Linear and Integer Programming

Jianlin Cheng, PhD
Computer Science Department

University of Missouri, Columbia
Fall, 2013



Reterences

Princeton’s class notes on linear programming
MIT’s class notes on linear programming

Xian Jiaotong University’s class notes on linear
programming

Ohio University’s class notes

Rutgers University’s class notes



Linear Programming

e Essential tool for optimal allocation of scarce
resource among a number of competing

activities
 Powerful and general problem-solving method
- shortest path, max flow, min cost flow

minimum spanning tree



Why Significant?

Fast commercial solvers: CPLEX, OSL

Ranked among most important scientific
advances of 20" century

Also a general tool for attacking NP-hard
optimization problems

Dominates world of industry
- ex: Delta claims saving $100 million per year

using LP



nlications

Apj|
Agriculture: diet problem

Computer science: data mining

Electrical engineering: VLSI design

Energy: blending petroleum products

Environment: water quality management

Finance: portfolio optimization

Logistics: supply-chain management

Management: hotel yield management

Marketing: direct mail advertising

manufacturing: production line balancing

Medicine: radioactive seed placement in cancer treatment
Operation research: airline crew assignment
Telecommunication: network design, internet routing

Sports: scheduling ACC basketball




An Example, Intuitive Understanding
of Linear Programming



Brewery Problem: A Toy LP Example

Small brewery produces ale and beer.
. Production limited by scarce resources: corn, hops, barley malt.
. Recipes for ale and beer require different proportions of resources.

Corn Hops Malt Profit
(pounds) (ounces) (pounds) %)

Beverage

How can brewer maximize profits?
. Devote all resources to ale: 34 barrelsofale = $442.
. Devote all resources to beer: 32 barrels of beer = $736.
. 7.5 barrels of ale, 29.5 barrels of beer - $776.
. 12 barrels of ale, 28 barrels of beer = $800.



CORN BARLEY MALT
480 POUNDS 1.190 POUNDS

Brewery Problem

1

Ale Beer
max 134 + 238 Profit
s.t. BA + 158 < 480  Corn
44 + 4B < 160  Hops
354 + 208 < 1190  Malt vy
A B > 0

-~

5 POUNDS CORN
4 OUNCES HOPS
35 POUNDS MALT

15 POUNDS CORN
4 OUNCES HOPS
20 POUNDS MALT

MOST
PROFITABLE
PRODUCT Mix




Brewery Problem: Feasible Region




Brewery Problem: Objective Function

'""(07'3'?')

(26, 14)

Beer

Profit can be considered as
a series of linear lines having a certain

profit.
Scan the line through the feasible area.
13A + 238 = $1600

13A + 23B = $800

>

(0, O)_? Ale

(34,0)..

13A + 23B = $442



Brewery Problem: Geometry

Brewery problem observation. Regardless of objective function
coefficients, an optimal solution occurs at an extreme point.

Extreme points




Standard Form LP

“Standard form" LP.
- Input: real numbers c;, b;, a;;.

- Output: real numbers x;.

. n=# nonneqative variables, m = # constraints.
- Maximize linear objective function subject to linear inequalities.

Linear. No x2, xy, arccos(x), efc.
Programming. Planning (term predates computer programming).



Brewery Problem: Converting to Standard Form

Original input.

Standard form.
- Add slack variable for each inequality.
. Now a 5-dimensional problem.




Geometry

Geometry.
- Inequalities: halfplanes (2D), hyperplanes.

. Bounded feasible region: convex polygon (2D),
(convex) polytope.

Convex: if aand b are feasible solutions, then so is (a +b) / 2.

Extreme point: feasible solution x that can't be writtenas (a+b) / 2
for any two distinct feasible solutions a and b.

extreme

point -

Convex Not convex



Geometry

Exfreme point property. If there exists an optimal solution to (P),
then there exists one that is an extreme point.

- Only need to consider finitely many possible solutions.

Challenge. Number of extreme points can be exponentiall
. Consider n-dimensional hypercube.

Greed. Local optima are global optima.

