Markov Chain Monte Carlo Methods

Jianlin Cheng, PhD
Computer Science Department
University of Missouri, Columbia
Fall, 2013

Adapted from Eric Xing’s slides at CMU
Distribution of Random Variables

Random variables: GPA, wage, age, ??

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \]

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
Distribution of multiple variables can be very complicated

- Fever, gender, cough, chest pain, lung cancer
- Alarm, earthquake, burglary, neighbors’ call
- GRE, TOEFL, GPA, gender, ideal job offer
- Color (R, G, B) in an image
- ???

Problem: most likely values, expected values, probability / frequency
Sampling (Simulation)

- Generate data from a distribution

How to sample data from it using a computer?
How to sample a random number between 0 and 1?
Monte Carlo Methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expectations can be approximated using sample-based averages
 \[E[f(x)] = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)}) \]
- **Asymptotically** exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or equally useful, see an example later)?
 - how to know we've sampled enough?
Bayesian Network (BN)

A concise, graphic representation of joint distribution and dependency of a set of variables.
Example: naïve sampling

- Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling: $P(B) = \langle 0.001, 0.999 \rangle$ suppose it is false, B0. Same for E0. $P(A|B0, E0) = \langle 0.001, 0.999 \rangle$ suppose it is false...
2) Frequency counting: In the samples right, $P(J|A0) = P(J,A0)/P(A0) = \langle 1/9, 8/9 \rangle$.

<table>
<thead>
<tr>
<th></th>
<th>E0</th>
<th>B0</th>
<th>A0</th>
<th>M0</th>
<th>J0</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td>J1</td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>B0</td>
<td>A1</td>
<td>M1</td>
<td>J1</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
</tbody>
</table>
Example: naïve sampling

- Construct samples according to probabilities given in a BN.

<table>
<thead>
<tr>
<th></th>
<th>E0</th>
<th>B0</th>
<th>A0</th>
<th>M0</th>
<th>J0</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>B0</td>
<td>A0</td>
<td>M0</td>
<td>J0</td>
<td></td>
</tr>
</tbody>
</table>

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute $P(J|A1)$? we have only one sample ...

4) what if we want to compute $P(J|B1)$? **No such sample available!**
$P(J|A1) = P(J,B1)/P(B1)$ can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner enough samples even after a long time or sampling ...
Monte Carlo Methods

- Direct Sampling
 - We have seen it.
 - Very difficult to populate a high-dimensional state space

- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.

- Likelihood weighting, ... (Importance Sampling)
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.

- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs
Rejection Sampling

- Suppose we wish to sample from dist. $\Pi(X) = \Pi'(X)/Z$.
 - $\Pi(X)$ is difficult to sample, but $\Pi'(X)$ is easy to evaluate
 - Sample from a simpler dist $Q(X)$
 - Rejection sampling
 $x^* \sim Q(X)$, accept x^* w.p. $\Pi'(x^*) / kQ(x^*)$
 - Correctness:
 $p(x) = \frac{[\Pi'(x) / kQ(x)]Q(x)}{\int [\Pi'(x) / kQ(x)]Q(x) dx}$
 $= \frac{\Pi'(x)}{\int \Pi'(x) dx} = \Pi(x)$
 - Pitfall …

What kind of X is more likely accepted?
What is the potential pitfalls of rejection sampling?
Rejection Sampling

- Pitfall:
 - Using $Q = \mathcal{N}(\mu, \sigma_q)$ to sample $P = \mathcal{N}(\mu, \sigma_p)$
 - If σ_q exceeds σ_p by 1%, and dimensional = 1000,
 - The optimal acceptance rate $k = (\sigma_q/\sigma_p)^a \approx 1/20,000$
 - Big waste of samples!
Importance sampling

- Suppose sampling from $P(\cdot)$ is hard.
- Suppose we can sample from a "simpler" proposal distribution $Q(\cdot)$ instead.
- If Q dominates P (i.e., $Q(x) > 0$ whenever $P(x) > 0$), we can sample from Q and reweight:

\[
\langle f(X) \rangle = \int f(x)P(x)dx \\
= \int f(x) \frac{P(x)}{Q(x)} Q(x)dx \\
\approx \frac{1}{M} \sum_m f(x^m) \frac{P(x^m)}{Q(x^m)} \quad \text{where } x^m \sim Q(X) \\
= \frac{1}{M} \sum_m f(x^m)w^m
\]
Importance Sampling

