

Template Based Protein Structure Modeling

Jianlin Cheng, PhD

Associate Professor Computer Science Department Informatics Institute University of Missouri, Columbia 2013

Sequence, Structure and Function

Protein Structure Determination

- X-ray crystallography
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- X-ray: any size, accurate (1-3 Angstrom (10⁻¹⁰ m)), sometime hard to grow crystal
- NMR: small to medium size, moderate accuracy, structure in solution

X-Ray Crystallography

A protein crystal

Diffraction

Mount a crystal

Protein structure

Diffractometer

Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample.
Wikipedia, the free encyclopedia

Storage in Protein Data Bank

PROTEIN DATA BANK	An Information Portal to Biological Mac As of Tuesday Aug 29, 2006 Sthere are 38479 Struct	амемвек оf тне P romolecular Structu ures @ PDB Statisti
Contact Us Help Print Page	PDB ID or keyword Author SEARCH ? Advanced Search	
Home Search Structure Results Queries	Welcome to the RCSB PDB	NEWS
Home	The RCSB PDB provides a variety of tools and resources for studying the structures of biological macromolecules and their relationships to sequence, function, and disease.	Complete NewsNewsletter
 Tutorial About This Site Getting Started 	The RCSB is a member of the wwPDB whose mission is to ensure that the PDB archive remains an international resource with uniform data.	Discussion Forur
Download FilesDeposit and Validate	This site offers tools for browsing, searching, and reporting that utilize the data resulting from ongoing efforts to create a more consistent and comprehensive archive.	29-August-2006 New RCSB PDB Flyer Available in Print an Opline
 Structural Genomics Dictionaries & File Formats Software Tools 	Information about compatible browsers can be found here . A narrated tutorial illustrates how to search, navigate, browse, generate reports and visualize structures using this	Two new brochures ai available for RCSB PDE
Educational Resources BioSync	new site. [This requires the Macromedia Flash player download.]	users: The General Information trifold & T Easy Steps for Struct
General Information	comments: mouresb.org	Deposition.
 Acknowledgements Frequently Asked Questions 	Molecule of the Month: AAA+ Proteases	
Report Bugs/Comments	How would you make a protein cutting machine that would be safe to use inside a cell? Digestive proteases like trypsin and pepsin are small and efficient-they diffuse up to proteins and start cutting. This would never work inside a cell. The cell needs to have more control, so that only obsolete or damaged proteins are destroyed. The	

Search database

😻 RCSB PDB : Structure Explorer - Mozilla Firefox								<u>_ 문 ×</u>
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp								
	.org/pdb/navba	arsearch.do?newSearch=y	es&isAuthorSearch=no&rad	ioset=All&inputQ	uickSearch=1vj	jg&image.x=0&im	age.y=0ℑ=Sear	ch 🔽 🖸 Go 💽
Google - pdb - G s	Search 🝷 🚿	PageRank 😽 Check 🝷	🤾 AutoLink 🔚 AutoFill	🍋 Options 🤌	🖏 pdb			
PROTEIN DATA BANK Contact Us Help Print Page	or keyword	Author	(SEARCH)	Advanced Sea	An Info as of Tuesda	ormation P ay Oct 10, 200	ortal to Biolo 6 🔊 there are 39	A MEMBER OF THE PDB
Home Search Structure Queries Structure St	ummary Big	logy & Chemistry Ma	aterials & Methods Sea	uence Details	Geometry			
■ 1VJG							1VJG 🗎	Images and Visualization Biological Molecule
Download Files	Title C	rystal structure of p	utative lipase from the	G-D-S-L fan	nily from No	stoc sp. at 2.0	1 A resolution	
PASTA Sequence A	uthors]	oint Center for Str	ructural Genomics (JCSG)				
Display Molecule F Structural Reports Ci	Primary fa	Dint Center for Stru mily from Nostoc sp. at	ctural Genomics (JC 2.01 A resolution To be	SG) Crystal si published	tructure of put	tative lipase fror	n the G-D-S-L	
Structure Analysis	History D	eposition 2004-02-1	9 Release 2004-03-	16				
Experi	imental Method Ty	/pe X-RAY DIFFRAG	CTION Data 🗎 [EDS					
Paran	neters R 2	lesolution[Å] 🔚	R-Value 0.175 (obs.)	R-Free 0.218		Space Group P 3 ₂ 2 1		
Un	it Cell A	ength [A] a ngles [°] alı	56.19 pha 90.00	b beta	56.19 90.00	c gamma	129.32 120.00	Display Options
Mo Desc Asym	lecular cription Po nmetric Unit	olymer: 1 Molecule: p	outative lipase from th	e G-D-S-L far	nily Chains	: A		KiNG Jmol WebMol Protein Workshop OuickPDB
Fun	ctional Class S	tructural Genomics	Unknown Function					All Images
	Sourc	^{ce} Polymer: 1 Scie	entific Name: Nostoc s	p. pcc 7120	🔿 Commo	on Name: Bac	t eria Expression :	system: Nostoc sp. pcc 7120
Done			1 -	1-		1		
Image: Start Image: Start <td< th=""><th>ress 🖸 🖓 C se s 🦉 u</th><th>AP5937 ntitled - Paint</th><th>Slides 13</th><th>D slide</th><th>s1</th><th> 🗐 😼 RC</th><th>SB PDB : Structure</th><th></th></td<>	ress 🖸 🖓 C se s 🦉 u	AP5937 ntitled - Paint	Slides 13	D slide	s1	🗐 😼 RC	SB PDB : Structure	

