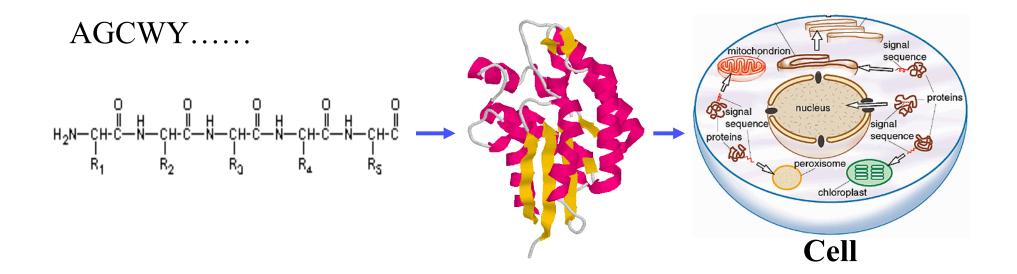
Statistical Machine Learning Methods for Bioinformatics IV. Neural Network Applications in Bioinformatics


> Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia 2010

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.

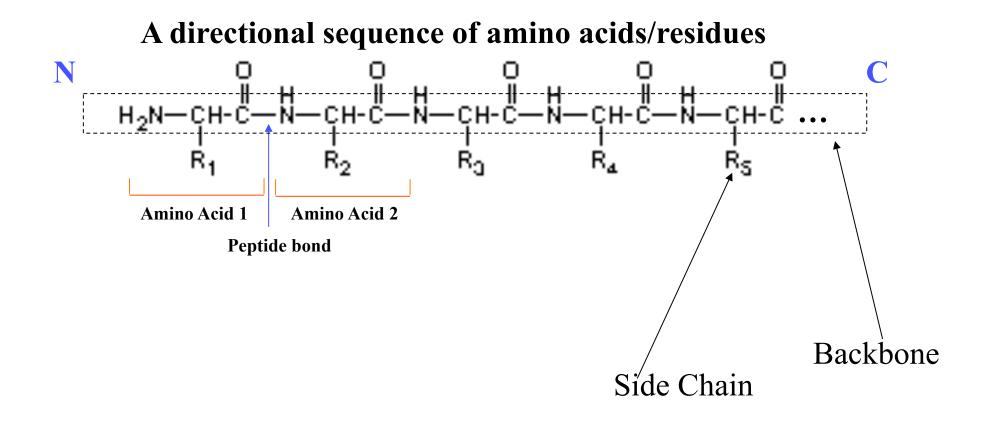
Neural Network Application in Bioinformatics

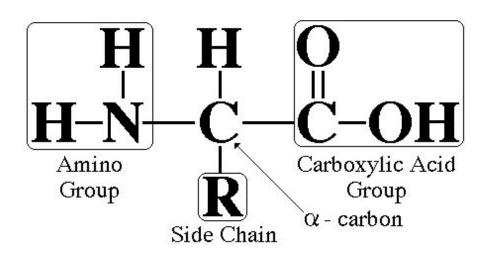
- Neural network is one of the most widely used methods in bioinformatics.
- It is used in gene structure prediction, protein structure prediction, gene expression data analysis, ... Almost anywhere when you need to do classification.
- Here we specifically focus on applying neural networks to protein structure prediction (secondary structure, solvent accessibility, disorder region, contact map).

Sequence, Structure and Function

Protein Sequence – Primary Structure

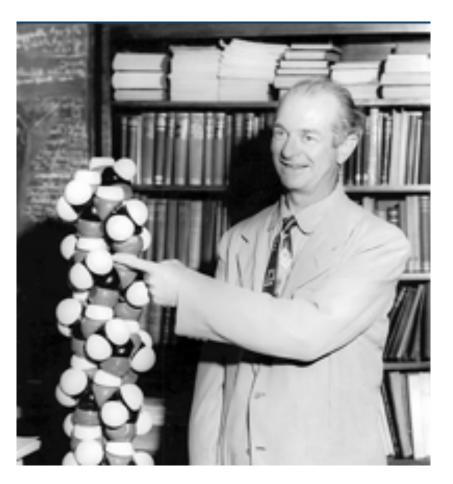
- The first protein was sequenced by Frederick Sanger in 1953.
- Twice Nobel Laureate (1958, 1980) (other: Curie, Pauling, Bardeen).
- Determined the amino acid sequence of insulin and proved proteins have specific primary structure.



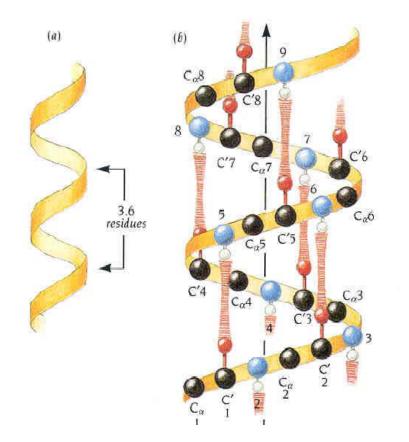

A chain (21 amino acids)

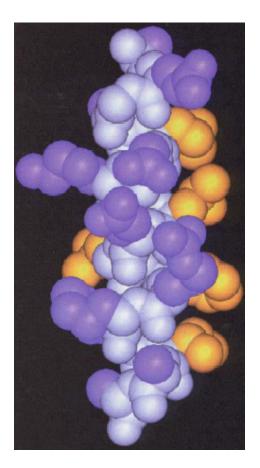
B chain (30 amino acids)