The Distribution of real data
The Upper bound of distribution
The random samples that are generated
Question

• What is the main difference between rejection sampling and importance sampling?
Markov Chain Monte Carlo (MCMC)

- Importance sampling does not scale well to high dimension
- MCMC is an alternative
- Construct a Markov chain whose stationary distribution is the target density \(P(X) \)
- Run for T samples until the chain converges / mixes / reaches stationary distribution
- Then collect M samples.
- Key issues: designing proposals so that the chain mixes rapidly, diagnosing convergence.
Markov Chains

- **Definition:**
 - Given an n-dimensional state space
 - Random vector $\mathbf{X} = (x_1, \ldots, x_n)$
 - $x^{(t)} = x$ at time-step t
 - $x^{(t)}$ transitions to $x^{(t+1)}$ with prob
 \[P(x^{(t+1)} | x^{(t)}, \ldots, x^{(1)}) = T(x^{(t+1)} | x^{(t)}) = T(x^{(t)} \rightarrow x^{(t+1)}) \]

- **Homogenous:** chain determined by state $x^{(0)}$, fixed *transition kernel* T (rows sum to 1)

- **Equilibrium:** $\pi(x)$ is a *stationary (equilibrium) distribution* if
 \[\pi(x') = \sum_x \pi(x) \cdot T(x \rightarrow x'). \]
 i.e., is a left eigenvector of the transition matrix $\pi^T T = \pi^T T$.

\[
\begin{pmatrix}
0.25 & 0 & 0.75 \\
0.2 & 0.5 & 0.3 \\
0.5 & 0.5 & 0
\end{pmatrix}
\]
Another example of Markov Chain?
Markov Chain Examples
Markov Chains

- An MC is **irreducible** if transition graph connected
- An MC is **aperiodic** if it is not trapped in cycles
- An MC is **ergodic** (regular) if you can get from state x to x' in a finite number of steps.
- **Detailed balance:** $\text{prob}(x^{(t)} \rightarrow x^{(i-1)}) = \text{prob}(x^{(t-1)} \rightarrow x^{(t)})$

$$p(x^{(t)})T(x^{(t-1)} | x^{(t)}) = p(x^{(t-1)})T(x^{(t)} | x^{(t-1)})$$

summing over $x^{(t-1)}$

$$p(x^{(t)}) = \sum_{x^{(t-1)}} p(x^{(t-1)})T(x^{(t)} | x^{(t-1)})$$

- Detailed bal \rightarrow stationary dist exists
Markov Chain Examples

Irreducible?

Aperiodic?

Ergodic?

Detailed balance?
Metropolis-Hastings

- Treat the target distribution as stationary distribution
- Sample from an easier proposal distribution, followed by an acceptance test
- This induces a transition matrix that satisfies detailed balance

- MH proposes moves according to $Q(x'|x)$ and accepts samples with probability $A(x'|x)$.
- The induced transition matrix is $T(x \rightarrow x') = Q(x'|x)A(x'|x)$
- Detailed balance means
 \[\pi(x)Q(x'|x)A(x'|x) = \pi(x')Q(x|x')A(x|x') \]
- Hence the acceptance ratio is
 \[A(x'|x) = \min \left(1, \frac{\pi(x')Q(x|x')}{\pi(x)Q(x'|x)} \right) \]
MCMC algorithm