Search protein 1VJG

PDB Format (2C8Q, insulin)

```
HEADER HORMONE
                                              06-DEC-05 2C80
TITLE INSULINE (1SEC) AND UV LASER EXCITED FLUORESCENCE
COMPND MOL ID: 1;
COMPND 2 MOLECULE: INSULIN A CHAIN;
COMPND 3 CHAIN: A;
COMPND 4 MOL ID: 2;
COMPND 5 MOLECULE: INSULIN B CHAIN;
COMPND 6 CHAIN: B
SOURCE MOL ID: 1;
SOURCE 2 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE 3 ORGANISM COMMON: HUMAN;
SOURCE 4 ORGAN: PANCREAS;
SOURCE 5 MOL ID: 2;
SOURCE 6 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE 7 ORGANISM COMMON: HUMAN;
SOURCE 8 ORGAN: PANCREAS
KEYWDS LASER, UV, CARBOHYDRATE METABOLISM, HORMONE, DIABETES
KEYWDS 2 MELLITUS, GLUCOSE METABOLISM
EXPDTA X-RAY DIFFRACTION
AUTHOR X.VERNEDE, B.LAVAULT, J.OHANA, D.NURIZZO, J.JOLY, L.JACQUAMET,
AUTHOR 2 F.FELISAZ, F.CIPRIANI, D.BOURGEOIS
REVDAT 1 08-MAR-06 2C8Q 0
JRNL AUTH X.VERNEDE, B.LAVAULT, J.OHANA, D.NURIZZO, J.JOLY,
JRNL AUTH 2 L.JACQUAMET, F.FELISAZ, F.CIPRIANI, D.BOURGEOIS
JRNL TITL UV LASER-EXCITED FLUORESCENCE AS A TOOL FOR THE
JRNL TITL 2 VISUALIZATION OF PROTEIN CRYSTALS MOUNTED IN JRNL TITL 3 LOOPS.
JRNL REF ACTA CRYSTALLOGR., SECT.D V. 62 253 2006
JRNL REFN ASTM ABCRE6 DK ISSN 0907-4449
REMARK 2
REMARK 2 RESOLUTION. 1.95 ANGSTROMS.
REMARK 3
REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : REFMAC 5.2.0005
REMARK 3 AUTHORS : MURSHUDOV, VAGIN, DODSON
REMARK 3
REMARK 3 REFINEMENT TARGET : MAXIMUM LIKELIHOOD
```

SEQRES	1	А	21	GLY	ILE	VAL	GLU	GLN	CYS	CYS	THR	SER	ILE	CYS	SER	LEU	
SEQRES	2	А	21	TYR	GLN	LEU	GLU	ASN	TYR	CYS	ASN						
SEQRES	1	в	29	PHE	VAL	ASN	GLN	HIS	LEU	CYS	GLY	SER	HIS	LEU	VAL	GLU	
SEQRES	2	в	29	ALA	LEU	TYR	LEU	VAL	CYS	GLY	GLU	ARG	GLY	PHE	PHE	TYR	
SEQRES	3	в	29	THR	PRO	LYS											
FORMUL	3	HOH	۲ ۲	*31 (1	H2 01	L)											
HELIX	1	1	GLY	Α	1	CYS	Α	7	1								7
HELIX	2	2	SER	Α	12	ASN	Α	18	1								7
HELIX	3	3	GLY	в	8	GLY	В	20	1								13
HELIX	4	4	GLU	в	21	GLY	в	23	5								3
SSBOND	1	CYS	Α	6	Cl	YS A	1:	1						1	555	1555	
SSBOND	2	CYS	Α	7	Cl	YS B		7						1	555	1555	
SSBOND	3	CYS	Α	20	C	YS B	19	9						1	555	1555	
CRYST1	78	.608	3 7	78.6	08	78.0	608	90.0	00 9	90.00	9	0.00	I 21	13		24	
ORIGX1		1.0	00000	00	0.000	0000	0.0	00000	00		0.0	00000	D				
ORIGX2		0.0	00000	00	1.000	0000	0.0	00000	00		0.0	00000	D				
ORIGX3		0.0	00000	00	0.000	0000	1.0	00000	00		0.0	00000	D				
SCALE1		0.0	01272	21	0.000	0000	0.0	00000	00		0.0	00000	D				
SCALE2		0.0	00000	00	0.012	2721	0.0	00000	00		0.0	00000	D				
SCALE3		0.0	00000	00	0.000	0000	0.0	01272	21		0.0	00000	D				
ATOM	1	N	GI	LY A	1		45	.324	26	.807	11	.863	1.0	00 2	4.82		N
ATOM	2	CZ	A GI	LY A	1		45	.123	27	.787	12	.967	1.0	00 2	4.93		С
ATOM	3	С	GI	LY A	1		43	.756	27	.627	13	.605	1.0	00 2	5.16		С
ATOM	4	0	GI	LY A	1		43	.107	26	.591	13	.438	1.0	00 2	5.00		0
ATOM	5	N	II	LE A	2		43	.313	28	.661	14	.323	1.0	00 2	5.21		N
ATOM	6	CZ	A II	LE A	2		42	.050	28	.622	15	.065	1.0	00 2	5.39		С
ATOM	7	С	II	LE A	2		40	.818	28	.303	14	.200	1.0	00 2	5.69		С
ATOM	8	0	II	LE A	2		39	.935	27	.565	14	.635	1.0	00 2	5.56		0
ATOM	9	CE	3 II	LE A	2		41	.816	29	.917	15	.917	1.0	00 2	5.39		С