. Extreme point is optimal if no
neighboring extreme point is better.




Simplex Algorithm

Simplex algorithm. (George Dantzig, 1947)
. Developed shortly after WWILI in response to logistical problems.
. Used for 1948 Berlin airlift.

Generic qlgor'i-rhm. never decrease objective function

. Start at some extreme point. 1
. Pivot from one extreme point to a neighboring one.
. Repeat until optimal. A

How to implement? Linear algebra.




Another Example, Formulation, and
Proof



Linear Programming

¢ minimize or maximize a linear objective
¢ subject to linear equalities and inequalities

Example. Max is in a pie eating contest that lasts 1
hour. Each torte that he eats takes 2 minutes. Each
apple pie that he eats takes 3 minutes. He receives
4 points for each torte and S points for each pie.
What should Max eat so as to get the most points?

Step 1. Determine the decision variables
e Let x be the number of tortes eaten by Max.
¢ Lety be the number of pies eaten by Max.



Max’s linear program

Step 2. Determine the objective function
Step 3. Determine the constraints

Maximize 2z =4x+ )3y (objective function)

subjectto 2x+ 3y < 60 (constraint)

X>0;y>0 (non-negativity constraints)

A feasible solution satisfies all of the constraints.
X=10,y=10Is feasible; x=10,y =135 1s infeasible.
An optimal solution is the best feasible solution.
The optimal solutionis x =30,y =0.

Lo 3



Terminology

e Decision variables: e.g., X and y.

— In general, these are quantities you can control to improve
your objective which should completely describe the set
of decisions to be made.

e Constraints:e.d.,2Xx+ 3y < 24 ,x>0,y=>0

— Limitations on the values of the decision variables.

e Objective Function. e.g.,4x + Jdy

— Value measure used to rank alternatives
— Seek to maximize or minimize this objective
— examples: maximize NPV, minimize cost



Linear Programs

e A linear function is a function of the form:

e A mathematical program is a /inear program (LP) if the
objective is a linear function and the constraints are
linear equalities or inequalities.

e.g., 3X,+ 4x,-3X, > 7
X1- 2X5 =17

¢ Typically, an LP has non-negativity constraints.



Max’s linear program

Step 2. Determine the objective function
Step 3. Determine the constraints

Maximize 2z =4x+ )3y (objective function)

subjectto 2x+ 3y < 60 (constraint)

X>0;y>0 (non-negativity constraints)

A feasible solution satisfies all of the constraints.
X=10,y=10Is feasible; x=10,y =135 1s infeasible.
An optimal solution is the best feasible solution.
The optimal solutionis x =30,y =0.

Lo 3



Slack Form

minax z=-4x-5y
S.t.2x+3y+w=060
x=0,y=z9,w=0.

minx z =cx
s.t. Ax=5b

x=0.

rank(A4) = m.




Optimal occurs at a vertex!!!

2x+3y <60

!

Feasible domain



What s a vertex?

A point x 1n a polyhadren €2 1s called a vertex
if

x=%(y+z),y,z€§2 = x=y=z.



Fundamental Theorem

LetQ={x | Ax = b, x = 0}.
If min cx over x €2 has an optimal solution,

then 1t can be found 1n vertices of €.



Proof.

Consider an optimal solution x * with maximum number
of zero components among all optimal solutions.

We will show that x *1s a vertex of 2. By contradition,
suppose x *1s not, that is, there exist y, z& €2 such that
x*=(y+z)/2 and x*, y, z are distinct. Since cx™ < ¢y,

cx*<cz,and cx* = (cy+cz)/2, we must have

cx* = cy = cz. This means that y and z are also

optimal solutions. It follows that all feasible points on

lme x*+a(y-x*) are optimal solutions. However, €2 does

. init . :
not contain anlglﬁﬁ'nee. Thus, the line must have a pomt x'

not 1n €2, that is, x' violates at least one constraint.



X’

X’ violates one const



Proof (cont’ s).

Note that for any a, A(x*+a(y-x*)) = b.

