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Abstract 

Among different approaches to predict the 3D structure of a 
protein, one important idea is to predict a protein residue-
residue contact map and then construct a full 3D structure 
from the contact-map. Instead of building a structure purely 
from contacts information, here we describe a contact-
assisted structure prediction approach that uses only a few 
known contacts to improve the quality of already predicted 
models. Our approach for contact assisted structure 
prediction uses a novel method for selecting and refining 
protein structural models. With input test data as the 
predicted structures for 15 protein targets used in the 
contact-assisted prediction category in the 10th Critical 
Assessment of Techniques for Protein Structure Prediction 
(CASP10), we demonstrate that weighted contacts 
satisfaction score along with other established model quality 
assessment scores is a promising technique for selecting 
good structures and ultimately for better structure 
prediction. 
 
Availability: 
http://protein.rnet.missouri.edu/contact_assisted/index.html 

 Introduction   

The problem of predicting 3D protein structure from amino 

acid sequence is currently a great challenge in structural 

bioinformatics. Among popular methods to predict a 

protein’s structure, are the methods that use residue-residue 

contact maps. A contact map of a 3D structure of a protein 

is a binary two dimensional matrix M where M[i,j] is 1 or 

0, based on whether or not the Euclidean distance between 

the residues i and j in the Cartesian space is less than or 

equal to a predefined distance threshold (e.g. 8 Angstrom). 

The idea of using contact-map to solve the problem of 

protein folding as was introduced back in 1971 (Nishikawa 

et al., 1972) and is still actively being explored. The 
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principle behind these contact-based methods is to predict 

a contact map and then construct a full 3D structure from 

this contact map.  

 Although the accuracy of contact map prediction is 

generally too low to be used as the only source of 

information to accurately construct a protein structure in 

most cases, some interesting results of constructing 3D 

structures from contact maps have been observed (Vassura 

et al., 2008). The technique, which first predicts more 

accurate residue-residue contacts for some proteins with a 

large family of known sequences that contains rich 

evolutionary information and then predicts the full 

structure from contacts along with other information, has 

recently been exploited to predict 3D protein structure with 

root-mean square deviation (RMSD) from experimental 

structure of about 2.7 Å (Marks et al., 2011). Instead of 

using the whole contact-map, a small portion of useful 

contacts can also be effectively used in the structure 

prediction process as demonstrated by (Skolnick et al., 

1997). For example, using just 20 restraints, myoglobin 

(146 residue long helical protein) can be folded to 

structures whose average RMSD from experimental 

structures is 5.65 Å (Skolnick et al., 1997).  

 The idea of using only a relatively small number of 

contacts as additional information to aid protein structure 

prediction is gaining more interest since the recent 

introduction of contact assisted protein structure prediction 

in the 10th Critical Assessment of Techniques for Protein 

Structure Prediction (CASP10) in 2012. The contact-

assisted structure modeling experiment in CASP10 was 

designed to test how the knowledge of several long-range 

contacts influences the ability of predictors to model a 

complete protein structure. The category had total 15 target 

chains consisting of 17 domains. For each target, 3 to 34 

known contacts were given to aid tertiary structure 

prediction. Before a target was released along with some 

contacts in the contact-assisted category, the same target 



had already been released as a normal tertiary structure 

prediction target (e.g. template-based modeling or 

template-free modeling). This let the CASP assessors to 

check the improvement in model quality between the 

models predicted with some known contacts and that those 

without any contact information. In this paper, we describe 

our approach implemented for contact-assisted protein 

structure prediction for these CASP 10 targets, and discuss 

further prospects of the method. 

Methods 

Overview 

Our method uses the known residue-residue contacts 

together with a pool of pre-constructed structure models as 

input to predict protein structures for a target. During the 

CASP10 experiment, before a target was released in the 

contact-assisted category along with contacts, the same 

target had been released as regular target and the structural 

models for the target predicted by the tertiary structure 

predictors participating in CASP10 were publicly 

accessible at CASP10 website. On average each target had 

about 250 predicted models, which were in a wide range of 

quality whose GDT-TS score range from 0.006 to 0.763. 

These models were used as the input set of structural 

models for our contact-assisted prediction method. 

Figure 1 The five steps of our contacts assisted structure 

prediction method. 

 As shown in Figure 1, our method for contact assisted 

protein structure prediction is comprised of 5 steps: (1) 

perform model quality assessment using APOLLO (Wang 

et al., 2011) to assess the input set of models and score 

them; (2) score the models based on how well they satisfy 

the input contacts or no-contacts; (3) rank the models by 

integrating the scores obtained during the previous two 

steps (i.e., Apollo's GDT-TS score (Zemla et al., 1999), 

Apollo's MaxSub score (Siew et al., 2000), Apollo's TM-

score (Zhang and Skolnick, 2004), percent of exact 

contacts satisfied, percent of no-contacts satisfied); (4) 

select top 5 models and refine them using 3Drefine 

(Bhattacharya and Cheng, 2013) ; and (5) remodel the top 

5 models using Modeller with contacts as distance 

restraint. The first three steps form the model selection 

process and the last two steps the model refinement 

process, which are described in more details in the two 

sub-sections that follow.   