1. Initialize $x^{(0)}$
2. While not mixing // burn-in
 - $x = x^{(t)}$
 - $t += 1$,
 - sample $u \sim \text{Unif}(0,1)$
 - sample $x^* \sim Q(x^* | x)$
 - if $u < A(x^* | x) = \min \left(1, \frac{\pi(x^*)Q(x | x^*)}{\pi(x)Q(x^* | x)} \right)$
 - $x^{(t)} = x^*$ // transition
 - else
 - $x^{(t)} = x$ // stay in current state
 - Reset $t=0$, for $t = 1:N$
 - $x(t+1)) \leftarrow \text{Draw sample } (x(t))$
MCMC Example

\[\varphi(x^* | x) \sim N(x^{(i)}, 100) \]

\[\rho(x) \sim 0.3 \exp(-0.2x^2) + 0.7 \exp(-0.2(x-10)^2) \]
Summary of MH

- Random walk through state space
- Can simulate multiple chains in parallel
- Much hinges on proposal distribution Q
 - Want to visit state space where $p(X)$ puts mass
 - Want $A(x^*|x)$ high in modes of $p(X)$
 - Chain mixes well
- Convergence diagnosis
 - How can we tell when burn-in is over?
 - Run multiple chains from different starting conditions, wait until they start “behaving similarly”.
 - Various heuristics have been proposed.
Gibbs Sampling is a Special Case of MH

- Gibbs sampling is a special case of MH
- The transition matrix updates each node one at a time using the following proposal:
 \[Q((x_i, x_{-i}) \rightarrow (x'_i, x_{-i})) = p(x'_i | x_{-i}) \]
- This is efficient since for two reasons
 - It leads to samples that is always accepted
 \[A((x_i, x_{-i}) \rightarrow (x'_i, x_{-i})) = \min \left(1, \frac{p(x'_i, x_{-i}) Q((x'_i, x_{-i}) \rightarrow (x_i, x_{-i}))}{p(x_i, x_{-i}) Q((x_i, x_{-i}) \rightarrow (x'_i, x_{-i}))} \right) \]
 \[= \min \left(1, \frac{p(x'_i | x_{-i}) p(x_{-i}) p(x_i | x_{-i})}{p(x_i | x_{-i}) p(x_{-i}) p(x'_i | x_{-i})} \right) = \min(1,1) \]
 Thus
 \[T((x_i, x_{-i}) \rightarrow (x'_i, x_{-i})) = p(x'_i | x_{-i}) \]
 - It is efficient since \(p(x'_i | x_{-i}) \) only depends on the values in \(X_i \)'s Markov blanket
Gibbs Sampling

- Gibbs sampling is an MCMC algorithm that is especially appropriate for inference in graphical models.

- The procedure
 - we have variable set $X = \{x_1, x_2, x_3, \ldots, x_N\}$ for a GM
 - at each step one of the variables X_i is selected (at random or according to some fixed sequences), denote the remaining variables as X_{-i}, and its current value as $x_{-i}^{(t-1)}$
 - Using the "alarm network" as an example, say at time t we choose X_E and we denote the current value assignments of the remaining variables, X_{-E}, obtained from previous samples, as $x_E^{(t-1)} = \{x_B^{(t-1)}, x_A^{(t-1)}, x_J^{(t-1)}, x_M^{(t-1)}\}$
 - the conditional distribution $p(X_i \mid x_{-i}^{(t-1)})$ is computed
 - a value $x_i^{(t)}$ is sampled from this distribution
 - the sample $x_i^{(t)}$ replaces the previous sampled value of X_i in X_i
 - i.e., $X^{(t)} = x_E^{(t-1)} \cup x_i^{(t)}$
Gibbs Sampling of an Alarm Network

- To calculate $P(J|B1,M1)$
- Choose $(B1,E0,A1,M1,J1)$ as a start
- **Evidences** are $B1$, $M1$, variables are A, E, J.
- Choose next variable as A
- Sample A by $P(A|MB(A))=P(A|B1,E0,M1,J1)$ suppose to be false.
- $(B1,E0,A0,M1,J1)$
- Choose next random variable as E, sample $E \sim P(E|B1,A0)$
- ...
A General Gibbs Sampling Algorithm

• Given a target distribution \(p(X) \), where \(X = (x_1, x_2, \ldots, x_D) \).

• Criterion: (1) have an analytic (mathematical) expression for the conditional distribution of each variable given all other variables. \(P(x_i \mid x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_D) \).

