Computational Modeling of Molecular Structure

Jianlin Cheng, PhD
Computer Science Department
Informatics Institute
University of Missouri, Columbia
Spring, 2013
Objectives

• Properties of molecular structures (proteins, RNA, genome / DNA)
• Computational representation of molecular structures
• Computational modeling of molecular structures
• Application of modeling of molecular structures
Significance of Studying Molecular Structures

• One foundation of life sciences
• Personal healthcare and medicine
• One major topic of bioinformatics and computational biology – an important field of computer science
• A great application area of computer algorithms and data structures
• A great application area of engineering
• A very interdisciplinary field (CS, math, biology, chemistry, physics)
Three Kinds of Structures

• Protein Structure

• Genome Structure

• RNA Structure
Representation of Molecular Structures

- X, Y, Z coordinates
- Euclidean grid
- Vector and angles
- Computer graphics
Algorithms

- Grid-based simulation (random walk)
- Vector-based simulation
- Angular-based simulation
- Gradient descent simulation and variants
- Simulated annealing
- Markov Chain Monte Carlo
- Probabilistic modeling
- Constraint-based optimization
Software Packages

• RasMol, Jmol, PyMol
• Modeller, Rosetta, I-TASSER, IMP, CNS, Tinker, etc
• Your own algorithm, implementation, and practice
Course Format

• Course web site: http://people.cs.missouri.edu/~chengji/cscmms/
• Username and password: cmms
• Problem solving
• Active learning by practicing
• Syllabus (see details)
Teaching Format of Each Topic

Course Introduction

Topic Lecture (reading)

Problem Definition (discussion, planning)

Plan Presentation

Project Implementation (programming, report)

Results and Analysis (discussion and update)

Final presentation and report

Group:

4 – 5 students per group

Rotate as topic coordinator

Each member participates in every topic

All members present the whole project
Grading

• Class discussions (15%)
• Literature reviews (10%)
• Topic plan presentation (20%, group)
• Topic implementation (25%, group)
• Topic report (20%, group)
• Final presentation (10%, group)
Introduction to Molecular Biology for Computer Science and Engineering Students
Introduction to Molecular Biology

• Cell is the unit of structure and function of all living things.

Two types of cells: eukaryote (higher organisms) and prokaryote (lower organisms)
Central Dogma of Molecular Biology

- DNA → RNA → Protein
- Replication
- Transcription
- Translation

Genotype

Phenotype
Genes contain instructions for making proteins.

Proteins act alone or in complexes to perform many cellular functions.
Central Dogma of Molecular Biology

- DNA → RNA
- RNA → Protein
- Reverse Transcription (HIV virus)
- Replication
- Translation

Information flow
DNA (Deoxyribose Nucleotide Acids)

DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is known as a "polynucleotide." Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate group.

A is for adenine
G is for guanine
C is for cytosine
T is for thymine

CGAATGGGAAA......
Base Pairs:
A-T (2 H-bonds)
C-G (3 H-bonds)

Hydrogen bonds: non-covalent bonds mediated by hydrogen atoms
Uncoiled DNA Molecule

Source: Dr. Gary Stormo, 2002
Fundamental Problems: How genetic information pass from one cell to another and from one generation to next generation
DNA Replication

- DNA Polymerase
- Topoisomerases
- Helicase
- Single-strand binding proteins
- DNA ligase
- RNA primase
- RNA primer
- LAGGING STRAND WITH OKAZAKI FRAGMENTS
- LEADING STRAND
RNA (Ribose Nucleotide Acids)

ACGAAUAACAGGUAUAAAAAUAGAUUAUACCUAUAGAUUUCGU
Different Kinds of RNA

• mRNA: messenger RNA
carry genetic information out of nucleus for protein synthesis
 (transcription process: RNA polymerase)

• rRNA: ribosomal RNA
constitute 50% of ribosome, which is a molecular assembly for
 protein synthesis

• tRNA: transfer RNA
decode information (map 3 nucleotides to amino acid);
 transfer amino acid

• snRNA: small RNA molecules found in nucleus
 involve RNA splicing
Transcription of Gene into RNA
Three Nucleotides is called a codon.
Protein Sequence

A directional sequence of amino acids/residues

H₂N−CH−C−NH−CH−CN−CH−CN−CH−C−N−CH−C−N−CH−C...