Thus, x' cannot violate constraint 4Ax = . Moreover,
for x.* =0, since x*=(y,+z,)/2and y,z, = 0, we

must have z=y.=x, *=0. Therefore, the ith component
of x*+a(y-x*)1s equal to 0 for any . This means that

x' cannot violate constraint x, = 0. Hence, x' must

violate a constraint x; = 0 for some j with x,*>0.

Now, we can easily find an optimal solution between x'
and x*, which has one more zero - component than x*,

a contradiction.



XI

X" has fewer or equal number of 0 terms as
X*. X’ has one negative component, whose value in X* is positive.
As we move from X’ to X* into the feasible region, the component will become 0



Solution Approach

*Find a corner point
—An "initial feasible solution”

Proceed to improved corner points

-Stop when no further improvements are possible



Solution Calculations

*To find a corner point
—it is necessary to solve system of constraint equations

—from linear algebra, this requires working with matrix of
constraint equations, specifically, manipulating the
“determinants”

—Amount of effort set by number of constraints

Thus, number of constraints defines amount of effort

*This is why LP can handle many more decision
variables than constraints



Solution Methods

Simplex
—The textbook method
—For step 2, select improved corners
—Always goes to best corner
—Searches until no further improvement possible
—Inefficient for real problems

—Not used in practice Polyhedron of simplex algorithm in 3D

*Practical methods - many exist - often proprietary
—Step 2 takes many forms
—Each best for different cases
—Very great efficiency possible
—A real art!



Demo of MIT Linear Programming Solver:

http://sourceforge.net/projects/lipside/




LP Duality: Economic Interpretation

Brewer's problem: find optimal mix of beer and ale to maximize profits.

Entrepreneur's problem: Buy individual resources from brewer at
minimum cost.

. C,H, M = unit price for corn, hops, malt.
. Brewer won't agree to sell resources if 5C + 4H + 35M < 13.




LP Duality

Primal and dual LPs. Given real numbers q;;, b, ¢;, find real numbers x;, y;

that optimize (P) and (D).

Duality Theorem (Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947).
If (P) and (D) have feasible solutions, then max = min.

. Special case: max-flow min-cut theorem.
. Sensitivity analysis.



LP Duality: Economic Interpretation

Sensitivity analysiks.
. Q. How much should brewer be willing to pay (marginal price) for
additional supplies of scarce resources?

. A. corn $1, hops $2, malt $0.

. Q. New product "light beer" is proposed. It requires 2 corn, 5
hops, 24 malt. How much profit must be obtained from light beer to
justify diverting resources from production of beer and ale?

. A. Breakeven: 2 ($1)+5 ($2)+ 24 (0$)= $12 / barrel.

How do I compute marginal prices (dual variables)?
. Simplex solves primal and dual simultaneously.
. Top row of final simplex tableaux provides optimal dual solution!



History

1939. Production, planning. (Kantorovich, USSR)
. Propaganda to make paper more palatable to communist censors.

"T want to emphasize again that the greater part of the

problems of which I shall speak, relating to the organization

and planning of production, are connected specifically with the

Soviet system of economy and in the majority of cases do not USSR
arise in the economy of a capitalist society."

"the majority of enterprises work at half capacity. There the
choice of output is determined not by the plan but by the
interests and profits of individual capitalists." USA

. Kantorovich awarded 1975 Nobel prize in Economics for
contributions to the theory of optimum allocation of resources.

. Staple in MBA curriculum.
. Used by most large companies and other profit maximizers.



1939.
1947.
1950.
1979.
1984.
1990.

History

Production, planning. (Kantorovich)
Simplex algorithm. (Dantzig)
Applications in many fields.

Ellipsoid algorithm. (Khachian)
Projective scaling algorithm. (Karmarkar)
Interior point methods.

Current research.

. Approximation algorithms.

. Software for large scale optimization.
. Interior point variants.



Integer Programming

Integer programming is a solution method for many
discrete optimization problems

Programming = Planning in this context
Origins go back to military logistics in WWII (1940s).

In a survey of Fortune 500 firms, 85% of those

responding said that they had used linear or integer

programming.

Why is it so popular?

