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What is a Bayesian Network?
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Basic Probability Concepts

Representation: what is the joint probability dist. on multiple
variables?

P(X,. X,. X, X,.X..X,.X,.X,.)

]
¢ How many state configurations in total? --- 28
- CE)
e Are they all needed to be represented?
F’
» Do we get any scientific/medical insight?
- [

Learning: where do we get all this probabilities?

« Maximal-likelihood estimation? but how many data do we need?

¢ Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(A| A4) would require summing over all 25 configurations of the
unobserved variables
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BN: Structure Simplify
Representations

e Dependencies among variables

[RecepturA } XT [Receptm'B ] Xz

[ Kinase C




Bayesian Networks

o If X;'s are conditionally independent (as described by a BN), the
joint can be factored to a product of simpler terms, e.g.,

P (XIJ ‘Y_b ‘Y:v <R ‘YSJ X, 6 X » ‘Y.E:)

= P(X)) P(X;) P(X5] X;) P(X,| X)) P(XG| X))
P(X,| X,, X,) P(X+| X,) P(X;| X;, X))

e |x,

o Why we may favor a BN?
= Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
+ Exploring the graph structure and probabilistic semantics

= Incorporation of domain knowledge and causal (logical) structures



Bayesian Network: Factorization
Theorem

P (}kﬂ Xh X%: Y-f? Y }‘ﬁ! }(?-" ‘XTS)

= P(X}) P(X;) P(X5] X7) PX| X) P(XS| X)
P(Xg| X3, Xy) P(X7| Xg) P(X| X5, Xg)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

PX)=T]P(Y,1X,)

where X_is the set of parents of xi. d is the number of nodes
(variables) in the graph.



Proof

o P(Xy, X,y ooy Xy) = P(X, X, X5, .oy X)) * P(X,, X,
.y Xg) = P(X; | parent(X,)) * P(X,|X;, ..., X;) *
P(X3, ..., Xd) = ....



Conditional Probability Distribution

e Discrete variable: CPT, conditional

probability table pC=F) P(C=T)
0.5 0.5

P(S=F) P(S=T) P(R=F) P(R=T)

0.8 0.2
0.2 0.8

0.5 0.5
0.9

— 1|0

— O

S R | P(W=F) P(W=T)
F F | 1.0 0.0
TF | 0.1 0.9
| P(C,S, R, W):P( ) FT |01 0.9
P(S|C) * P(RIC,S) * P(W|C, S, R) =P(C) * P(S|C) T T 0.01 0.99

* P(R[C) * P(W|S.R).
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Qualitative Specification

Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

o We simply link a certain architecture (e.g. a layered graph)



Local Structures and Independencies

Common parent
e Fixing B decouples Aand C

CB_

"given the level of gene B, the levels of A and C are independent” Q4D CC O

Cascade

e Knowing B decouples A and C
"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

A O—»CB >—»C >

V-structure
A O B —

e Knowing C couples A and B

because A can "explain away" Bw.rt. C
"If A correlates to C, then chance for B to also correlate to B will decrease”

The language Is compact, the concepts are richl
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Graph Separation Criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
Independent) given z If they are separated in the moralized

ancestral graph

e Example:

R e

original graph ancestral moral ancestral



Global Markov Properties of DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

conditions):

L) } Zz \ } 4

—@—C N |

= - Defn: I{&)=all independence
) Ly properties that correspond to d-
o i separation:
v z X z [(G)= {X 1 Z‘Y ; dsepG(X;Z‘Y)}

) ib)

e ._ » D-separation is sound and
o My (¢ complete



D-Separation Algorithm

All the paths between two nodes must be D-
Separated.

A ->B ->C (linear, Bis known, then the path
is blocked)

A <- B ->C(diverging, B is known, then the
path is blocked)

A -> B <- C (converging, B & and its
descendants are not known)



An Example

X e Complete the I(G) of this
4 graph:

X3

Essentially: A BN is a database of Pr. Independence statements among variables.