Contact-Assisted Model Selection 

The task of model quality assessment, or computing the 

accuracy of models in a model pool without knowing the 

native structure, is an important problem in protein 

structure prediction. The programs used for model quality 

assessment are commonly known as Model Quality 

Assessment Programs (MQAPs) (Kihara et al., 2009). 

These programs predict either global quality of the entire 

model, or residue-specific local qualities, or even both. The 

quality assessments of recent pair-wise model comparison 

methods perform well when a significant portion of models 

have reasonably good quality (Wang et al., 2011). Our 

model selection process uses APOLLO, an in-house pair-

wise model quality assessment program. When a pool of 

models is supplied as input to APOLLO, it outputs the 

global qualities in terms of average pair-wise GDT-TS 

scores, average pairwise TM-Scores (Zhang and Skolnick, 

2004), and average MaxSub scores. The principle behind 

APOLLO’s algorithm is that correct regions of the full 3D 

structures are similar in models in the model pool. 

Following this principle, it uses a structure comparison tool 

TM-Score (Zhang and Skolnick, 2004) to perform a full 

pair-wise comparison between all the models. APOLLO 

calculates the average GDT-TS score, MaxSub score and 

TM-score as predicted model quality scores, which were 

used as three terms in our model ranking formula (see 

Equation (1)).  

(1)  

 In addition to APOLLO’s scores, we used two contact 

scores to account for the percent of known contacts (or 

known non-contacts) that a model satisfies. For known 

contacts, it is the number of known contacts present in the 

model divided by total number of given contacts. For 

known non-contacts, it is a negative score whose absolute 

value is what percent of known non-contacts actually 

realized as contacts in the model. The two contact / non-

contact terms and the three APOLLO’s terms were 

summed into a total score to rank input models of a target 

according to the formula in Equation (1).  



Contact Assisted Structure Modeling 

The top five selected models are first refined by 3Drefine 

optimizing a combined physics-based and knowledge-

based energies. To refold the refined models, the contacts 

supplied as input are transformed to distance restrains, and 

the structure modeling program, MODELLER (Eswar et 

al., 2007) is used. Since MODELLER, a program for 

homology or comparative modeling of protein three-

dimensional structures, implements comparative protein 

structure modeling by satisfaction of spatial restraints, 

additional distance restraints can easily be added (Eswar et 

al., 2007). Typically, to make a structure prediction, 

MODELLER requires structure templates along with an 

alignment file that contains the alignment of the input 

sequence aligned with the sequences of the template 

structures. For each prediction, we used the selected model 

as the only template structure and then created an 

alignment file that has the input sequences aligned fully 

with the template sequences (e.g. themselves). The default 

“automodel” modeling protocol in MODELLER was used 

with additional distance restraints derived from provided 

contacts. A residue-residue contact was converted to 8.0 

angstrom mean distance between Cß-Cß atoms (or Ca atom 

in case of GLY residue). The standard deviation of the 

distance is set to 0.1 Angstrom and a harmonic potential 

function was applied to enforce the distance restraint. In 

this way, a refined model was refolded using 

MODELLER, except for target Tc653, which had only 

non-contacts as input. 

Results and Discussions 

The CASP10 targets (either full proteins or domains) and 

the corresponding contact information used to benchmark 

our contact-assisted protein structure prediction method are 

listed in Table 1.  

 In order to evaluate how well our contact-assisted model 

selection method ranked the models, for each target, we 

ranked its input models based on their real GDT-TS score 

obtained by comparing them with the native structures, and 

marked the top 1 model picked by our scoring function 

(see Figure 2). In addition, to check how well the 

components of the scoring function ranked the models, we 

also marked the models picked by these components 

separately. The average correlation between the actual 

GDT-TS scores and the predicted total scores was 0.601 as 

shown in Table 2. 

 Despite the improvement in average correlation, the 

contribution of the contact component in ranking models 

was not consistent. In some case, it ranked a good-quality 

model at the top, but in another case, it may select a low-

quality model at the top (loss is shown in Table 2). Thus, 

how to more effectively use known contacts with other 

model quality assessment methods in model ranking is still 

an issue yet to solve. 

 
Target 

# 

Target # of 

residues 

# of contacts / 

no contacts 

1 T0649 184 16 

2 T0653 383 12 

3 Tc658-D1 166 16 

4 Tc666 180 14 

5 Tc673 62 5 

6 Tc676 173 17 

7 Tc678 154 12 

8 Tc680 96 3 

9 Tc684-D1 73 8 

9 Tc684-D2 168 18 

10 T0691 141 15 

11 Tc705-D2 344 34 

12 Tc717-D2 166 15 

13 Tc719-D6 163 13 

14 Tc734 212 20 

15 Tc735-D1 233 28 

15 Tc735-D2 88 7 

Table 1 Targets in contact-assisted structure modeling category 

in CASP10. For target Tc653 no contacts were provided instead 

of contacts (Source: http://predictioncenter.org/casp10/ 

doc/presentations/CASP10_contact_assisted_BKL.pdf) 

 

Ranking Method Average 

Correlation 

Average 

Loss 

Total Score Formula 0.601 0.088 

APOLLO Component only 0.559 0.087 

Contacts Component only 0.390 0.088 

Table 2 Average correlation column is the Pearson Correlation 

between actual GDT-TS scores and GDT-TS scores ranked by the 

ranking method used. Loss column is the difference between the 

GDT-TS score of the best model and the top 1 model ranked by 

the method used. 