— Many different real-life situations can be modeled as integer
programs (IPs).

— There are efficient algorithms to solve IPs.



Standard form of integer program (IP)

maximize c,X,+C,x,+...+C X, (objective function)
subject to
aXqtaX,+...+a X, < b, (functional constraints)
a, X +a,nX,*...+a, X < b,

aX+ta X,+...+a X =b_

X4, Xy, ..., X, € Z,  (set constraints)



Standard form of integer program (IP)

 |In vector form:

maximize CcX (objective function)
subjectto Ax =b  (functional constraints)
X € Z." (set constraints)

Input for IP: 1xn vector ¢, mxn matrice A, mx1 vector b.
Output of IP: nx1 integer vector x .

* Note: More often, we will consider
mixed integer programs (MIP),
that is, some variables are integer,
the others are continuous.



(Production Planning-Furniture Manufacturer)

Example of Integer Program

Technological data:

Production of 1 table requires 5 ft pine, 2 ft oak, 3 hrs labor

1 chair requires 1 ft pine, 3 ft oak, 2 hrs labor
1 desk requires 9 ft pine, 4 ft oak, 5 hrs labor
Capacities for 1 week: 1500 ft pine, 1000 ft oak,

20 employees (each works 40 hrs).

Market data:

Find a production schedule for 1 week
that will maximize the profit.

profit demand
table $12/unit 40
chair $5/unit 130
desk $15/unit 30




Production Planning-Furniture Manufacturer:
modeling the problem as integer program

The goal can be achieved
by making appropriate decisions.

First define decision variables:

Let x, be the number of tables to be produced,;
x. be the number of chairs to be produced,;
x4 be the number of desks to be produced.
(Always define decision variables properly!)



Production Planning-Furniture Manufacturer:
modeling the problem as integer program

» Objective is to maximize profit:
max 12x,+ 95X, + 19Xy
» Functional Constraints
capacity constraints:
pine: 5x; + 1x. + 9x, =< 1500
oak: 2x,+ 3x; + 4x4= 1000
labor: 3x, + 2x, + 5x4=< 800
market demand constraints:
tables: x,240
chairs: x.2 130
desks: x,230
» Set Constraints
Xty X5 Xg = Z+




Solutions to integer programs

A solution is an assignment of values to variables.

A feasible solution is an assignment of values to
variables such that all the constraints are satisfied.

The objective function value of a solution is obtained
by evaluating the objective function at the given point.

An optimal solution (assuming maximization) is one
whose objective function value is greater than or equal
to that of all other feasible solutions.

Integer program is NP complete

There are efficient algorithms for finding the optimal
solutions of an integer program based on LP
relaxation.



Next: IP modeling techniques

Modeling techniques:
»Using binary variables
» Restrictions on number of options
» Contingent decisions
»Variables with k possible values

Applications:
» Facility Location Problem
»Knapsack Problem



Example of IP: Facility Location

« A company is thinking about building new facilities in

LA and SF.
 Relevant data:

capital needed

expected profit

1. factory in LA $6M $OM
2. factory in SF $3M $5M
3. warehouse in LA $5M $6 M
4. warehouse in SF $2M $4M

Total capital available for investment: $10M
» Question: Which facilities should be built

to maximize the total profit?




Example of IP: Facility Location

* Define decision variables (i = 1, 2, 3, 4):
1 1f facility i is built
“70 if not
* Then the total expected benefit: 9x,+5x,+6x;+4x,
the total capital needed: 6x,+3x,+5x,+2x,
» Summarizing, the IP model is:
max 9x,+5x,+6x,;+4x,
S.t. 6x,+3x,+5x;+2%x, < 10
X4, Xo, X5, X, DINaAry (ie., x; &0,1})




Knapsack problem

Any IP, which has only one constraint,
is referred to as a knapsack problem .
n items to be packed in a knapsack.
The knapsack can hold up to W Ib of items.
Each item has weight w, Ib and benefit b, .
Goal: Pack the knapsack such that
the total benefit is maximized.