Structure Visualization

- Rasmol (http://www.umass.edu/microbio/rasmol/ getras.htm)
- MDL Chime (plug-in) (http://www.mdl.com/ products/framework/chime/)
- Protein Explorer (http://molvis.sdsc.edu/protexpl/ frntdoor.htm)
- Jmol: http://jmol.sourceforge.net/
- **Pymol: http://pymol.sourceforge.net/**

Jmol Demo (1CRN)

- Identify residues
- Recognize atoms
- Recognize peptide bonds
- Identify backbone
- Identify side chain
- Analyze different visualization style

Protein Folding

http://www.youtube.com/watch?v=fvBO3TqJ6FE&feature=fvw

Alpha-Helix

Jurnak, 2003

Beta-Sheet

Anti-Parallel

Parallel

Beta-Sheet

Non-Repetitive Secondary Structure

Beta-Turn

myoglobin

tertiary structure (all atom)

Quaternary Structure: Complex

G-Protein Complex

Structure Analysis

- Assign secondary structure for amino acids from 3D structure
- Generate solvent accessible area for amino acids from 3D structure
- Most widely used tool: DSSP (Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Kabsch and Sander, 1983)

DSSP server: http://bioweb.pasteur.fr/seqanal/interfaces/dssp-simple.html DSSP download: http://swift.cmbi.ru.nl/gv/dssp/

DSSP Code:

H = alpha helix

G = 3-helix (3/10 helix)

I = 5 helix (pi helix)

B = residue in isolated beta-bridge

- E = extended strand, participates in beta ladder
- T = hydrogen bonded turn
- S = bend
- Blank = loop

DSSP Web Service

DSSP : Definition of secondary structure of proteins given a set of 3D coordinates (W.Kabsch, C. Sander)

Reset Runussp – Jianin.cheng@gmail.com you c-mail	Reset Run ds	sp 🧶	jianlin.cheng@gmail.com	your e-mail
---	--------------	------	-------------------------	-------------

PDB File		

1vjg or you can instead enter a PDB id.

http://bioweb.pasteur.fr/seqanal/interfaces/dssp-simple.html

#	RESIDUE AA	STRUCTURE	BP1	BP2	ACC	N-H>O	O>H-N	N-H>O	O>H-N	TCO	KAPPA ALPHA	PHI PSI	X-CA	Y-CA	Z-CA
1	. 5 A S		0	0	179	0, 0.0	2,-0.0	0, 0.0	0, 0.0	0.000	360.0 360.0	360.0 125.7	-8.6	43.0	43.9
1	2 6 A K	-	0	0	123	1,-0.1	2,-0.4	37,-0.1	37,-0.2	-0.235	360.0-108.7	-87.0 151.4	-7.5	41.4	40.6
:	3 7 A T	E –a	39	0A	75	35,-0.6	37,-2.5	1,-0.0	2,-0.3	-0.593	34.7-132.0	-72.2 128.3	-4.3	39.5	39.6
	8 A Q	E +a	40	0A	91	-2,-0.4	69,-0.6	35,-0.2	2,-0.4	-0.639	26.0 179.8	-86.4 132.7	-2.0	41.5	37.4
;	5 9 A I	E –ab	41	73A	3	35,-1.9	37,-2.9	-2,-0.3	2,-0.5	-0.991	13.3-156.5	-129.4 131.5	-0.7	39.9	34.2
	5 10 A R	E –ab	42	74A	48	67,-2.8	69,-1.7	-2,-0.4	2,-0.4	-0.910	14.8-173.2	-105.2 126.8	1.6	41.6	31.8
	11 A I	E –ab	43	75A	0	35,-2.5	37,-2.6	-2,-0.5	2,-0.5	-0.983	11.9-162.4	-124.9 124.4	1.7	40.3	28.2
8	12 A C	E –ab	44	76A	0	67,-2.3	69,-2.6	-2,-0.4	2,-0.6	-0.931	6.5-159.9	-100.8 130.8	3.9	41.2	25.3
9) 13 A F	E –ab	45	77A	0	35,-2.2	37,-3.0	-2,-0.5	2,-0.5	-0.955	13.2-169.0	-109.5 117.1	2.7	40.2	21.8
10) 14 A V	E +ab	46	78A	0	67,-3.1	69,-2.2	-2,-0.6	2,-0.3	-0.926	34.8 71.1	-116.5 129.9	5.6	40.1	19.4
1:	15 A G	E S-ab	47	79A	0	35,-0.9	37,-1.9	-2,-0.5	69,-0.2	-0.921	70.2 -50.2	169.0-146.4	5.3	39.9	15.6
12	2 16 A D	S >> S-	0	0	4	67,-0.8	4,-2.2	-2,-0.3	3,-0.6	-0.023	78.2 -51.3	-111.5-151.8	4.2	41.6	12.4
1:	3 17 A S	H 3>>S+	0	0	7	35,-0.3	5,-1.7	1,-0.2	4,-1.5	0.803	130.2 57.8	-67.3 -28.8	1.2	43.5	11.1
14	18 A F	H 345S+	0	0	5	2,-0.2	12,-0.5	1,-0.2	-1,-0.2	0.884	108.5 46.5	-68.2 -33.2	-1.2	40.8	12.2
1	5 19 A V	H <45S+	0	0	1	-3,-0.6	12,-0.3	64,-0.2	-2,-0.2	0.900	111.1 52.2	-68.9 -41.4	-0.0	41.1	15.7
10	5 20 A N	H <5S-	0	0	71	-4,-2.2	-2,-0.2	30,-0.1	-1,-0.2	0.774	110.8-127.0	-62.6 -26.6	-0.3	45.0	15.4
1	21 A G	T ><5 -	0	0	5	-4,-1.5	3,-2.2	-5,-0.2	8,-0.4	0.741	36.4-174.6	83.1 25.3	-3.9	44.5	14.2
18	22 A T	T 3 < +	0	0	14	-5,-1.7	-1,-0.2	1,-0.3	-2,-0.0	-0.199	68.4 29.2	-54.0 135.4	-3.4	46.6	11.0
19	9 23 A G	T 3 S+	0	0	28	1,-0.3	-1,-0.3	159,-0.1	162,-0.2	0.121	86.2 120.8	94.7 -21.4	-6.7	47.0	9.2
2() 24 A D	Х –	0	0	9	-3,-2.2	3,-1.2	160,-0.2	-1,-0.3	-0.706	48.9-160.5	-79.7 117.6	-8.9	46.8	12.4
23	. 25 A P	T 3 S+	0	0	91	0, 0.0	-1,-0.2	0, 0.0	159,-0.0	0.677	91.8 60.1	-70.9 -17.3	-10.9	50.1	12.6
23	26 A E	T 3 S-	0	0	119	-3,-0.0	-2,-0.1	3,-0.0	158,-0.0	0.426	105.0-132.3	-87.9 -3.3	-11.4	49.4	16.3
23	3 27 A C	S < S+	0	0	112	-3,-1.2	-5,-0.1	-6,-0.2	-6,-0.0	0.730	80.2 98.1	62.8 28.1	-7.6	49.4	16.9