Amino Acid Structure

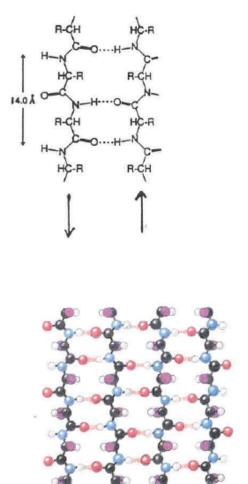

Amino Acids

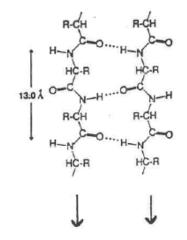
Amino acid	Abbrev.	Side chain	Hydro- phobic	Polar	Charged	Small	Tiny	Aromatic or Aliphatic	van der Waals volume	Codon	Occurrence in proteins (%)
Alanine	Ala, A	-CH ₃	x	-	-	X	х	-	67	GCU, GCC, GCA, GCG	7.8
Cysteine	Cys, C	-CH ₂ SH	x	-	-	X	-		86	UGU, UGC	1.9
Aspartate	Asp, D	-CH2COOH	-	х	negative	x	-	-	91	GAU, GAC	5.3
Glutamate	Glu, E	-CH2CH2COOH	-	X	negative		-	-	109	GAA, GAG	6.3
Phenylalanine	Phe, F	-CH2C6H5	x	-	-	-	-	Aromatic	135	UUU, UUC	3.9
Glycine	Gly, G	-H	х	-	-	x	к	-	48	GGU, GGC, GGA, GGG	7.2
Histidine	His, H	-CH2-C3H3N2	-	X	positive	-	-	Aromatic	118	CAU, CAC	2.3
Isoleucine	lle, I	-CH(CH3)CH2CH3	x	-	-	-	-	Aliphatic	124	AUU, AUC, AUA	5.3
Lysine	Lys, K	-(CH ₂) ₄ NH ₂	-	X	positive	-	-	-	135	AAA, AAG	5.9
Leucine	Leu, L	-CH2CH(CH3)2	x	-	-	-	-	Aliphatic	124	UUA, UUG, CUU, CUC, CUA, CUG	9.1
Methionine	Met, M	-CH2CH2SCH3	×	-	-	-	-	-	124	AUG	2.3
Asparagine	Asn, N	-CH2CONH2	-	х	-	х	-	-	96	AAU, AAC	4.3
Proline	Pro, P	-CH2CH2CH2-	x	-	-	X	-	-	90	CCU, CCC, CCA, CCG	5.2
Glutamine	GIn, Q	-CH2CH2CONH2	-	X	-	-	-	-	114	CAA, CAG	4.2
Arginine	Arg, R	-(CH ₂) ₃ NH-C(NH) NH ₂	-	х	positive	-	-		148	CGU, CGC, CGA, CGG, AGA, AGG	5.1
Serine	Ser, S	-CH ₂ OH	-	х	-	x	x		73	UCU, UCC, UCA, UCG, AGU,AGC	6.B
Threonine	Thr, T	-CH(OH)CH ₃	х	х	-	x	-	-	93	ACU, ACC, ACA, ACG	5.9
Valine	Val, V	-CH(CH3)2	×	-	-	X	-	Aliphatic	105	GUU, GUC, GUA, GUG	6.6
Tryptophan	Trp, W	-CH2C8H6N	x	-	-	-	-	Aromatic	163	UGG	1.4
Tyrosine	Tyr, Y	-CH2-C8H4OH	х	к	-	-	-	Aromatic	141	UAU, UAC	3.2


Hydrophilic

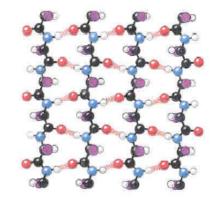

Protein Secondary Structure

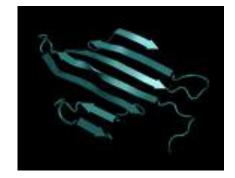
- Determined by hydrogen bond patterns
- 3-Class categories: alpha-helix, betasheet, loop (or coil)
- First deduced by Linus Pauling et al.

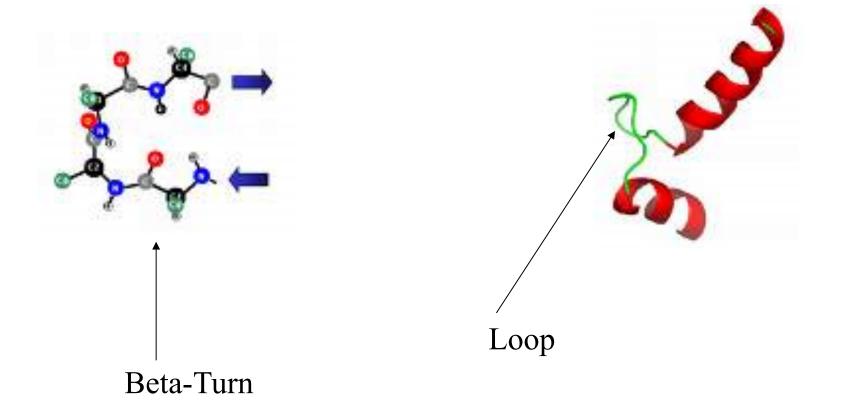

Alpha-Helix



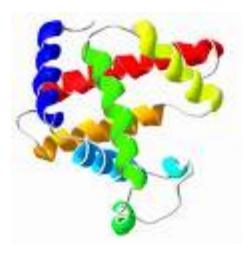
Jurnak, 2003

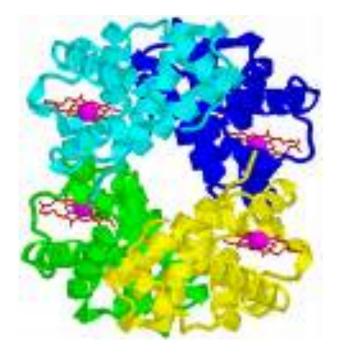

Beta-Sheet


Anti-Parallel



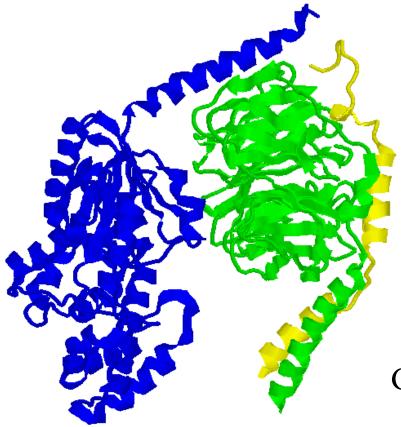
Non-Repetitive Secondary Structure




Tertiary Structure

- John Kendrew et al., Myoglobin
- Max Perutz et al., Haemoglobin
- 1962 Nobel Prize in Chemistry