• (2) Be able to sample a variable from each conditional distribution
• Set $t = 0$
• Generate an initial state $X^{(0)}$
• Repeat until $t = M$

 set $t = t + 1$

 for each dimension $i = 1 \ldots D$

 draw x_i from $P(x_i \mid x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_D)$.

Gibbs Sampling for Gaussian Distribution

\[f_x(x_1, \ldots, x_k) = \frac{1}{\sqrt{(2\pi)^k|\Sigma|}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right), \]

\[f(x, y) = \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1 - \rho^2}} \exp \left(-\frac{1}{2(1 - \rho^2)} \left[\frac{(x - \mu_x)^2}{\sigma_x^2} + \frac{(y - \mu_y)^2}{\sigma_y^2} - \frac{2\rho(x - \mu_x)(y - \mu_y)}{\sigma_x \sigma_y} \right] \right) \]

\[\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}. \]

\[p(x) = \mathcal{N}(\mu, \Sigma) \]

with mean

\[\mu = [\mu_1, \mu_2] = [0, 0] \]

and covariance

\[\Sigma = \begin{bmatrix} 1 & \rho_{12} \\ \rho_{21} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix} \]
Conditional Sampling

\[p(x_1 | x_2^{(t-1)}) = \mathcal{N}(\mu_1 + \rho_{21}(x_2^{(t-1)} - \mu_2), \sqrt{1 - \rho_{21}^2}) \]

and

\[p(x_2 | x_1^{(t)}) = \mathcal{N}(\mu_2 + \rho_{12}(x_1^{(t)} - \mu_1), \sqrt{1 - \rho_{12}^2}) \]
% EXAMPLE: GIBBS SAMPLER FOR BIVARIATE NORMAL
rand('seed',12345);
nSamples = 5000;
mu = [0 0]; % TARGET MEAN
rho(1) = 0.8; % rho_21
rho(2) = 0.8; % rho_12

% INITIALIZE THE GIBBS SAMPLER
propSigma = 1; % PROPOSAL VARIANCE
minn = [-3 -3];
maxx = [3 3];

% INITIALIZE SAMPLES
x = zeros(nSamples,2);
x(1,1) = unifrnd(minn(1), maxx(1));
x(1,2) = unifrnd(minn(2), maxx(2));
dims = 1:2; % INDEX INTO EACH DIMENSION

% RUN GIBBS SAMPLER
for t = 1
 while t < nSamples
 t = t + 1;
 T = [t-1,t];
 for iD = 1:2 % LOOP OVER DIMENSIONS
 nIX = dims-iD; % *NOT* THE CURRENT DIMENSION
 % CONDITIONAL MEAN
 muCond = mu(iD) + rho(iD)*(x(T(iD),nIX)-mu(nIX));
 % CONDITIONAL VARIANCE
 varCond = sqrt(1-rho(iD)^2);
 % DRAW FROM CONDITIONAL
 x(t,iD) = normrnd(muCond, varCond);
 end
 end
 % DISPLAY SAMPLING DYNAMICS
 figure;
 h1 = scatter(x(:,1),x(:,2),'r.');
 % CONDITIONAL STEPS/SAMPLES
 hold on;
 for t = 1:50
 plot(x(t,1),x(t+1,1),x(t,2),x(t,2),'k-');
 plot(x(t+1,1),x(t+1,1),x(t+2),x(t+2,2),'k-');
 end
 h2 = plot(x(t+1,1),x(t+1,2), 'ko');
 h3 = scatter(x(1,1),x(1,2),'go','Linewidth',3);
 legend([h1,h2,h3],{'Samples','1st 50 Samples','x(t=0)'}, 'Location', 'Northwest')
 hold off;
xlabel('x_1');
ylabel('x_2');
axis square
Gibbs Sampling Example

http://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler/
Good Chains
Bad Chains

Met. with Proposal Unif(x-0.1,x+0.1)

The wall

No mixing yet!!
Reading Assignment

• C. Andrieu et al. An Introduction of MCMC for machine learning.

• Write a half-page summary

• Due August 28 (Wednesday)
A Real-World Optimization Problem

• Find the common substring in multiple DNA sequences
• Gibbs sampling approach
• Your group info (5 – 6 students) to me by August 30 (Friday).