Solvent Accessibility

Amino Secondary Acids Structure

Solvent Accessibility

Size of the area of an amino acid that is exposed to solvent (water).

Maximum solvent accessible area for each amino acid is its whole surface area.

Hydrophobic residues like to be Buried inside (interior). Hydrophilic residues like to be exposed on the surface.

Dihedral Angle

Project Groups

- 17 students
- Form 3 / 4 groups

Group 1

- Badri Adhikari
- Renzhi Cao
- Chenfeng He
- Jilong Li
- Debswapna Bhattacharya

Group 2

Group 3

Dihedral / Torsion Angle

 φ (phi, involving the backbone atoms C'-N-C α -C'), ψ (psi, involving the backbone atoms N-C α -C'-N)

• http://en.wikipedia.org/wiki/Dihedral_angle

Protein Structure 1D, 2D, 3D

2D

3D

B. Rost, 2005

Goal of Structure Prediction

- Epstein & Anfinsen, 1961: sequence uniquely determines structure
- INPUT: sequence
 OUTPUT: *Job Structure and function*

CASP – Olympics of Protein Structure Prediction

- Critical Assessment of Techniques of Protein Structure Prediction
- 1994,1996,1998,2000,20
 02,2004,2006, 2008,
 2010, 2012
- Blind Test, Independent Evaluation

• CASP ROLL (course project,

http://predictioncenter.org/casprol/index.cgi)

• CASP10 (http://predictioncenter.org/casp10/index.cgi)

1D: Secondary Structure Prediction

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Widely Used Tools (~78-80%)

SSpro 4.1: http://sysbio.rnet.missouri.edu/multicom_toolbox/

Distill: http://distill.ucd.ie/porter/

PSI-PRED: http://bioinf.cs.ucl.ac.uk/psipred/psiform.html software is also available **SAM**: http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html

PHD: http://www.predictprotein.org/

1D: Solvent Accessibility Prediction

Accuracy: 79% at 25% threshold

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005
Widely Used Tools (78%)

- ACCpro 4.1: software: http:// sysbio.rnet.missouri.edu/multicom_toolbox/
- SCRATCH: <u>http://scratch.proteomics.ics.uci.edu/</u>
- PHD: <u>http://www.predictprotein.org/</u>
- Distill: http://distill.ucd.ie/porter/

1D: Disordered Region Prediction Using Neural Networks

93% TP at 5% FP

Deng, Eickholt, Cheng. BMC Bioinformatics, 2009

Tools

PreDisorder: http://sysbio.rnet.missouri.edu/multicom_toolbox/

A collection of disorder predictors:

http://www.disprot.org/predictors.php

Deng, Eickholt, Cheng. BMC Bioinformatics, 2009 & Mol. Biosystem, 2011

1D: Protein Domain Prediction Using Neural Networks

Cheng, Sweredoski, Baldi. Data Mining and Knowledge Discovery, 2006.