Perutz Kendrew

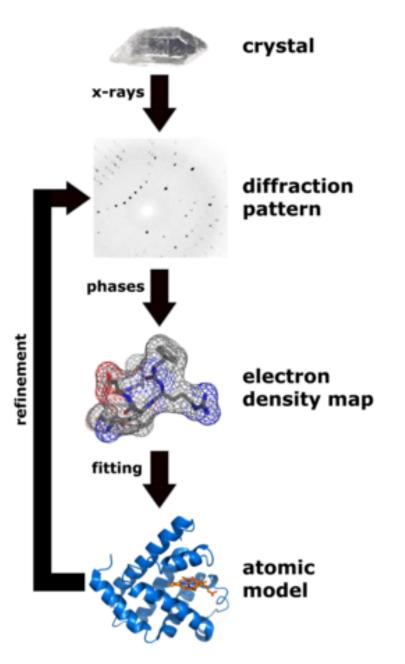


haemoglobin

myoglobin

Quaternary Structure: Complex

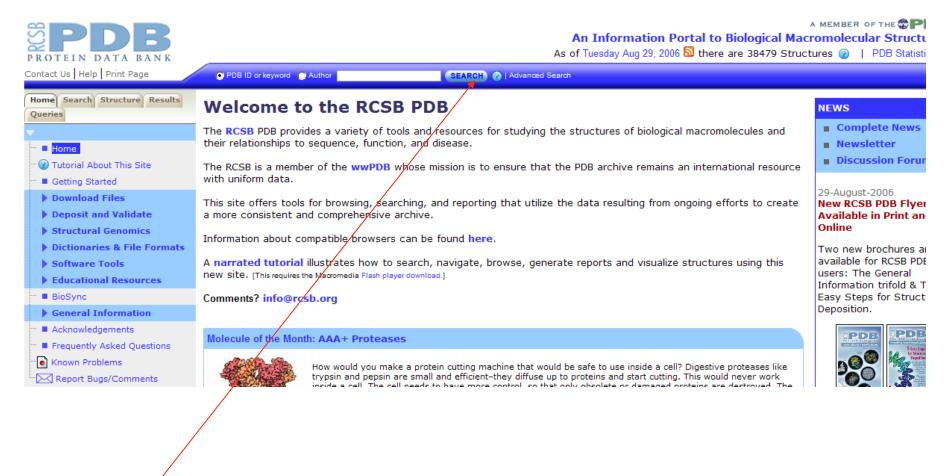
G-Protein Complex


Anfinsen's Folding Experiment

- Structure is uniquely determined by protein sequence
- Protein function is determined by protein structure

Protein Structure Determination

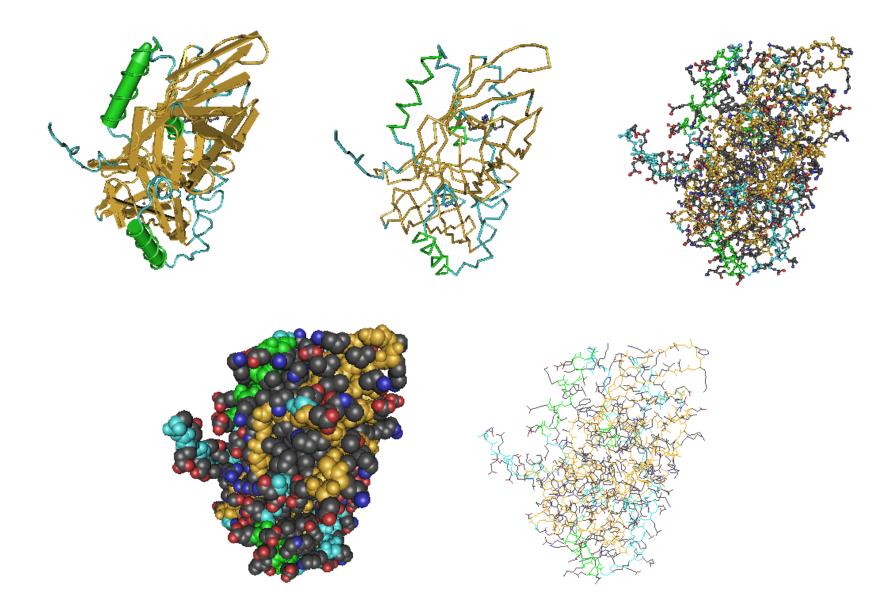
- X-ray crystallography
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- X-ray: any size, accurate (1-3 Angstrom (10⁻¹⁰ m)), sometime hard to grow crystal
- NMR: small to medium size, moderate accuracy, structure in solution