BN: Conditional Independence
Semantics

Structure: DAG

« Meaning: a node is o C O
conditionally independent
DR Bt

of every other node in the
hetwork outside its Markov

VD
blanket VN <
C oS>
+ Local conditional %

distributions (CPD) and the
DAG completely determine -

the joint dist. m 4
. Give causality - Children's co-parent ]

relationships, and facilitate
a generative process

Ancestor

Descendent




Toward Quantitative Specification of
Probability Distribution

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem
For a graph G,
Let D, denote the family of all distributions that satisfy I(G),

Let D, denote the family of all distributions that factor according to G,
Then 9,=9,.



Quantitative Specification

@)

+— Pp(AB,O)=



Conditional Probability Tables (CPTs)

0.75

0.25

b[]

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’h? alb? a'bl a'lb!
¢l 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
¢l c!
0.3 |05
07 |05




Conditional Probability Density
Function (CPDs)

P(a,b,c.d) =
A~N(y,, 2,) B~N(u,, Z,) P(a)P(b)P(c|a,b)P(d|c)

“n 1‘1 ﬁ' "
\HH‘ i t
e ‘#ﬁ i '*h"i i
W ##‘#w #‘ i'“*
,;.mt#hmw“ )

iiiiiii

n“ﬂ*

C~N(A+B, %) © H‘

|
. D~N(p,+C, 2,)




Conditional Independencies

GO ®0

What is the model?

Label

a) When Y is known?
b) When Y is not known?



Conditional Independent
Observations

Model parameters




“Plate” Notation

. Model parameters

Data = {x,,...X,.}

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner



Example: Gaussian Model

q , Generative model:

P(X4,..-X, | B, O) =P p(x| u, o)
= p(data | parameters)
= p(D | 6)
iI=1:n where 0 = {u, ¢}
= Likelihood = p(data | parameters)
=p(D]6)
=L ()

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (0)



Bayesian Model

©

i=1:q




More Examples

Density estimation m,s o
Parametric and nonparametric methods X
X
Regression
= X Y
Linear, conditional mixture, nonparametric O O
e Q Q
Classification
Generative and discriminative approach X X




Example, Con’d

e Evolution

ancestor

T years

Tree Model



Example, Con’d

e Genetic Pedigree

=
=
1S

'
-

?f.@ .




Example, Con’d

e Speech recognition
Word

)

4 D)) wﬁ:ﬂ:h wave o @ @ G
={iilli."66e.¢

Corepe=n n ward

\"l:u-

Phoneme (spectral code)
Hidden Markov Model



BN and Graphical Models

e A Bayesian network is a special case of Graphical Models

e A Graphical Model refers to a family of distributions on a set of
random variables that are compatible with all the probabilistic

independence propositions encoded by a graph that connects these
variables

e |tis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at
the same time endow the distributions with structured semantics

)
- CE& ]
e
& & (TH
P(X X, X X X XXX P(X,.) = P(X,)P(X,)P(X, | X X.)P(Y, | X.P(X, | X.)

PEI&|Ia=I¢}P{Xr|Xa]P{Xa|-X:.:In}



Two Types of GMs

Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(X, X,, X, X, X, X,, X-, X;)

= P(X,) P(X,) P(X;| X;) P(X,| X,) P(X{| X,)
P(X,| X,, X,) P(X-| X,) P(X;| X, X,)

Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical
model):

P(X;, Xy, X, X, X5, X X, X)

= 1/Z exp{E(X)+E(X))+E(X;, X)*E(X,, X,)+E(X; X))
+ E(X, X,, X,)+E(X-, X,*E(X; X, X,)}




Probabilistic Inference

Computing statistical queries regarding the network, e.g.:

e Is node X independent on node Y given nodes ZW 7

o What is the probability of X=true if (Y=false and Z=true)?

o What is the joint distribution of (X,Y) if Z=false?

e What is the likelihood of some full assignment?

o What is the most likely assighment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such

computation
« Computational cost depends on the topology of the network
e Exactinference:

The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling



Learning in BN

The goal:

Given set of independent samples (assignments of

random variables), find the best (the most likely?)

