cheng. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data. Bioinformatics, accepted, doi: 10.1093/bioinformatics/btv754.
- How to assess the models (check the paper)?
- Visualization of models
- Reference models (constructed from somewhat different contact data of Chr. 7: http://calla.rnet.missouri.edu/mogen/
- LorDG at GitHub: https://github.com/BDM-Lab/LorDG
- MOGEN at GitHub: https://github.com/BDM-Lab/MOGEN

Data II: Hi-C data of Chromosome 7

> HWI-EAS313_0025:7:78:7863:19096|7 $40786044745502707 \mid$ case 0 HWI-EAS313_0025:7:63:14188:6924|7 128562332 $7128562745 \mid$ case 0 HWI-EAS313_0025:7:94:3739:17610|7 154672365 $7154672125 \mid$ case 0 HWI-EAS313_0025:7:78:17921:8167|790166635 $790166267 \mid$ case 0 HWI-EAS313_0025:7:98:5753:2860|7 146851262 $782792917 \mid$ case 0 WI-EAS313_0025:7:104:3993:13804|7 $1014727887101472557 \mid$ case 0 HWI-EAS313_0025:7:4:13123:19420|7 63615352 $762522230 \mid$ case 0 HWI-EAS313_0025:7:54:7610:3364|7 $24688078724687498 \mid$ case 0 HWI-EAS313_0025:7:6:8245:1169|747788402747788122|case 0

http://sysbio.rnet.missouri.edu/3dgenome/contact ALL chrom7

The LorDG /MOGEN software package includes some sample data and examples of how to run the program.

Timeline

- April 30: discussion of plan
- May2: presentation of the plan
- May 9: Presentation of your results

Acknowledgements

- Tuan Trieu, Oluwatosin Oluwadare, Chenfeng He, Sharif Ahmed, Lingfei Xu
- Zheng Wang, Renzhi Cao, Avery Wells
- Charles Caldwell, Kristen Taylor, Aaron Briley

