Project 2: Hill Climbing and Simulated Annealing to Solve Travel Salesman Problem

Jianlin Cheng
University of Missouri, Columbia
Fall Semester, 2014

Project Groups

Group 1: Jie Hou, Minguan Song, Tuan Trieu, Meng Zhang

Group 2: Abhishek Shah, Mike Phinney, Chao Fang, Matt England

Group 3: Xinjian Yao, Yuxiang Zhang, Rui Xie, Muxi Chen, Xinwei Du

Group 4: Kevin Melkowski, Mary Sheahen, Kristofferson Culmer, Hao Sun

Travel Salesman Problem

Travel Salesperson Problem

- City-City distance data: <u>http://people.sc.fsu.edu/~jburkardt/datasets/</u> cities/cities.html
- Develop a hill-climbing algorithm and a simulated annealing algorithm for the problem

17-City Map

Multi-Dimension Scaling to layout the cites on the 2D map.

Acres (All Control of the Control of

•

and the second s

57-City Map

Discussions

- Two algorithms (SA and Hill Climbing)
- How to improve robustness of algorithms
- How to design good move sets
- Assess the impact of temperature
- Assess the impact of move sets
- Challenges? (time complexity, size of the problem)
- Compare the two algorithms
- Evaluate the two algorithms
- Presentation of results
- Task assignment

Minimize: Eval(Config) = length of tour

MoveSet: 2-change ... k-change

Example: 2-change

3-change Example