Bayesian Network (both DAG and CPDs)

& 3B

RO CH
O

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

(B,E,A,C,R)=(F,T,T,T,F)

f'

CED 8D
CRDO CAD
CE

E B| PA ] EB)
e blo9e o1
e 5|l oz o8
e b|lo9 o1

e BHloo1 099




MLE Learning

e If we assume the parameters for each CPD are globally
iIndependent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one

per node:

¢(6:D)=log p(D|6) =log[ [| [ [ p(x.s | X, .9.-)] = Z[Z log p(x,; | X,.-,-6,)
n \ i n ,

i




Example: Decomposable likelihood of
a directed model

e Consider the distribution defined by the directed acyclic GM:

px]8)=p(x;|6)p(x, | x.6) p(x; | x,.6;) plx, | x,.%5.6,)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.




MLEs for BNs with Tabular CPDs

e Assume each CPD is represented as a table (multinomial)
where def 0 |

grk p(X _JF|X ) 1'_~“
Note that in case of multiple parents, x_will have a composite 't.‘_‘ :
state, and the CPD will be a high-dimensional table X |

The sufficient statistics are counts of family configurations

Z Tnz n:rr'E

e The log-likelihood is £(6:0)=log [ [ 6% = D nulogby

,r',j,.fr .r',_,.r',.-‘r
e Using a Lagrange muiltiplier i Mk
. - 72 S
to enforce 2, 6, =1, we get: T .,




An Example

Three variables: C — Cloudy, R — Rain, S —
Sprinkler

Data: (C=T,R=T,S=F),(C=T,R=F S=F), (C
=FR=FS=T)

P(C=T)=2?,P(C=F)=?
P(R=T|C=T) =?P(R=F|C=F)=?
P(S=T|C=T)=2,P(S=T|C=F)=?




Summary

e Represent dependency structure with a directed acyclic graph
e Node <-> random variable

e Edges encode dependencies (f
Absence of edge -> conditional independence

e Plate representation O

e A BN is a database of prob. Independence statement on variables (l)

e The factorization theorem of the joint probability

e Local specification = globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning



Inference and Learning

We now have compact representations of probability
distributions: BN

A BN M describes a unique probability distribution P
Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data 07?

I. We use learning as a name for the process of obtaining point estimate of M.
ii. Butfor Bayesian, they seek p(M | D), which is actually an inference problem.

lii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.



What if some nodes are not

observed?
e Consider the distribution defined by the directed acyclic GM:

p(x|0)=plx; |6 p(x; | x1.0) ploy [ x1.05) p(xy | x5.%3.6,)

e Need to compute p(x,|x,) = inference



Inferential Query 1: Likelihood

e Most of the queries one may ask involve evidence

e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,. X,. ..., X}

nf

o Without loss of generality X ={X;,,. ... . X},

e Write X;=X\X_ as the set of hidden variables, Xz can be & or X

e Simplest query: compute probability of evidence

P(x,) =3 P(Xy:: X, )= Do D P(3py %0 X,)

e this is often referred to as computing the likelihood of x_



Assess Conditional Independence of
Two Nodes in Bayesian Networks

Qdy

Sprinkler

Wet grass I

P(Rain=T) =?

Grass is green




Inferential Query 2: Conditional
Probability

e Often we are interested in the conditional probability
distribution of a variable given the evidence

P(X;.xy) P(X4.Xy)
P(xy) > P(Xy =Xg.Xy)

In

P(Xy | Xy =xy)=

e thisis the a posteriori belief in X, given evidence x,

e We usually query a subset Y of all hidden variables X;={Y,Z}
and "don't care" about the remaining, Z:

P(Y|xy)=> P(Y.Z=2|xy)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y[x,) is called a marginal prob.