Wikipedia, the free encyclopedia

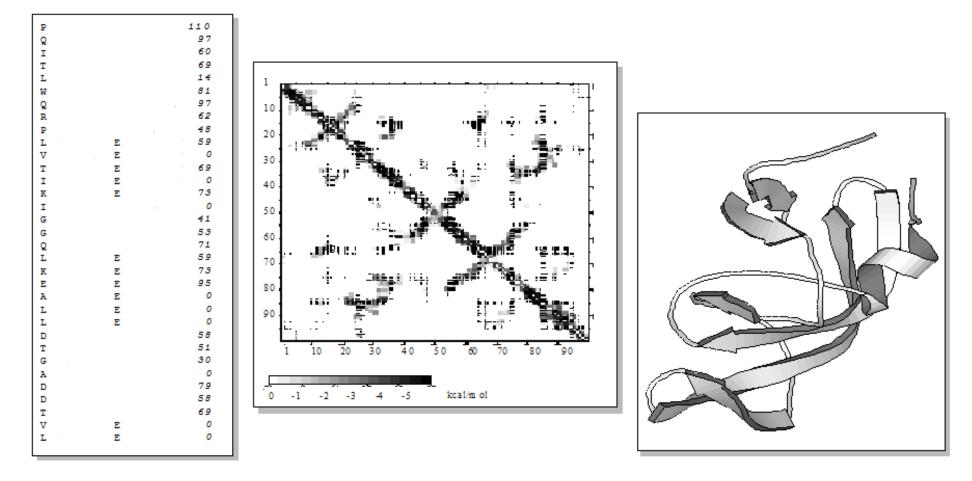
Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample.
Wikipedia, the free encyclopedia

Storage in Protein Data Bank



Search database

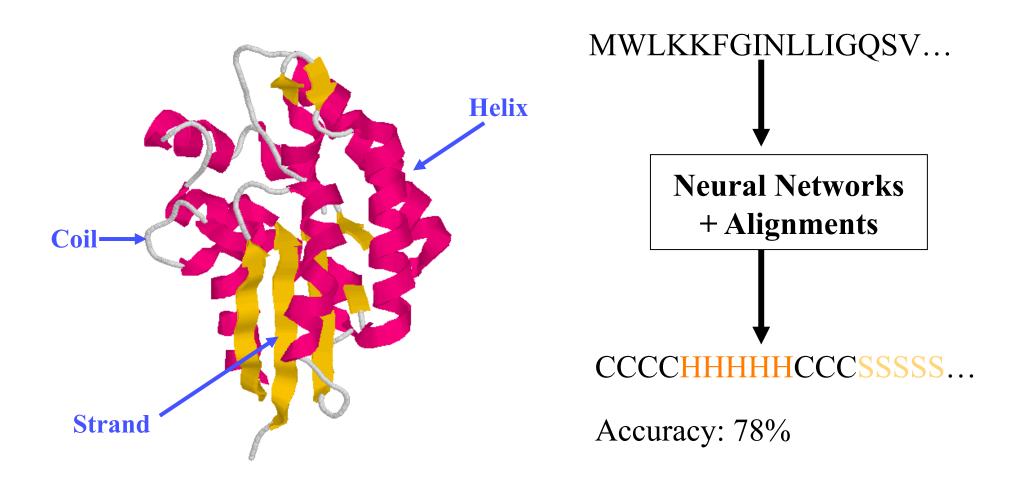
RCSB PDB : Structure Explorer - Mozilla Eile Edit View Go Bookmarks Tools	Firefox Help									<u>_ 8 ×</u>
🗘 • 🖒 - 🎅 🛞 🏠 📼 h	ttp://www.rcsb.org/pdb/na	vbarsearch.do?newSea	rch=yes&isAuth	orSearch=no&r	adioset=All&input	QuickSearch=	1vjg&image.x=0∈	age.y=0ℑ=Sear	rch 🔽 🖸 Go 💽	
Google - pdb	💌 🔶 🔀 Search 👻 🗧	💋 PageRank 🕸 Cheo	k 🔹 👯 AutoL	ink 🔚 AutoFil	Options 🔞	👂 🙆 pdb				
PROTEIN DATA BANK	PDB ID or keyword	Cl Author		CEARCH	Advanced S	As of Tues			A MEMBER OF THE gical Macromolecular Struct 9323 Structures @ PDB Stat	tures
Home Search Structure Queries	Structure Summary		Matorials P			×	9			
▼ ■ 1VJG	Structure Summary	blology & chemistry	Platerials	Themous Se	quence Detail	deometry		1VJG 🗎	Images and Visualization	
Download Files FASTA Sequence Display Files	Title Authors	Crystal structure Joint Center for				mily from N	lostoc sp. at 2.0	01 A resolution	Biological Molecule	
Display Files Display Molecule Structural Reports	Primary Citation	Joint Center for family from Nostoc	Structural (sp. at 2.01 A re	Genomics (J esolution To L	CSG) Crystal be published	structure of (outative lipase fro	m the G-D-S-L	F	
 Structure Analysis Help 	History	Deposition 2004-	02-19 Rele	ase 2004-03	3- 1 6				Nor Nor	
	Experimental Method	Type X-RAY DIFF	RACTION	Data 🗎 🛛 E)S]					
	Parameters	Resolution[Å] 🚝 2.01	R-Valu 0.175	e (obs.)	R-Free 0.218		Space Group P 3 ₂ 2 1			
	Unit Cell	Length [Å] Angles [°]	a alpha	56.19 90.00	b beta	56.19 90.00	c gamma	129.32 120.00	Display Options	
	Molecular Description Asymmetric Unit	Polymer: 1 Molect	ile: putative	lipase from t	he G-D-S-L f	amily Chai	ns: A		KiNG Jmol WebMol Protein Workshop QuickPDB	
	Functional Class	Structural Geno	nics Unkno	wn Function					All Images	
	So	urce Polymer: 1	Scientific Na	me: Nostoc	sp. pcc 712(🗩 Com	mon Name: Bac	teria Expression	system: Nostoc sp. pcc 7120	
Done										<u>.</u>
		2 CAP5937	eid	es13	<u>e</u> sli	es1] 🤩 Ri	SB PDB : Structure		10:42 AM Monday


