Linear and Integer Programming Project

Jianlin Cheng, PhD
Computer Science Department
University of Missouri, Columbia
Fall, 2014
Problem 1: Network Flow
Network Flow on a Directed Graph

- Source(s) s, sink (consumers) t
- Capacity (bottom number)
- Flow (top number)
- Maximize flow from s to t obeying
 - Capacity constraints on edges
 - Conservation constraints on all nodes other than s, t
Problem 2: Min Cut
Min Cut Problem on a Undirected Graph

- Special nodes s and t
- Each edge e has capacity u_e. Set of edges S has capacity $\sum_{e \in S} u_e$
- Partition vertex set V into S, T where $s \in S$ and $t \in T$
- A cut is the edges (u, v) such that $u \in S$ and $v \in T$

Find a cut with minimum capacity
Discussions

• Use IP & LP to solve the network flow problem
• Use IP to solve the min-cut problem
• Design algorithms (variables, objective, constraints)
• Compare the results of IP and LP
• Implementation (language and tools)
• Evaluation of results
• Visualization of results
• Presentation of Plan (**Wednesday, Nov. 5**)
• Presentation of Results (**next Wednesday, Nov. 12**