Applications of a posterior belief

e Prediction: what is the probability of an Gut‘g:ome given the starting

condition :
iy Ay >

o the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
9
L = O=>_ >
o the query node an ancestor of the evidence

e Learning under partial observation

e fillin the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network



An Example

High
Temperature




An Example — Combining Evidences

High
Temperature




Inferential query 3: most probable
assignment

¢ In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence x_, and ignoring (the values of) other variables Z:

Y |x, =arg max _ P(Y |xy)=argmax, ZP(Y, 1-=z|x)

e this is the maximum a posteriori configuration of Y.



Inferential query 3: most probable
assignment

Philosophy

Martial
status

Gender



Complexity of Inference

Thm:
Computing P(X;=xg4| x,) in an arbitrary BN is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works
efficiently for arbitrary BNs

e For particular families of BNs, we can have provably efficient
procedures



Approach to Inference
e EXxact inference algorithms

e The elimination algorithm v
e The junction tree algorithms

e Approximate inference techniques

e Stochastic simulation / sampling methods

e Markov chain Monte Carlo methods
e Variational algorithms (will be covered in advanced ML courses)



Marginalization and Elimination

e A signal transduction pathway:

CAD—C e O—Ceo—Coo0—CED
= R

What is the likelihood that protein E is active?

. Query: Ae) \ -
> F
P(e)=>Y">'>'>"Pab,cde) -4 .
d ¢ b a i

o a naive summation needs
L_/—> to enumerate over an
exponential number of
terms -

e By chain decomposition, we get

=>>">">" P(a)P(b|a)P(c|b)P(d | c)P(e| d)
d ¢ b a




Elimination on Chains

Chodbo dbodPo D

e Rearranging terms ...

P(e) = ZZZZP(Q)P(M a)P(c|b)P(d |c)P(el|d)
d ¢ b a
=22 2 Plc|b)P(d|c)P(e|d))_ P(a)P(b|a)
d ¢ b a



CLo—C o~ oO—C o>~

e Now we can perform innermost summation

P(e)=>. > > P(c|b)P(d|c)P(e|d)) P(a)P(b|a)
d ¢ b a
=222 P(c|b)P(d|c)P(e|d)p(b)
d e b

e This summation "eliminates" one variable from our
summation argument at a "local cost".



Elimination on Chains

CLO—CE O~ o~ o~

e Rearranging and then summing again, we get

P(e)=>_>"> P(c|b)P(d|c)P(e|d)p(b)

d ¢ b

=>>" P(d|c)P(e|d)D. P(c|b)p(b)
d e b

=>">" P(d|c)P(e|d)p(c)
d ¢




Elimination on Chains

CLO—Ca o~ 20— o—C8ED
: TR ——

e Eliminate nodes one by one all the way to the end, we get

P(e)=>_ P(e|d)p(d)
d

o Complexity:
e Each step costs O(|Val(X)|*|Val(X.,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")



Inference on General BN via Variable
Elimination

General idea:

e Write query in the form

P(X,.€)= XY T [1P0; | pa)

X3 X2 I
o this suggests an "elimination order" of latent variables to be marginalized

e lteratively

e Move all irrelevant terms outside of innermost sum
o Perform innermost sum, getting a new term
e Insert the new term into the product

e Wrap-up PLX
153)

P(X|e)= Pe)




A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?



Example: Variable Elimination

Query: P(A | h) O D

e Needto eliminate: BCDEF G H
Initial factors: G o
P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f |a)P(g |e)P(h|e.f) GG

!!!!!!