Search protein 1VJG

SEQRES	1 A 2	1 GLY IL	ד איז ד	GUL GUN	CVS CVS	THR SER	TTE CY	S SED	TEII	
SEQRES					TYR CYS		ILE CI	J DER	LE0	
SEQRES						GLY SER 1	ите тв		CLI	
~				LEU VAL	CIS GLY	GLU ARG	GLY PR	IE PHE	TYR	
SEQRES		9 THR PRO								
FORMUL	3 HOH	*31(H2 ()1)							
HELIX	1 1 G	LYA 1	CYS .	A 7	1					7
HELIX	2 2 S	ER A 12	ASN .	A 18	1					7
HELIX	3 3 G	LYB 8	GLY	B 20	1					13
HELIX	4 4 G	LU B 21	GLY	B 23	5					3
SSBOND	1 CYS A	. 6 (YS A	11				1555	1555	
SSBOND	2 CYS A	. 7 (YS B	7				1555	1555	
SSBOND	3 CYS A	20 (YS B	19				1555	1555	
CRYST1	78.608	78.608	78.6	08 90.0	00.00	90.00	I 21 3	3	24	
ORIGX1	1.00	0000 0.00	00000	0.00000	00	0.00000				
ORIGX2	0.00		00000	0.00000	00	0.00000				
ORIGX3	0.00	0000 0.00	00000	1.00000	00	0.00000				
SCALE1	0.01	2721 0.00	00000	0.00000	00	0.00000				
SCALE2	0.00	0000 0.01	2721	0.00000	00	0.00000				
SCALE3			00000	0.01272		0.00000				
ATOM	1 N	GLY A 1			26.807		1.00	24.82		N
ATOM	2 CA	GLY A 1	L	45.123	27.787	12.967	1.00	24.93		С
ATOM	3 C		L	43.756				25.16		С
ATOM	4 0	GLY A 1		43.107		13.438		25.00		0
ATOM	5 N	ILE A 2	2	43.313		14.323		25.21		N
ATOM	6 CA		2	42.050				25.39		С
ATOM	7 C		2	40.818		14.200		25.69		С
ATOM	8 0		2	39.935		14.635		25.56		ō
ATOM	9 CB		2	41.816	29.917	15.917		25.39		č
	5 00		-				2.00	20.05		

J. Pevsner, 2005

1D, 2D, 3D Structure Prediction


1D

2D

B. Rost, 2005

1D: Secondary Structure Prediction

Pollastri et al. Proteins, 2002. Cheng et al.. NAR, 2005

How to Use Neural Network to Predict Secondary Structure

- Create a data set with input sequences (x) and output labels (secondary structures)
- Encode the input and output to neural network
- Train neural network on the dataset (training dataset)
- Test on the unseen data (test dataset) to estimate the generalization performance.

Create a Data Set

- Download proteins from Protein Data Bank
- Select high-resolution protein structures (<2.5 Angstrom, determined by X-ray crystallography)
- Remove proteins with chain-break (Ca-Ca distance > 4 angstrom)
- Remove redundancy (filter out very similar sequences using BLAST)
- Use DSSP program (Kabsch and Sander, 1983) to assign secondary structure to each residue.

Train and Test

- Use one data set as training dataset to build neural network model
- Use another data set as test dataset to evaluate the generalization performance of the model
- Sequence similarity any two sequences in test and training dataset is less than 25%.

Create Inputs and Outputs for Feed-Forward NN for a Single Sequence

Protein Sequence:

MWLKKFGINLLIGQSVQTRSWYYCKRA

SS Sequence:

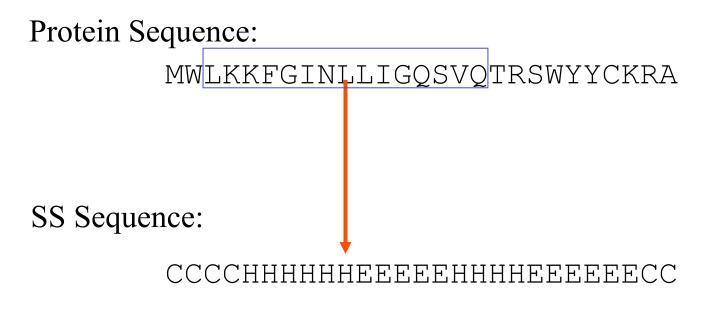
How to encode the input for each position? How to encode the output for each position?

ССССННННННЕЕЕЕЕННННЕЕЕЕЕЕСС

Create Inputs and Outputs for Feed-Forward NN for a Single Sequence

Protein Sequence:

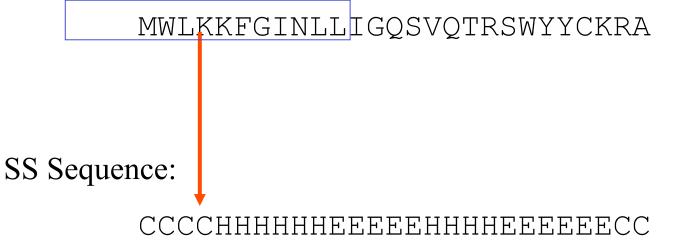
MWLKKFGINLLIGQSVQTRSWYYCKRA


Use 20 inputs of 0s and 1s for each amino acid Use 3 inputs to encode the SS alphabet