DoBo

Protein domain boundary prediction by integrating evolutionary signals and machine learning

Have a question? Maybe it's answered in the FAQ

Job title (optional) Sequence
Job title (optional) Sequence
Sequence
Sequence
Plain sequence. Spaces, newlines and any FASTA
header will be ignored.
Mininum sequence length is 90 residues.
Set a minimum threshold for the confidence of
domain boundary predictions.
Single/multi-domain No 🔽 🐨
classification
Run an additional check to classify query as a single or
multi-domain protein.
Submit Job
Submit Job

Web: http://sysbio.rnet.missouri.edu/multicom_toolbox/index.html

Reference:

J. Eickholt, X. Deng, and J. Cheng. DoBo: Protein Domain Boundary Prediction by Integrating Evolutionary Signals and Machine Learning. *BMC Bioinformatics*. 12:43, 2011.

4. Form multiple sequence alignment

large arrows)

2D: Contact Map Prediction

3D Structure

2D Contact Map

Distance Threshold = 8A^o

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Contact Prediction

• SVMcon:

http://casp.rnet.missouri.edu/svmcon.html

• NNcon:

http://casp.rnet.missouri.edu/nncon.html

• SCRATCH:

http://scratch.proteomics.ics.uci.edu/

• SAM:

http://compbio.soe.ucsc.edu/HMM-apps/ HMM-applications.html

NNcon: Protein Contact Map Prediction Using Artificial Neural Networks (<u>Help</u>)

Email address(where the prediction will be sent):

Target Name(required):

Protein sequence(one plain sequence, no headers, and length < 1000 amino acids; an example sequence is here):

Predict

Tegge, Wang, Eickholt, Cheng, Nucleic Acids Research, 2009

Protein tertiary structure prediction is a space sampling problem.

Protein Energy Landscape & Free Sampling

http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

Protein Structure Space & Target Sampling

Two Approaches for 3D Structure Prediction

Protein Data Bank

Template-Based Structure Prediction

- 1. Template identification
- 2. Query-template alignment
- 3. Model generation
- 4. Model evaluation
- 5. Model refinement

Notes: if template is easy to identify, it is often called **comparative Modeling or homology** modeling. If template is hard to identify, it is often called **fold recognition**.

TARGET

ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

Copy Loop Modeling Optimization

A. Fisher, 2005

Modeller

- Need an alignment file between query and template sequence in the PIR format
- Need the structure (atom coordinates) file of template protein
- You need to write a simple script (Python for version 8.2) to tell how to generate the model and where to find the alignment file and template structure file.
- Run Modeller on the script. Modeller will automatically copy coordinates and make necessary adjustments to generate a model.
- See project step 5-8 for more details.

An PIR Alignment Example

NIRVIARVRPVTKEDGEGPEATNAVTFDADDDSIIHLLHKGKPVSFELDKVFSPQASQQDVFQEVQ ALVTSCIDGFNVCIFAYGQTGAGKTYTMEGTAENPGINQRALQLLFSEVQEKASDWEYTITVSAAE IYNEVLRDLLGKEPQEKLEIRLCPDGSGQLYVPGLTEFQVQSVDDINKVFEFGHTNRTTEFTNLNE HSSRSHALLIVTVRGVDCSTGLRTTGKLNLVDLAGSERVGKSGAEGSRLREAQHINKSLSALGDVI AALRSRQGHVPFRNSKLTYLLQDSLSGDSKTLMVV-----QVSPVEKNTSETLYSLKFAER-----VR*

Structure File Example (1SDMA.atm)