IP model for Knapsack problem

* Define decision variables (i =1, ..., n):
1 if itemiis packed

710 if not

+ Then the total benefit: » b,x, .
the total weight: E W, X,
» Summarizing, the IP model is: =
max Eb X,
S.t. E WX, < W

X; binary (i =1, ..., n)



Connection between the problems

* Note: The version of the facility location
problem is a special case of the knapsack
problem.

» Important modeling skKill:
— Suppose you know how to model Problem A1,...,Ap;
— You need to solve Problem B;
— Notice the similarities between Problems A, and B;

— Build a model for Problem B, using the model for
Problem A, as a prototype.



The Facility Location Problem:
adding new requirements

» Extra requirement:
build at most one of the two warehouses.
The corresponding constraint is:
X3 +X, < 1
» Extra requirement:
build at least one of the two factories.
The corresponding constraint is:
X4 +X, 2 1



Modeling Technique:
Restrictions on the number of options

» Restrictions: At least p and at most g of
the options can be chosen.

* The corresponding constraints are:



Modeling Technique: Contingent Decisions

Back to the facility location problem.

- Requirement: Can’ t build a warehouse unless
there is a factory in the city.

The corresponding constraints are:
X,= X4 (LA)  x,=x, (SF)
- Requirement: Can’ t select option 3 unless
at least one of options 1 and 2 is selected.
The constraint: x5 = x, + X,
- Requirement: Can'’ t select option 4 unless
at least two of options 1, 2 and 3 are selected.
The constraint:  2x, = x, + X, + X



Modeling Technique:
Variables with k possible values

Suppose variable y should take
one of the values d,, d,, ..., d, .
How to achieve that in the model?

Introduce new decision variables. For i=1,... Kk,
(1 1f y takes valued,

0O otherwise

X, = J

1

Then we need the following constraints.
E x, =1 (y can take only one value)

=1

k
y = Edixl. (v should take valued,; if x;, =1)
i=1



Intersection of all the linear (1n)equalities form a convex polytope
* For simplicity, we’ll always assume polytope 1s bounded

feasible



Feasible integer points form a lattice inside the LP polytope




A “good” formulation keeps this region small

\




A “good” formulation keeps this region small

One measure of this 1s the Integrality Gap:
Integrality gap = MAX;, i nces IC[P (I))/(LP(I))



B Rounding non-integer solution values up to the nearest integer
value can result in an infeasible solution.

B A feasible solution is ensured by rounding down non-integer
solution values but may result in a less than optimal (sub-
optimal) solution.



Integer Programming Example
Graphical Solution of Machine Shop Model

Maximize Z = $100x, + $150x, "
subject to: 16
8,000x, + 4,000x, < $40,000

14 -
15x, + 30x, < 200 ft?
: 12 -
Xy X, 2 0 and integer
10 (x,=1, x,=6, z=1,000)

Optimal Solution:
Z = $1,055.56
X, = 2.22 presses
X, = 5.55 lathes

(X, =2, x, =5, z=950)

Objective function

o N A~ OO

I
2 4 6 8 10 12 14 16 x,

Figure 5.1 Feasible Solution Space with Integer Solution Points
Copyright © 2010 Peatson

Education, Inc. Publishing as
Prentice Hall



 Find a maximum-size set of vertices that have no edges between any pair



Vi

{1 if vertex 1 1s in the MIS

0 otherwise

max 2 V;

sty +v <1 V(i,j) EE

V; E{O,l}



Project 4 = Network Elow Problem



Network Flow

» Source(s) s. sink (consumers) t
» Capacity (bottom number)
* Flow (top number)
* Maximize flow from s to t obeying
— Capacity constraints on edges
— Conservation constraints on all nodes other than st



Min Cut Problem

Capacity u,

* Special nodes s and ¢

 Each edge e has capacity u,. Set of edges S has capacity 2 u,
* Partition vertex set V into S, T where sE Sandt €T =

* A cut is the edges (u,v) such that uE SandvET

Find a cut with minimum capacity



Algorithms

* Use IP to solve the network flow problem
* Use IP to solve the min-cut problem