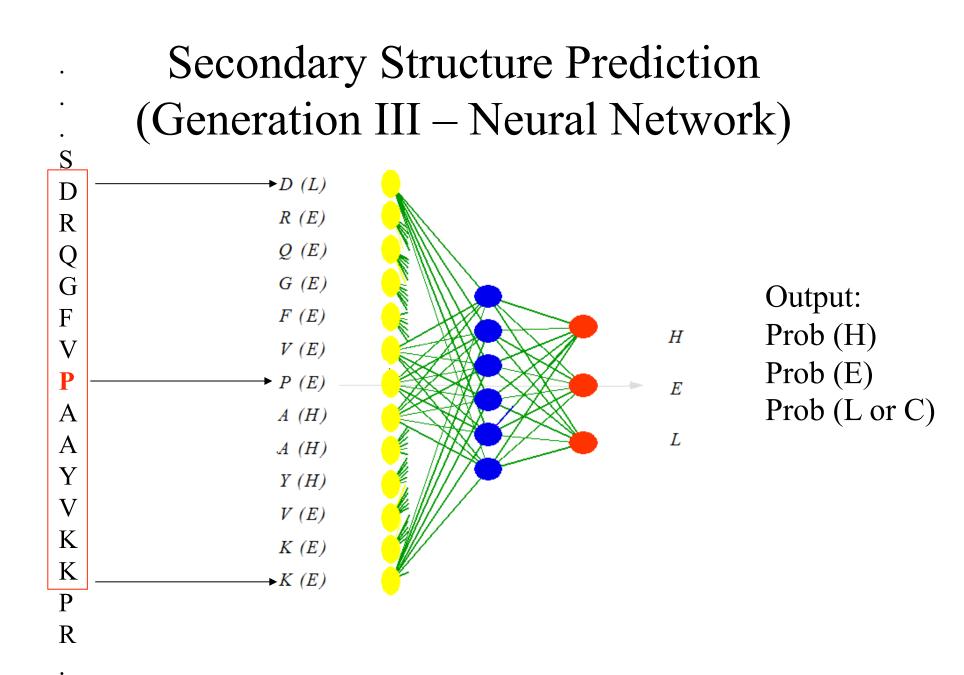
SS Sequence:

ССССННННННЕЕЕЕЕННННЕЕЕЕЕСС

100: Helix, 010: Extended strand, 001: Coil Similarly for 20 different amino acids



Total number of inputs is window size (l) * 20. *l* is a parameter to tune.


Use an Extra Input to Account for Nand C- Terminal Boundary

Protein Sequence:

Add an extra input for each position to indicate if it is out of the boundary of the sequence.

Total number of inputs is window size (l) * 21. *l* is a parameter to tune.

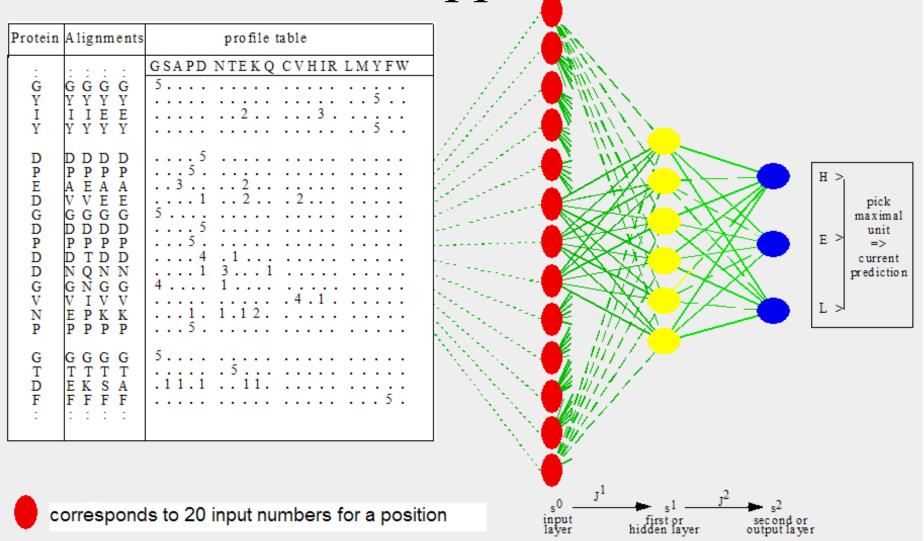
B. Rost, 2005

Evolutionary Information is Important

- Single sequence yields accuracy below 70%.
- Use all the sequences in the family of a query sequence can improve accuracy to 78%.
- Structure is more conserved than sequence during evolution. The conservation and variation provides key information for secondary structure prediction.

Second Breakthrough: Evolutionary Information - Profile

1 1


1	Ļ	Ļ	↓	50
fyn human VTLFVALYI	DY EARTEDDLSF	HKGEKF QILN	SSEGDWW EAR	SLTTGETG YI
yrk chick VTLFIALY	DY EARTEDDLSF	OKGEKF HIIN	NTEGDWWEAR	SLSSGATG YI
fgr human VTLFIALY	DY EARTEDDLTF	TKGEKF HILN	NTEGDWWEAR	SLSSGKTGCI
yes chick VTVFVALY	DY EARTTDDLSF	KKGERF QIIN	NTEGDWWEAR	SIATGKTG YI
src_avis2 VTTFVALY	DY ESRTETDLSF	KKGERLQIVN	NTEG DWW LAH	SLTTGQTG YI
src_aviss VTTFVALY				
src_avisr VTTFVALY				
<pre>src_chick VTTFVALYI</pre>				
stk_hydat VTIFVALYI				
src_rsvpa	. ESRIETDLSF	KKRERLQIVN	NTEGTWW LAH	SLTTGQTG YI
hck_humanIVVALYI				
blk_mouseFVVALFI				
hck_mouse .TIVVALY	DY EATHREDLSF	QKGDQMVVLE	.EAGEWWKAR	SLATKKEG YI
lyn_humanIVVALYI	PY DGIHPDDLSF	KKGEKMKVLE	.EHGEWWKAK	SLLTKKEG FI
lck_humanLVIALH				
ss81_yeastALYI	PY DADDD deISF	EQNEILQVSD	.IEGRWWKAR	R.ANGETG II
abl_mouseLFVALY	DF VASGDNTLSI	TKGEKL RVLG	YnngEWC EAQ	TKNGQGWV
abl 1_humanLFVALYI	DF VASGDNTLSI	TKGEKL RVLG	YnnGEWC EAQ	TKNGQG WV
<pre>src1_dromeVVV SLY]</pre>	DY KSRDE SDLSF	MKGDRMEVID	DTESDWW RVV	NLTTRQEG LI
mysd_dicdiALY]				
yfj4_yeastVALY	SF AGEESGDLPF	RKG DVI TILK	ksQNDWWTGR	VNGREGIF
abl 2_humanLFVALYI				
tec_human .EIVVAMYI				
abl1_caeelLFVALY	DF HGVGEEQLSL	RKG DQV RILG	YNKNNEWCEA	RLILGEIGWV
txk_humanALYI				
yha2_yeastVRRVRALYI				
abp 1_sacex AEYI	DY EAGEDNELTF	AENDKIINIE	FVDDDWWLGE	LETTGQKG LF