ATOM	1	Ν	LYS	1	-3.978	26.298 113.043	1.00 31.75	N
ATOM	2	CA	LYS	1	-4.532	25.067 113.678	1.00 31.58	С
ATOM	3	С	LYS	1	-5.805	25.389 114.448	1.00 30.38	С
ATOM	4	0	LYS	1	-6.887	24.945 114.072	1.00 32.68	0
ATOM	5	СВ	LYS	1	-3.507	24.446 114.631	1.00 34.97	С
ATOM	6	CG	LYS	1	-3.743	22.970 114.942	1.00 36.49	С
ATOM	7	CD	LYS	1	-3.886	22.172 113.644	1.00 39.52	С
ATOM	8	CE	LYS	1	-3.318	20.766 113.761	1.00 41.58	С
ATOM	9	ΝZ	LYS	1	-1.817	20.761 113.756	1.00 43.48	N
ATOM	10	Ν	ILE	2	-5.687	26.161 115.522	1.00 26.16	N
ATOM	11	CA	ILE	2	-6.867	26.500 116.302	1.00 22.75	С
ATOM	12	С	ILE	2	-7.887	27.226 115.439	1.00 21.35	С
ATOM	13	0	ILE	2	-7.565	28.200 114.770	1.00 20.95	0
ATOM	14	CB	ILE	2	-6.513	27.377 117.523	1.00 21.68	С
ATOM	15	CG1	ILE	2	-5.701	26.563 118.526	1.00 21.13	С
ATOM	16	CG2	ILE	2	-7.782	27.875 118.200	1.00 18.96	С
ATOM	17	CD1	ILE	2	-5.368	27.325 119.787	1.00 21.39	С
ATOM	18	Ν	ARG	3	-9.120	26.737 115.461	1.00 22.04	Ν
ATOM	19	CA	ARG	3	-10.214	27.327 114.693	1.00 23.95	С
ATOM	20	С	ARG	3	-10.783	28.563 115.400	1.00 22.82	C
ATOM	21	0	ARG	3	-10.771	28.645 116.629	1.00 22.62	0
ATOM	22	СВ	ARG	3	-11.327	26.290 114.510	1.00 26.34	С
ATOM	23	CG	ARG	3	-11.351	25.586 113.161	1.00 30.68	С
ATOM	24	CD	ARG	3	-10.004	25.034 112.771	1.00 35.43	С
ATOM	25	NE	ARG	3	-10.104	24.072 111.672	1.00 43.37	Ν
ATOM	26	СZ	ARG	3	-10.575	24.350 110.458	1.00 46.04	С
ATOM	27	NH1	ARG	3	-10.997	25.572 110.168	1.00 48.68	N
ATOM	28	NH2	ARG	3	-10.627	23.400 109.532	1.00 48.37	N
ATOM	29	Ν	VAL	4	-11.278	29.524 114.630	1.00 20.49	N
ATOM	30	CA	VAL	4	-11.853	30.724 115.225	1.00 17.59	С
ATOM	31	С	VAL	4	-13.082	31.211 114.471	1.00 18.31	С
ATOM	32	0	VAL	4	-13.030	31.446 113.264	1.00 16.37	0
ATOM	33	СВ	VAL	4	-10.834	31.872 115.272	1.00 19.94	С
ATOM	34	CG1	VAL	4	-11.512	33.168 115.759	1.00 15.64	С
ATOM	35	CG2	VAL	4	-9.668	31.489 116.168	1.00 15.45	С

Modeller Python Script (bioinfo.py)

Output Example

Command: mod8v2 bioinfo.py

Template Based Modeling Methods

- Comparative Protein Modeling by Satisfaction of Spatial Restraints by Andrej Sali and Tom L. Blundell
- 3D Model is obtained by satisfying spatial restraints derived from alignment with a known structure and expressed as probability density functions (pdfs) for the features restrained.

Probability Density Functions of Features

- Ca Ca distances
- Main-chain N-O distance
- Main-chain dihedral angles
- Side-chain dihedral angles
- A protein pdf is a combination of individual pdfs of features of the whole protein

Optimization Procedure

- Objective: the pdf of a protein
- Initial input: initial (x, y, z) of each residue satisfying bond length / angle restraints
- Optimization: adjust x, y, z to maximize the pdf (i.e. probability), i.e. reduce the violations of feature restraint as much as possible

Topic 1 – Template Based Modeling

- CASP10 TBM targets
- Known templates
- Develop a homology-based algorithm / tool to build models from templates
- Assess the quality of models
- Implement from scratch
- Form your group

Feature Restraints

- A database of 17 family alignments including 80 proteins was constructed to obtain feature statistics.
- Feature constraint is represented as conditional distribution. E.g. P(ca-ca distance in target | ca-ca distance in template,...), P(psi angle of a residue in target | psi angle of an equivalent residue in template, ...)

Side Chain & Main Chain

- P(X1 | residue type, phi, psi)
- Main-chain and side-chain modeling can be separated or carried out simultaneously

Function Fitting from Known Data

- $P(x|a,b,c) \sim Wx,a,b,c \sim f(x,a,b,c,q)$
- W is a multi-dimensional table calculated from relative frequencies in the data
- *f* is a function that fits W by minimizing root mean square difference
- Fitting algorithm: Levenberg-Marquardt algorithm for non-constrained least-squares fitting of a non-linear multidimensional model implemented in the program LSQ.

Features in Multi-Dimensional Table (MDT) Program

- Residue type
- Main-chain dihedral angle of a residue
- Secondary structure of a residue

1	r	Amino acid residue type
2	Φ	Main-chain dihedrat angle Φ
3	Ψ	Main-chain dihedral angle Ψ
4	t	Secondary structure class of a residue
5	M	Main-chain conformation class of a residue
6	α	Fractional content of residues in the main-
_		chain conformation class A
7	Xi	Side-chain dihedral angle χ_i , $i = 1, 2, 3, 4$
8	c_i	Side-chain dihedral angle χ_i class,
		i = 1, 2, 3, 4
9	a	Residue solvent accessibility
10	ā	Average accessibility of two residues in one protein
11	8	Residue neighbourhood difference between two proteins
12	\overline{s}	Average residue neighbourhood difference between two proteins
13	i	Fractional sequence identity between two proteins
]4	d	$C^{\alpha}-C^{\alpha}$ distance
15	Δd	Difference between two C ^a -C ^a distances in two proteins
16	h	Main-chain N–O distance
17	Δh	Difference between two main-chain N-O
		distances in two proteins
18	ь	Average residue B_{iso}
19	R	Resolution of X-ray analysis
20	g	Distance of a residue from a gap in alignment
21	$ar{g}$	Average distance of a residue from a gap

Main Chain Conformation Class

Parameters of the main-chain conformation classes

	Mean	ι (°)	Standard deviation (°)		
	Φ_i	$\overline{\Psi}_i$	$\sigma_i(\Phi)$	$\sigma_i(\Psi)$	
A	-65	-41	15	15	
В	-130	135	15	20	
Р	-65	140	15	15	
G	60	40	10	10	
L	90	-10	15	10	
E	130	180	25	25	