 During the CASP10 prediction season, the last step of 

our method (remodeling with MODELLER) was being 

developed as the CASP experiment was proceeding, and 

was only ready for being applied to the last two targets 

only. Thus, we applied the fully developed method to the 

missed targets to generate the final models again after the 

CASP10 was over in order to evaluate our method. To 

observe the stepwise improvement in the models, we 

compared our refined models (generated in step 4) and the 

re-folded models (generated in step 5) with the native 

structures. As shown in Table 4, the refinement step with 

3DRefine slightly improves the quality of the selected 

models, most of the times, with the average RMSD 

improvement of 0.0035. The final step of using 

MODELLER mostly improves the quality of the model, 

with average RMSD improvement of 2.3027, and 



sometimes the improvement was drastic in terms of 

RMSD.   

Figure 2. Evaluation of the scoring function of ranking models. Y-

axis denotes real GDT-TS scores and X-axis indices of the 

models. Each group of models represents the models for a target, 

ordered according to their real GDT-TS scores. In each group, 

the top models selected by the total score, the APOLLO 

component, and the contact components were marked by three 

legends, respectively. The second group of models does not have 

a highest contact scoring model because only non-contacts were 

provided for this target. 

 

  

 

  

 

 

  

 Despite not being conclusive, the results seem to show 

that using contacts as an additional measure to refold 

models with existing modeling techniques such as 

MODELLER can be a promising approach to embedding a 

few known contacts into existing protein structure 

prediction methods to improve the overall prediction 

accuracy. Here, target Tc735 is analyzed as a case to study 

the potential effectiveness of the contact-assisted 

prediction method. The target Tc735 has two structural 

domains: D1 and D2. We consider the first domain of this 

target (residues 29 - 262) as an example to demonstrate the 

application of our method. As shown in Table 3, 10+% 

improvement is observed in the model quality as the model 

was improved from GDT-TS score of 0.3079 to 0.3498. 

The RMSD of the model was reduced from 17.33 

Angstrom to 7.79 Angstrom. Figure 3 shows that 

remodeling appears to bring some poorly modeled regions 

(e.g. one terminal region is folded inside) closer to the 

native structure. 

Table 3 Stepwise evaluation of the prediction of first domain (D1) 

of Target Tc735. In this example, significant improvement is 

observed in the model quality after remodeling. 

 

 

 

  

Table 4 Evaluation of the top 1 prediction for all targets. Selected Models column shows the RMSD and GDT-TS score of the top 1 

ranked model, selected by our Total Score formula, compared with the native structure. Refined Models column shows the RMSD 

and GDT-TS score of the top 1 ranked model after refinement. Final Improvement column shows the improvement in RMSD and 

GDT-TS after remodeling with MODELLER. Highlighted models are the models sent to the CASP10 competition. Re-modeling 

was not performed for targets Tc653 because no contacts were provided for this target. Targets Tc705, Tc717 and Tc734 were 

missed by mistake during the CASP10 experiment and so were not sent to CASP10. 



Figure 3 Prediction of first domain of target Tc735 using our 

method. (a) model ranked top 1 by our Total Score formula in 

orange superimposed with native structure in dark (b) Same 

structure after refinement in red superimposed with native in dark 

(c) Same structure re-folded using MODELLER with contacts as 

distance restraints superimposed with native in dark. 

Conclusion and Future Works 

In this work, we report a simple structure prediction 

method using a small number of known residue-reside 

contacts / non-contacts to aid protein structure prediction. 

The preliminary results demonstrated that the known 

contacts could be incorporated into existing protein 

structure prediction techniques to improve protein model 

ranking and generation in some situations, suggesting 

contact-assisted protein structure prediction may be a 

promising technique to enhance protein structure 

modeling. We expect that more advanced methods can be 

developed to better use contact information to more 

substantially improve protein structure prediction. 

 We are currently working on using predicted contacts to 

guide ab initio protein structure prediction. For each 

protein target, predicted contacts based energy function 

will be optimized using simulated annealing with energy 

minimization techniques like Powell minimization (Powell, 

1964) as demonstrated in (Marks et al., 2011) and/or 

limited memory BFGS minimization (Nocedal, 1989). We 

also plan to experiment the combination of fragment 

replacement approach for ab initio structure prediction and 

optimization using contact based energy function. Through 

the optimization process, we aim to satisfy as many 

supplied contacts as possible. In addition to the contacts as 

guiding energy function, we plan to use additional 

information like predicted secondary structure in the form 

of distance and angular restraints to improve the quality of 

the models. The completed work described above and the 

work in progress together will demonstrate approaches of 

using contacts information to predict protein 3D structures 

in the field of template-based modeling as well as 

template-free modeling. 
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