B. Rost, 2005

How to Find Homologous Sequences and Generate Alignments

- Use PSI-BLAST to search a query sequence against the very large non-redundant protein sequence database (NR database, compiled at NCBI)
- Combine the pairwise alignment between the query sequence and other sequences into a multiple sequence alignment using the query sequence as the center.

PhD Approach

Comments: frequency is normalized into probability and sequence needs to be weighted. Reference: Rost and Sander. Proteins, 1994.

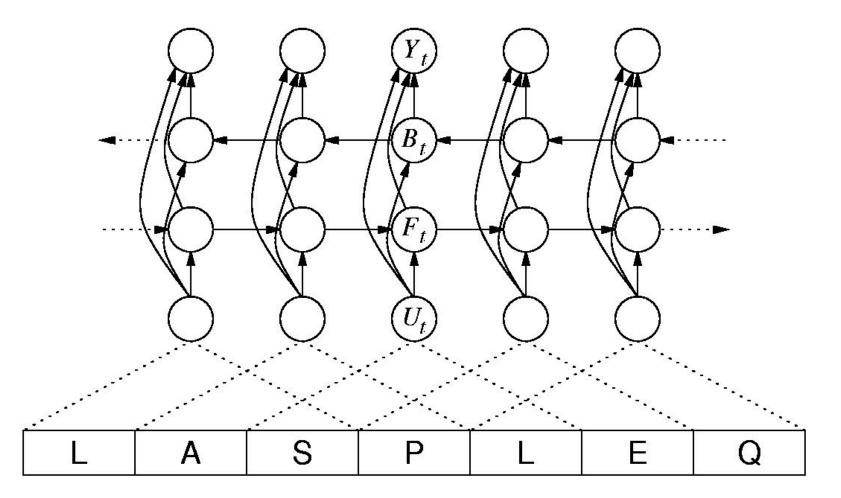
PSI-PRED Approach

- PSI-PRED does not use probability matrix instead it uses the another kind of profile: Position Specific Scoring Matrix generated by PSI-BLAST during sequence search.
- The weighting of the sequences is done implicitly by PSI-BLAST.
- The raw PSSM is transformed into values within [0,1] using sigmoid function.

Reference: Jones, Journal of Molecular Biology, 1999.

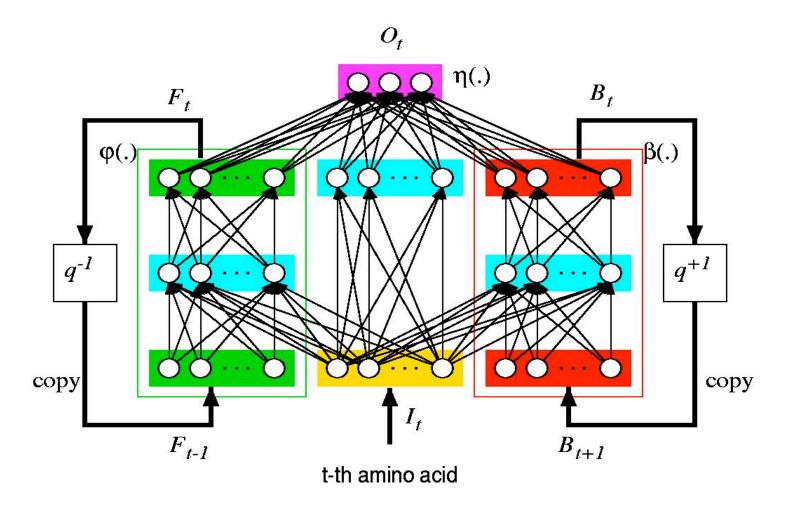
PSI-PRED Input

Position-based scoring matrix used Е G н А С 0 -3 -3-3 0 -3Window of 15 rows 2 -3 2 -4 З 1 5 -3 -1 0 -4 -2 -3 -1 -5 -3 -3 -4 0 C 0 -1 3 -2 -4 -2 -4 -40 -3 n. -2 Y ν н Ι ĸ м s А G 0.4 0.3 0.3 0.3 0.2 0.9 0.3 0.3 0.4 0.4 0.4 0.3 0.4 0.9 0.1 0.4 0.4 0.5 0.7 0.3 0.2 0.3 0.8 0.4 0.3 0.7 0.1 0.6 0.2 0.4 0.3 0.5 0.2 0.1 0.4 0.8 .2 0.3 0.2 - 0 0.1 0.1 0.4 0.3 0.5 0.1 0.1 0.3 0.1 0.1 0.4 0.2 0.4 0.9 0.3 0.4 0.4 0.9 0.3 0.6 0.6 0.3 0.3 0.1 0.3 0.5 0.5 0.2 0.1 0.4 0.4 0.3 0.6 0.9 0.1 0.5 0.1 0.5 0.7 0.4


Reference: Jones, Journal of Molecular Biology, 1999.