N O O O O O C
R₁ R₂ R₃ R₄ R₅

Amino Acid 1 Peptide bond Amino Acid 2
Amino Acid Structure
Lysine
Amino Acids

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Abbrev.</th>
<th>Side chain</th>
<th>Hydrophobic</th>
<th>Polar</th>
<th>Charged</th>
<th>Small</th>
<th>Tiny</th>
<th>Aromatic or Aliphatic</th>
<th>van der Waals volume</th>
<th>Codon</th>
<th>Occurrence in proteins (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala, A</td>
<td>-CH₃</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>67</td>
<td>GCU, GCC, GCA, GCG</td>
<td>7.8</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys, C</td>
<td>-CH₂-SH</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>86</td>
<td>UGU, UGC</td>
<td>1.9</td>
</tr>
<tr>
<td>Aspartate</td>
<td>Asp, D</td>
<td>-CH₂-COOH</td>
<td>-</td>
<td>X</td>
<td>negative</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>91</td>
<td>GAU, GAC</td>
<td>5.3</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Glu, E</td>
<td>-CH₂-COOH</td>
<td>-</td>
<td>X</td>
<td>negative</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>109</td>
<td>GAA, GAG</td>
<td>6.3</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe, F</td>
<td>-CH₂-C₆H₅</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Aromatic</td>
<td>135</td>
<td>UUU, UUC</td>
<td>3.9</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly, G</td>
<td>-H</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>48</td>
<td>GGU, GGC, GGA, GGG</td>
<td>7.2</td>
</tr>
<tr>
<td>Histidine</td>
<td>His, H</td>
<td>-CH₂-C₃H₅N₂</td>
<td>-</td>
<td>X</td>
<td>positive</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>118</td>
<td>CAU, CAC</td>
<td>2.3</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile, I</td>
<td>-CH(CH₃)₂</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Aliphatic</td>
<td>124</td>
<td>AUU, AUC, AUA</td>
<td>5.3</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys, K</td>
<td>-(CH₂)₄NH₂</td>
<td>-</td>
<td>X</td>
<td>positive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>135</td>
<td>AAA, AAG</td>
<td>5.9</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu, L</td>
<td>-CH₂-CH(CH₃)₂</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Aliphatic</td>
<td>124</td>
<td>UUA, UUG, CUU, CUC, CUA, CUG</td>
<td>9.1</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met, M</td>
<td>-CH₂CH₂SCH₃</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>124</td>
<td>AUG</td>
<td>2.3</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn, N</td>
<td>-CH₂CONH₂</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>96</td>
<td>AAU, AAC</td>
<td>4.3</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro, P</td>
<td>-CH₂CH₂CH₂</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>CCC, CCA, CCG</td>
<td>5.2</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln, Q</td>
<td>-CH₂CH₂CONH₂</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>114</td>
<td>CAA, CAG</td>
<td>4.2</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg, R</td>
<td>-(CH₂)₃NH-(NH)₂</td>
<td>-</td>
<td>X</td>
<td>positive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>148</td>
<td>CGU, CBC, CGA, CGG, AGA, AGG</td>
<td>5.1</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser, S</td>
<td>-CH₂OH</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>73</td>
<td>UCU, UCC, UCA, UCG, AGU, AGC</td>
<td>6.8</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr, T</td>
<td>-CH(OH)CH₃</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>ACU, ACC, ACA, ACG</td>
<td>5.9</td>
</tr>
<tr>
<td>Valine</td>
<td>Val, V</td>
<td>-CH₂CH₃₂</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>Aliphatic</td>
<td>105</td>
<td>GUU, GUC, GUA, GUG</td>
<td>6.6</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp, W</td>
<td>-CH₂C₆H₅N</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Aromatic</td>
<td>163</td>
<td>GUU, GUC, GUA, GUG</td>
<td>1.4</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr, Y</td>
<td>-CH₂-C₆H₅OH</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Aromatic</td>
<td>141</td>
<td>UUA, UAC</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Hydrophilic
Central Dogma of Proteomics

AGC Wy......

Sequence Structure Function
Acknowledgements

images.google.com and all the authors providing valuable images