Choose an elimination order: H6 FED CRB G Q

Step 1:

e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., }}}}:
Iﬂh(eaf) — p(]? — h ‘ eaf)
e This step is isomorphic to a marginalizatioﬁJstep: (S ‘
(E)—{ )

my(e, f)=> p(hle, [)5(h=h)
h O



Example: Variable Elimination

e Query: P(B|h) B @

e Needto eliminate: BCDEF &

e Initial factors: G 0

P(a)P(D)P(c|D)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.f) G e
— P(a)P(b)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)m, (e f)
(&

e Step 2: Eliminate &
e Ccompute
m ()= p(gle) =1
g

— P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f |a)m_ (e)m,(e. [) L
= P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f  a)m, (e.f) (£ £



Example: Variable Elimination

e Query: P(B|h) (B D

e Needto eliminate: BCD.EF

e [nitial factors: G 0

P(a)P()P(c |B)P(d | a)P(e| c.d)P(f | a)P(g | )P(h e. f) GG
— P(a)P(b)P(c|D)P(d |a)P(e|c.d)P(f |a)P(g|e)m, (e, f)

— P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f | a)m, (e. f) &

e Step 3: Eliminate £
e CcOompute
mg (e,a) = %“P(f a)my, (e, f)

= P(a)P(b)P(c|b)P(d | a)P(e c’.d)mf(n.e) <« y
(EJ




Example: Variable Elimination

e Query: P(B|h) B D

e Needto eliminate: BC D E

e Initial factors: G O

P(a)P(b)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.f) G 6
— P(a)P(b)P(c|D)P(d |a)P(e|c.d)P(f|a)P(g|e)m, (e, [)

= P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f | aym,(e. f) & W
— P(a)P(b)P(c|Db)P(d |a)P(e|c.d)m_(a.e)

e Step 4: Eliminate £

T @e.d) =Y ple|e.dym, (a.e)

= P(a)P(b)P(c|b)P(d | a)m,(a.c.d) a‘./y




Example: Variable Elimination

e Query: P(B|h) (B D

e Need to eliminate: 2D

e Initial factors: G 0

P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f|a)P(g|e)P(h|e.[f) CE) CF)
= P(a)P(D)P(c|b)P(d|a)P(e|c.d)P(f |a)P(g|e)m, (e.[f)

= P(a)P(b)P(c|b)P(d |a)P(e|c.d)P(f |a)m,(e.f) e 0
= P(a)P(D)P(c|b)P(d |a)P(e|c.d)m (a.e)

= P(a)P(D)P(c|D)P(d|a)ym (a.c.d)

e Step 5: Eliminate D () (D
e compute m, (a,c) = Zp(d | .:}')me (a,c,d) O
d

= P(a)P(D)P(c|d)m,(a.c)




Example: Variable Elimination

e Query: P(B|h) B D

o Need to eliminate: B¢

e Initial factors: G 0

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h]e.f)

= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)m,(e. f) & =
= P(a)P(D)P(c|d)P(d | a)P(e|c.d)P(f |a)ym,(e. f) e 0

= P(a)P(D)P(c|d)P(d|a)P(e| c*._d)n.lf(n.e)

= P(a)P(D)P(c|d)P(d |a)m_ (a.c.d)

= P(a)P(D)P(c|d)m,(a.c)

e Step 6: Eliminate €
e compute m_ (g&b) — Zp(c' | b)md (a,c)

= P(a)P(b)P(c|d)m,(a.c)




Example: Variable Elimination

e Query: P(B|h) O

e Need to eliminate: 8

e |nitial factors: G 0

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.f) G
= P(a)P(D)P(c|d)P(d|a)P(e|c.d)P(f |a)P(g|e)m,(e. [f)
= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f | a)m,e. ) e 0
= P(a)P(D)P(c|d)P(d |a)P(e|c.d)m (a.e)
= P(a)P(b)P(c|d)P(d|a)m (a.c.d)
= P(a)P(b)P(c|d)m,(a.c)
= P(a)P(bym_(a.b)

e Step 7: Eliminate A

e compute m,(a) = Z p(bYm_(a,b)
b

— P(a)m,(a)




Example: Variable Elimination

Query: P(B |h) B D

e Need to eliminate: 2

Initial factors: G 0

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.f)

= P(a)P(D)P(c|d)P(d|a)P(e|c.d)P(f|a)P(g|e)m,(e.[) G 6
= P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f | a)ym,(e.f) e 0

= P(a)P(D)P(c|d)P(d |a)P(e|c.d)m,(a.e)