SSpro Approach

- SSpro uses probability matrix as inputs
- SSpro uses an information theory approach to weight sequences
- The main novelty of SSpro is to use 1-Dimensional Recurrent Neural Network (1D-RNN)


Pollastri et al.. Proteins, 2002.

Bi-directional Input Output Hidden Markov Model for SS Prediction

Baldi, 2004

1D-Recursive Neural Network

Baldi, 2004

Advantage and Disavantages of SSpro

- Directly take a sequence with variable length as inputs.
- Hopefully can utilize more information than a fixed-window approach
- More complex, thus harder to implement than feed-forward neural network.

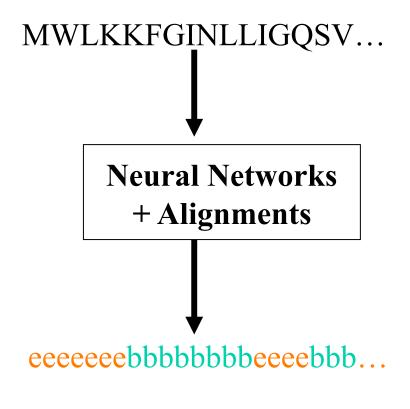
Second Neural Network to Smooth Output Predictions

- Raw output from one neural network may contain weird predictions such as helix of length 1. But minimum length is 2.
- So use another neural network to smooth output. The inputs are a window of predicted secondary structure. The outputs are the true secondary structures.
- The second neural network makes the predictions more protein-like.

Secondary Structure Prediction Project (4th project)

- Training dataset with sequences and secondary structures (1180 sequences) and test dataset (126 sequences). (training data was created by Pollastri et al. and test data was created by Rost and Sander.) (www.cs.missouri.edu/~chengji/ mlbioinfo/ss_trian.txt (and ss_test.txt)
- Generate multiple alignments using generate_flatblast.sh in SSpro 4 package (http:// casp.rnet.missouri.edu/download/)

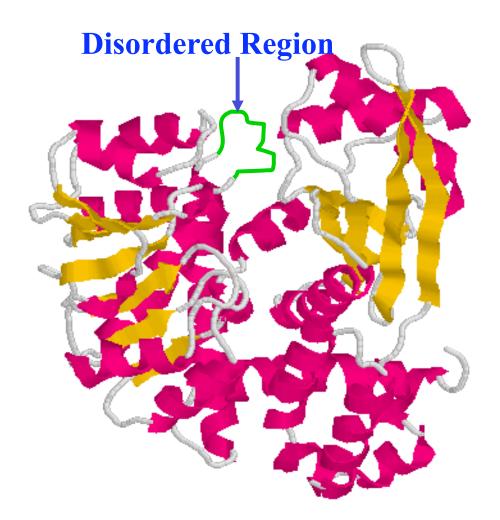

Secondary Structure Prediction Project (continued)

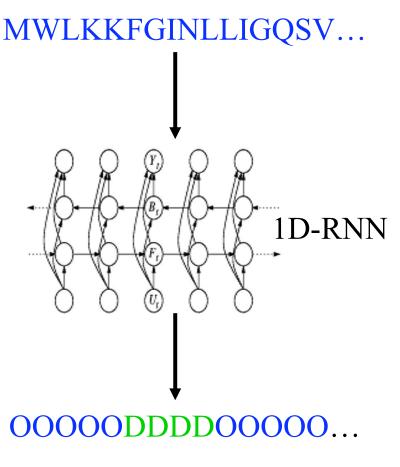

- Generate inputs and outputs (probability matrix or Position Specific Scoring Matrix)
- Train neural network using NNClass or Weka
- Test neural network on test dataset

References for the Project:

- B. Rost and C. Sander. Combining Evolutionary Information and Neural Networks to Predict Protein Secondary Structure. *Proteins*. 1994.
- D.T. Jones. Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. *JMB*. 1999.
- G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. *Proteins*. 2002
- J. Cheng, A. Randall, M. Sweredoski, and P. Baldi. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Research. 2005.

1D: Solvent Accessibility Prediction

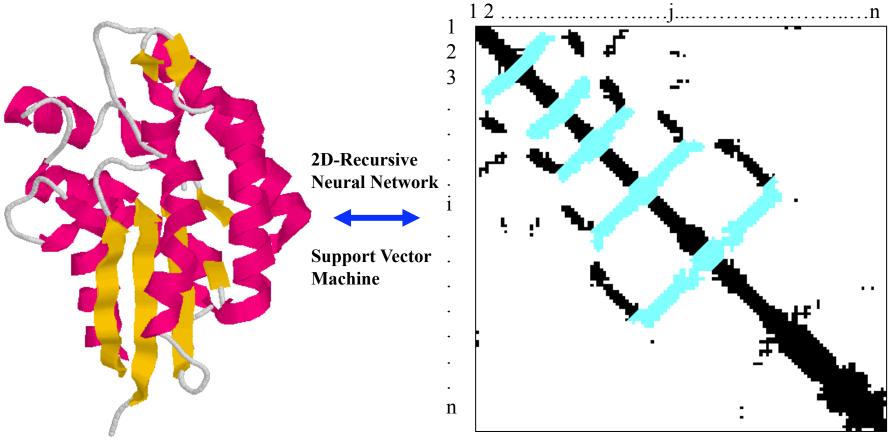




Accuracy: 79%

Pollastri et al. *Proteins*, 2002. Cheng et al. *Nucleic Acid Research*, 2005

1D: Disordered Region Prediction Using Neural Networks


93% TP at 5% FP

Cheng, Sweredoski, Baldi. Data Mining and Knowledge Discovery, 2005

2D: Contact Map Prediction

3D Structure

2D Contact Map

Distance Threshold = 8A^o

Cheng, Randall, Sweredoski, Baldi. *Nucleic Acid Research*, 2005 Cheng and Baldi. *BMC Bioinformatics*, 2007.