Usefulness of Features

- The most useful pdf is the one that predicts the unknown feature most accurately
- Measured by the entropy of a pdf

Stereochemical Restraints

- Obtained from sequence of a protein
- Bond distance, bond angle, planarity of peptide groups, side-chain rings, chiralities of Ca atoms and side-chains, van der Waals contact distance (radii values)
- Mean value and standard deviations for bond lengths, bond angles, and dihedral angles are obtained from GROMOS86

Bond Length and Angles (harmoic model)

The classical harmonic model for the bond length between two atoms gives the vibrational potential energy of the bond as:

$$E(b) = \frac{1}{2}c(b-b_o)^2.$$
(19)
$$p^b(b) = \frac{1}{\sigma_b\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{b-\overline{b}}{\sigma_b}\right)^2\right] = N(\overline{b}, \sigma_b).$$

Van der Waals Repulsion (only non-harmonic feature)

(ii) van der Waals repulsion

van der Waals repulsion is the only stereochemical feature which is not described by the harmonic model. Instead, the following pdf is used for two atoms:

$$p^{v}(d) = c \cdot \begin{cases} N(d_{o}, \sigma_{w}); d \leq d_{o} \\ \frac{1}{\sigma_{w}\sqrt{2\pi}}; d_{o} < d < d_{\max}, \end{cases}$$
(22)

where d is the distance between the two atoms, d_o is the sum of their van der Waals radii and σ_w is the standard deviation of the Gaussian part of the whole pdf (usually 0.05 Å). d_{\max} is the maximal possible linear dimension of a protein and constant c is chosen so that $p^v(d)$ integrates to 1. This pdf does not differentiate between contact distances larger than d_o , but it does select against distances smaller than d_o . This is achieved by imposing a repulsive harmonic potential on atoms that are less than d_o apart.

Ca-Ca Distance Features

$$p^{d}(d/\bar{g}, i, \bar{a}', d') = \frac{1}{\sigma(\bar{g}, i, \frac{1}{\bar{a}'}, d')\sqrt{2\pi}} \times \exp\left[-\frac{1}{2}\left(\frac{d-d'}{\sigma(\bar{g}, i, \bar{a}', d')}\right)^{2}\right]$$

Standard deviation depends on solvent accessibility, gaps of alignment, and sequence identity.

Combine pdfs of a Feature (Ca-Ca distance) from Multiple Templates • Weighted sum of the same type of pdfs

• Weighted sum of the same type of pdfs from multiple known structures

The last step in the derivation of the feature pdf is to include the van der Waals restraint. Since all stereochemical restraints have to be satisfied in all structures, these restraints are multiplied into the feature pdf and we obtain the final feature pdf:

$$p^{D}(d) = [\omega_{1} p_{1}^{d}(d) + \omega_{2} p_{2}^{d}(d)] p^{v}(d).$$
(ii) Derivation of a molecular pdf from feature pdfs

The last stage in the derivation of a molecular pdf is to combine all feature pdfs into a molecular pdf. The 3D structure of a protein is uniquely determined if a sufficiently large number of its spatial features, f_i , are specified. The goal is to find the 3D structure that is consistent with the most probable values of individual features f_i . The molecular pdf should give a probability for occurrence of any combination of these features simultaneously. Then the model for the 3D structure of the unknown would correspond to the maximum of the molecular pd^{*}. Assuming that feature pdfs are independent of each other, the molecular pdf is simply a product of feature pdfs defined in equations (29) to (33):

$$P = \prod_{i} p^{F}(f_{i}). \tag{34}$$

Optimization

The function that is actually optimized is a transformation of the molecular pdf P:

$$F = -\ln\left(P\right),\tag{35}$$

where all the features are expressed in terms of atomic Cartesian co-ordinates. Function F is referred to as the objective function. The same Cartesian co-ordinates that maximize P also minimize F. However, F is computationally better suited for optimization than P, since multiplication of terms in the product of equation (34) is substituted by their addition in equation (35) and since the problem of floating point overflow is smaller for F than for P.

dihedral angles. Following the variable target function method, the optimum of the molecular pdf is found by successive optimizations of increasingly more complex "target" functions, culminating in the true molecular pdf at the end. This series is obtained by starting with sequentially local restraints and then introducing more and more long-range restraints, finally arriving at the true molecular pdf incorporating all the restraints. More precisely, the target function $P(\Delta r)$ is defined as a function of an integer variable $\Delta r = 1, ..., N$, where N is the number of residues in the sequence being modelled. The target function $P(\Delta r)$ is obtained in the same way as the molecular pdf, except that only those restraints whose atoms originate from residues not more than Δr residues apart in the sequence are included. The whole calculation consists of a

included. The whole calculation consists of a number of conjugate gradient optimizations (Press et al., 1986) of target functions $P(\Delta r)$ with increasing Δr values. The starting conformation for P(1) optimization is either an extended structure or a conformation derived from an extended chain by rotation around the main-chain and side-chain dihedral angles. In the subsequent steps of the variable target function method, the starting conformation is the final model from the previous step. An ensemble of different final models is obtained by using different initial conformations.

Тууе	Basis pdfs ^a	Feature pdfs ^b	Violations	r.m.s. ^d	r.m.s.*
Bond lengths	1659	1659	0 (0·1 Å)	0·005 Å	0·005 Å
Bond angles	2250	2250	5 (10°)	2·00°	2·00°
Dihedral angles ^f	919	919	$1(20^{\circ})$	3·40°	3.40°
van der Waals contacts ⁸	531	531	0 (0·2 Å)	0·02 Å	0-02 Å
(^a -C ^a distances	23,538	11,914	26 (1 5 Å)	0·22 Å	0-47 Å
Main-chain N-O distances	7480	3832	19 (1·5 Å)	0-31 Å	0.51 Å
Main-chain Φ dihedral angles	1110	222	$2(20^{\circ})$	10·8°	21·2°
Main-chain Ψ dihedral angles	1332	222	9 (20°)	10-6°	20·3°
Side-chain y, dihedral angles	528	176	5 (25°)	8·4°	16·8°
Side-chain 7, dihedral angles	264	103	$3(25^{\circ})$	10·2°	13·0°
Side-chain χ_1 dihedral angles	92	32	$2(25^{\circ})$	11·9°	48·1°
Side-chain 7, dihedral angles	48	16	$0(25^{\circ})$	4.5°	21-9°
Disulphide bridge bonds	6	6	$0(0.1^{\circ})$	0·007 Å	0-007 Å
Disulphide bridge angles	12	12	$0(10^{\circ})$	3.7°	3-7°
Disulphide bridge dihedral angles	6	12	$0(20^{\circ})$	10.0°	12-9°
cis-Peptides ^h	0	0	. ,		

Spatial restraints used to model trypsin

Gradient Descent

Wikipedia

Conjugate Gradient Descent

Consider the following *n* variables unconstrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x), \tag{1.1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is smooth and its gradient g(x) is available. The nonlinear conjugate gradient (CG) method for (1.1) is designed by the iterative form

$$x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, 2, \dots,$$
(1.2)

where x_k is the *k*th iterative point, $\alpha_k > 0$ is a steplength, and d_k is the search direction defined by

$$d_{k} = \begin{cases} -g_{k} + \beta_{k} d_{k-1}, & \text{if } k \ge 1, \\ -g_{k}, & \text{if } k = 0, \end{cases}$$
(1.3)

where $\beta_k \in \mathbb{R}$ is a scalar which determines the different conjugate gradient methods [1, 2], and g_k is the gradient of f(x) at the point x_k . There are many well-known formulas for β_k , such as the Fletcher-Reeves (FR) [3], Polak-Ribière-Polyak (PRP) [4], Hestenses-Stiefel (HS) [5], Conjugate-Descent (CD) [6], Liu-Storrey (LS) [7], and Dai-Yuan (DY) [8]. The CG method is a powerful line search method for solving optimization problems, and it remains very popular for engineers and mathematicians who are interested in solving large-scale problems [9–11]. This method can avoid, like steepest descent method, the computation and storage of some matrices associated with the Hessian of objective functions. Then there are many new formulas that have been studied by many authors (see [12–20] etc.).

The following formula for β_k is the famous FR method:

$$\beta_k^{\text{FR}} = \frac{\|g_{k+1}\|^2}{\|g_k\|^2}, \qquad (1.4)$$
Wikipedia

where g_k and g_{k+1} are the gradients $\nabla f(x_k)$ and $\nabla f(x_{k+1})$ of f(x) at the point x_k and x_{k+1} , respectively, $\|\cdot\|$ denotes the Euclidian norm of vectors. Throughout this paper, we also denote $f(x_k)$ by f_k . Under

A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most *n* steps where *n* is the size of the matrix of the system (here *n*=2).

Server and Accounts

- Server: daisy.rnet.missouri.edu
- Group formation
- Group accounts
- I will email the info to you soon.

Group Formation

- **Group 1**: Renzhi Cao, Badri Adhikari, Debswapna Bhattacharya, Chenfeng He, Jilong Li
- **Group 2**: Hao Chang, Bo Cai, Ruiqi Shi, Hongxin Zhang, Hua Zhu, Andrew Wilson
- **Group 3**: Matt Spencer, Sharif Ahmed, Tuan Trieu, Yang Liu, Avery Wells, Di Wu

Project 1

- Design and develop a template-based protein structure modeling tool
- Assess its performance on a few TBM targets used in CASP benchmark

Project Directory

- Project1
- ---- src: source code
- ---- bin: binary
- ---- lib: library
- ---- data: data
- ---- training: training
- ---- test: test cases
- ---- doc: document / references / presentation / report
- ---- other: third-party programs

Discussion of Your Project Plan

- Data preparation
- Algorithm development (initialization, restraints extraction & representation, sampling, optimization): creative, alternative, plural
- Implementation: interface, design, platform, languages, code base / from scratch, task assignment, timeline, progress track
- Evaluation plan (metrics, tools, data, objective, comprehensive, expectation)
- Challenges, Technical Hurdles, Feasibility, Strength, weakness, Risks
- Software Package (installation, test cases)

Key Milestones of the Project

- Plan presentation on Feb. 6 (only two days)
- 10 days, initial results discussion on Feb. 13 (a results and assessment report, doc file)