= P(a)P(D)P(c|d)P(d | a)ym,(a.c.d)

= P(a)P(D)P(c|d)ym,(a.c)

= P(a)P(b)m_(a.b)

= P(a)my(a)

Step 8: Wrap-up pla. )= p(aym,(a). p(h) = > playm,(a)

-




Complexity of Variable Elimination

e Suppose In one elimination step we compute

REREARS RTINS
m', (ln}'lr' ':'J;;) HI’F:-' (x, YC

This requires
o ke|Val(X)[e]]|Val(Y,)| multiplications

— For each value of x, y,, ..., v, we do A multiplications

Val(Y)|e [T|Val(¥,,)| additions
— Foreach value of y,, ..., y,, we do /Val/(X)/ additions

Complexity is exponential in number of variables in the
intermediate factor



Understanding Variable Elimination

e A graph elimination algorithm

G AT T

moralization graph elimination




Elimination Cliques

2 5 2l

m, (e, f) m, (e) m . (e,a) m,(a,c,d)

& @ (@ = @& @ = @
I:’ E’.’

ng (G&C) F??E.(G:.b) m, (G)



Understanding Variable Elimination

e A graph elimination algorithm

LI G G PP

—

moralization graph elimination

e Intermediate terms correspond to the cliques resulted from

elimination

e ‘“good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found

e Applies to undirected GMs



A Clique Tree

m_(a.c.d)
= plelc.d)m_ (e)m(a.e)



From Elimination to Message Passing

|
e Qur algorithm so far answers only one query (e.g., on one node), do

we need to do a complete elimination for every such query?
e Elimination = message passing on a clique tree

GHRRAP

m,(a.c.d)
=> plele. d)m (e)m,(a.e)

(&

e Messages can be reused



From Elimination to Message Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

e Messages m-and m, are reused, others need to be recomputed



The Junction Tree Algorithm

e Shafer-Shenoy algorithm

(b)

e Message from clique /to clique ;:

i = Z ‘//C,.H/‘k—n(sla‘)

: g C:\S.. k#j
e Clique marginal % B d

p(C,) x ¥ H/‘k—»(sh)
k



The Sketch of Junction Tree Algorithm

e The algorithm

e Construction of junction trees --- a special clique tree

o Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
gueries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...



A Junction Tree Algorithm for HMM

e A junction tree for the HMM

w(y.x) W y2) wiyz. ys) w(¥ra-¥r)
OO @ O g O
D OO & = (0 con é'(}"r}él]
. RighMard pass *p“'(}’pxz} W(y3=x3} W(.yi"-x?')
fur—}r—l(.rwl) = Z W(_‘»’, : -1!I+1)J£!t—1—}]‘(.}11‘)!uf"' (.]"Hl) ey (V) WiV Vea) e (Vey)
- — T T
= Zp(yﬁl | yr)ﬂr—l—hr(yr)p(xrﬂ |-vr+1) ]'
¥ Har (Ve [
:p(xtﬂ .vr+1)z a_l.-‘,_}-r_lﬂr—l—}r (yr)
This is exactly the forward algorithm! ¥ (V- Xra)
¢ Leftward pass U e s () w{yf"}.’rﬂl} Ky g (Vear)

L} { == L
Hi 1oy (.]‘r) = Z W (.1'} < Vin )J“r{—r—l (.vz+l )a‘!‘;z‘T‘ (-1"r+1) |

Yrs1 :”ﬂ' (.-Vf+!) _

= Zp(yfﬂ | Vi)l pi (Vi) P( Xy | Vi)

v = F el . | N
This i§ exactly the backward algorithm! W (Vpro Xo)



Summary

e Represent dependency structure with a directed acyclic graph
e Node <-> random variable

e Edges encode dependencies (f
Absence of edge -> conditional independence

o Plate representation O

e A BN is a database of prob. Independence statement on variables Cg

e The factorization theorem of the joint probability

e Local specification = globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning



