Bayesian Networks

Dr. Jianlin Cheng

Department of Computer Science University of Missouri, Columbia

Slides Adapted from Book and CMU, MU, Stanford Machine Learning Courses Fall, 2011

Basic Probability Concepts

Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

- How many state configurations in total? --- 2⁸
- Are they all needed to be represented?
- Do we get any scientific/medical insight?

- Learning: where do we get all this probabilities?
 - Maximal-likelihood estimation? but how many data do we need?
 - Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- Inference: If not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
 - Computing p(HA) would require summing over all 2⁶ configurations of the unobserved variables

What is a Bayesian Network?

I

• A possible world for cellular signal transduction:

BN: Structure Simplify Representations

• Dependencies among variables

Bayesian Networks

□ If *X_i*'s are conditionally independent (as described by a BN), the joint can be factored to a product of simpler terms, e.g.,

 $P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$ $= P(X_{1}) P(X_{2}) P(X_{3} | X_{1}) P(X_{4} | X_{2}) P(X_{5} | X_{2})$ $P(X_{6} | X_{3}, X_{4}) P(X_{7} | X_{6}) P(X_{8} | X_{5}, X_{6})$

Why we may favor a BN?

Representation cost: how many probability statements are needed?

2+2+4+4+8+4+8=36, an 8-fold reduction from 2⁸!

- Algorithms for systematic and efficient inference/learning computation
 - Exploring the graph structure and probabilistic semantics
- Incorporation of domain knowledge and causal (logical) structures

Bayesian Network: Factorization Theorem

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ = $P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$

• Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the (probabilistic independence properties encoded in the) graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i} P(X_i \mid \mathbf{X}_{\pi_i})$$

where X_{π_i} is the set of parents of xi. d is the number of nodes (variables) in the graph.

Proof

P(X₁, X₂, ..., X_d) = P(X₁ | X₂, X₃, ..., X_d) * P(X₂, X₃, ..., X_d) = P(X₁ | parent(X₁)) * P(X₂ | X₃, ..., X_d) * P(X3, ..., Xd) =

Conditional Probability Distribution • Discrete variable: CPT, conditional probability table P(C=F)P(C=T)0.5 0.5 P(R=F)P(R=T)P(S=T)P(S=F)С F 0.8 0.2 Cloudy F 0.50.5Т 0.2 0.8 Т 0.9 0.1Sprinklet Rain R S P(W=F)P(W=T)WetGrass F F 0.0 1.0Т F 0.10.9 F Т 0.10.9 P(C, S, R, W) = P(C) *ТТ 0.01 0.99 P(S|C) * P(R|C,S) * P(W|C, S, R) = P(C) * P(S|C)* P(R|C) * P(W|S,R).

Examples

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - ...

Local Structures and Independencies

Common parent

Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"

Cascade

 Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"

V-structure

- Knowing C couples A and B because A can "explain away" B w.r.t. C "If A correlates to C, then chance for B to also correlate to B will decrease"
- The language is compact, the concepts are rich!

Graph Separation Criterion

D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are *D*-separated (conditionally independent) given z if they are separated in the *moralized* ancestral graph

• Example:

original graph

ancestral

moral ancestral

Global Markov Properties of DAGs

 X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

 Defn: I(G)=all independence properties that correspond to dseparation:

$$\mathbf{I}(G) = \left\{ X \perp Z \middle| Y : \mathrm{dsep}_G(X; Z \middle| Y) \right\}$$

 D-separation is sound and complete

D-Separation Algorithm

- All the paths between two nodes must be D-Separated.
- A -> B -> C (linear, B is known, then the path is blocked)
- A <- B -> C (diverging, B is known, then the path is blocked)
- A -> <u>B</u> <- C (converging, B & and its descendants are **not** known)

An Example

• Complete the I(G) of this graph:

Essentially: A BN is a database of Pr. Independence statements among variables.

BN: Conditional Independence Semantics

Structure: DAG

- Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket
- Local conditional distributions (CPD) and the DAG completely determine the joint dist.
- Give causality relationships, and facilitate a generative process

Toward Quantitative Specification of Probability Distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

• The Equivalence Theorem

For a graph G,

Let \mathcal{D}_1 denote the family of all distributions that satisfy I(G),

Let \mathcal{D}_2 denote the family of all distributions that factor according to G, Then $\mathcal{D}_1 \equiv \mathcal{D}_2$.

Quantitative Specification

Conditional Probability Tables (CPTs)

a⁰b¹

1

0

 $a^{1}b^{0}$

0.9

0.1

a ⁰	0.75	b ⁰	0.33
a ¹	0.25	b ¹	0.67

a¹b¹

0.7

0.3

Conditional Probability Density Function (CPDs)

What is the model?

a) When Y is known?b) When Y is not known?

Conditional Independent Observations

"Plate" Notation

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model

Generative model:

 $p(\mathbf{x}_1,...,\mathbf{x}_n \mid \mu, \sigma) = \mathbf{P} \quad p(\mathbf{x}_i \mid \mu, \sigma)$ $= \quad p(\text{data} \mid \text{parameters})$ $= \quad p(\mathbf{D} \mid \theta)$ where $\theta = \{\mu, \sigma\}$

- Likelihood = p(data | parameters)
 = p(D | θ)
 = L (θ)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with log L (θ)

Bayesian Model

More Examples

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Example, Con'd

• Evolution

Tree Model

Example, Con'd

Genetic Pedigree

Example, Con'd

• Speech recognition

Hidden Markov Model

BN and Graphical Models

- A Bayesian network is a special case of Graphical Models
- A Graphical Model refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables
- It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics

Two Types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):
 - $P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$
 - $= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$ $P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

 $= \frac{1/Z}{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2)} + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)\}$

Probabilistic Inference

Computing statistical queries regarding the network, e.g.:

- Is node X independent on node Y given nodes Z,W ?
- What is the probability of X=true if (Y=false and Z=true)?
- What is the joint distribution of (X,Y) if Z=false?
- What is the likelihood of some full assignment?
- What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such computation

- Computational cost depends on the topology of the network
- Exact inference:
 - The junction tree algorithm
- Approximate inference;
 - Loopy belief propagation, variational inference, Monte Carlo sampling

Learning in BN

The goal:

Given set of independent samples (*assignments* of random variables), find the *best* (the most likely?) Bayesian Network (both DAG and CPDs)

MLE Learning

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

Example: Decomposable likelihood of a directed model

• Consider the distribution defined by the directed acyclic GM:

 $p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$

 This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

MLEs for BNs with Tabular CPDs

 Assume each CPD is represented as a table (multinomial) where

$$\theta_{ijk} = p(X_i = j \mid X_{\pi_i} = k)$$

- Note that in case of multiple parents, x_{π_i} will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$n_{ijk} \stackrel{\text{def}}{=} \sum_{n} x_{n,i}^{j} x_{n,\pi_{i}}^{k}$$

- The log-likelihood is $\ell(\theta; D) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{ijk} = 1$, we get:

$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j',k} n_{ij'k}}$$

An Example

- Three variables: C Cloudy, R Rain, S Sprinkler
- Data: (C=T, R = T, S = F), (C = T, R = F, S = F), (C = F, R = F, S = T)
- P(C = T) = ?, P(C = F) = ?
- P(R = T | C = T) = ? P(R = F | C = F) = ?
- P(S = T | C = T) = ?, P(S = T | C = F) = ?

Summary

- Represent dependency structure with a directed acyclic graph
 - Node <-> random variable
 - Edges encode dependencies
 - Absence of edge -> conditional independence
 - Plate representation
 - A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
 - Local specification → globally consistent distribution
 - Local representation for exponentially complex state-space
- Support efficient inference and learning

Inference and Learning

- We now have compact representations of probability distributions: BN
- A BN *M* describes a unique probability distribution *P*
- Typical tasks:
 - Task 1: How do we answer **queries** about *P*?
 - We use inference as a name for the process of computing answers to such queries
 - Task 2: How do we estimate a **plausible model** *M* from data *D*?
 - i. We use **learning** as a name for the process of obtaining point estimate of M.
 - ii. But for *Bayesian*, they seek $p(\mathcal{M} | D)$, which is actually an **inference** problem.
 - iii. When not all variables are observable, even computing point estimate of *M* need to do **inference** to impute the *missing data*.

What if some nodes are not observed?

• Consider the distribution defined by the directed acyclic GM:

 $p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$

• Need to compute $p(x_H|x_V) \rightarrow inference$

Inferential Query 1: Likelihood

- Most of the queries one may ask involve evidence
 - Evidence x_v is an assignment of values to a set X_v of nodes in the GM over variable set $X = \{X_1, X_2, ..., X_n\}$
 - Without loss of generality $\mathbf{X}_{v} = \{X_{k+1}, \dots, X_{n}\},\$
 - Write $X_H = X \setminus X_v$ as the set of hidden variables, X_H can be \emptyset or X
- Simplest query: compute probability of evidence

$$P(\mathbf{X}_{\mathbf{v}}) = \sum_{\mathbf{x}_{\mathbf{H}}} P(\mathbf{X}_{\mathbf{H}}, \mathbf{X}_{\mathbf{v}}) = \sum_{x_1} \dots \sum_{x_k} P(x_1, \dots, x_k, \mathbf{X}_{\mathbf{v}})$$

• this is often referred to as computing the **likelihood** of \mathbf{x}_{v}

Inferential Query 2: Conditional Probability

 Often we are interested in the conditional probability distribution of a variable given the evidence

$$P(\mathbf{X}_{\mathbf{H}} \mid \mathbf{X}_{\mathbf{V}} = \mathbf{x}_{\mathbf{V}}) = \frac{P(\mathbf{X}_{\mathbf{H}}, \mathbf{x}_{\mathbf{V}})}{P(\mathbf{x}_{\mathbf{V}})} = \frac{P(\mathbf{X}_{\mathbf{H}}, \mathbf{x}_{\mathbf{V}})}{\sum_{\mathbf{x}_{\mathbf{H}}} P(\mathbf{X}_{\mathbf{H}} = \mathbf{x}_{\mathbf{H}}, \mathbf{x}_{\mathbf{V}})}$$

- this is the *a posteriori* belief in X_H, given evidence x_v
- We usually query a subset Y of all hidden variables X_H={Y,Z} and "don't care" about the remaining, Z:

$$P(\mathbf{Y} \mid \mathbf{x}_{\mathrm{V}}) = \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z} = \mathbf{z} \mid \mathbf{x}_{\mathrm{V}})$$

 the process of summing out the "don't care" variables z is called marginalization, and the resulting P(Y|x_v) is called a marginal prob.

Applications of a posterior belief

- Prediction: what is the probability of an outcome given the starting condition
 - the query node is a descendent of the evidence
- Diagnosis: what is the probability of disease/fault given symptoms

- the query node an ancestor of the evidence
- Learning under partial observation
 - fill in the unobserved values under an "EM" setting (more later)
- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM
 - probabilistic inference can combine evidence form all parts of the network

An Example

An Example – Combining Evidences

Inferential query 3: most probable assignment

 In this query we want to find the most probable joint assignment (MPA) for some variables of interest

• Such reasoning is usually performed under some given evidence x_v , and ignoring (the values of) other variables Z:

$$\mathbf{Y}^* \mid \mathbf{x}_{\mathbf{V}} = \arg \max_{\mathbf{y}} P(\mathbf{Y} \mid \mathbf{x}_{\mathbf{V}}) = \arg \max_{\mathbf{y}} \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z} = \mathbf{z} \mid \mathbf{x}_{\mathbf{V}})$$

• this is the maximum a posteriori configuration of Y.

Complexity of Inference

Thm:

Computing $P(X_H = x_H | x_v)$ in an arbitrary BN is NP-hard

- Hardness does not mean we cannot solve inference
 - It implies that we cannot find a general procedure that works efficiently for arbitrary BNs
 - For particular families of BNs, we can have provably efficient procedures

Approach to Inference

- Exact inference algorithms
 - The elimination algorithm
 - The junction tree algorithms
- Approximate inference techniques

- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods
- Variational algorithms (will be covered in advanced ML courses)

Marginalization and Elimination

• A signal transduction pathway:

By chain decomposition, we get

$$= \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a) P(b \mid a) P(c \mid b) P(d \mid c) P(e \mid d)$$

Elimination on Chains

• Rearranging terms ...

• Now we can perform innermost summation

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(a) P(b \mid a)$$
$$= \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b)$$

 This summation "eliminates" one variable from our summation argument at a "local cost".

Elimination on Chains

• Rearranging and then summing again, we get

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b)$$
$$= \sum_{d} \sum_{c} P(d \mid c) P(e \mid d) \sum_{b} P(c \mid b) p(b)$$
$$= \sum_{d} \sum_{c} P(d \mid c) P(e \mid d) p(c)$$

• Eliminate nodes one by one all the way to the end, we get

$$P(e) = \sum_{d} P(e \mid d) p(d)$$

- Complexity:
 - Each step costs $O(|Val(X_i)|^*|Val(X_{i+1})|)$ operations: $O(nk^2)$
 - Compare to naïve evaluation that sums over joint values of *n*-1 variables *O*(*kⁿ*)

Inference on General BN via Variable Elimination

General idea:

• Write query in the form

$$P(X_1, \boldsymbol{e}) = \sum_{x_n} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- this suggests an "elimination order" of latent variables to be marginalized
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product
- wrap-up

$$P(X_1 \mid \boldsymbol{e}) = \frac{P(X_1, \boldsymbol{e})}{P(\boldsymbol{e})}$$

A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

- Query: *P(A* | *h)*
 - Need to eliminate: *B*,*C*,*D*,*E*,*F*,*G*,*H*
- Initial factors:

 $P(a)P(b)P(c \,|\, b)P(d \,|\, a)P(e \,|\, c, d)P(f \,|\, a)P(g \,|\, e)P(h \,|\, e, f)$

• Choose an elimination order: H,G,F,E,D,C,B

- Step 1:
 - **Conditioning** (fix the evidence node (i.e., h) on its observed value (i.e., \tilde{h}):

$$m_h(e,f) = p(h = \widetilde{h} \mid e, f)$$

• This step is isomorphic to a marginalization step:

$$m_h(e,f) = \sum_h p(h \mid e, f) \delta(h = \widetilde{h})$$

- Query: *P(B* | *h*)
 - Need to eliminate: *B*,*C*,*D*,*E*,*F*,*G*
- Initial factors:

 $P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)$ $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$

- Step 2: Eliminate G
 - compute

$$m_g(e) = \sum_g p(g \mid e) = 1$$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_g(e)m_h(e, f)$ = $P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)\underline{m_h(e, f)}$

- Query: *P(B* | *h)*
 - Need to eliminate: *B*,*C*,*D*,*E*,*F*
- Initial factors:

 $\begin{aligned} P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f) \\ \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_{h}(e, f) \\ \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_{h}(e, f) \end{aligned}$

- Step 3: Eliminate F
 - compute

$$m_f(e,a) = \sum_f p(f \mid a) m_h(e,f)$$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)m_f(a, e)$

- Query: *P(B* | *h)*
 - Need to eliminate: *B*,*C*,*D*,*E*
- Initial factors:

$$\begin{split} P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f) \\ \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_{h}(e, f) \\ \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_{h}(e, f) \\ \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)m_{f}(a, e) \end{split}$$

- Step 4: Eliminate E
 - compute

$$m_e(a,c,d) = \sum_e p(e \mid c,d) m_f(a,e)$$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)m_{e}(a, c, d)$

- Query: *P(B* | *h*)
 - Need to eliminate: B,C,D
- Initial factors:

P(a)P(b)P(c | b)P(d | a)P(e | c, d)P(f | a)P(g | e)P(h | e, f)

- $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)m_f(a, e)$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)m_e(a, c, d)$

• Step 5: Eliminate *D* • compute $m_d(a,c) = \sum_d p(d \mid a)m_e(a,c,d)$ $\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$

- Query: *P(B* | *h*)
 - Need to eliminate: *B*,*C*
- Initial factors:

P(a)P(b)P(c | d)P(d | a)P(e | c, d)P(f | a)P(g | e)P(h | e, f)

 $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)m_f(a, e)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_{e}(a, c, d)$

 $\Rightarrow P(a)P(b)P(c \mid d)m_d(a, c)$

• Step 6: Eliminate C

compute

$$m_c(a,b) = \sum_c p(c \mid b) m_d(a,c)$$

 $\Rightarrow P(a)P(b)P(c \mid d)m_d(a, c)$

- Query: *P(B* | *h*)
 - Need to eliminate: B
- Initial factors:

P(a)P(b)P(c | d)P(d | a)P(e | c, d)P(f | a)P(g | e)P(h | e, f)

 $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)m_f(a, e)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_e(a, c, d)$
- $\Rightarrow P(a)P(b)P(c \mid d)m_d(a, c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- Step 7: Eliminate B
 - compute

 $\Rightarrow P(a)m_b(a)$

$$m_b(a) = \sum_b p(b)m_c(a,b)$$

- Query: *P(B* | *h)*
 - Need to eliminate: B
- Initial factors:

 $P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)m_f(a, e)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_e(a, c, d)$
- $\Rightarrow P(a)P(b)P(c \mid d)m_d(a, c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- $\Rightarrow P(a)m_b(a)$
- Step 8: Wrap-up

$$\begin{split} p(a,\widetilde{h}) &= p(a)m_b(a), \quad p(\widetilde{h}) = \sum_a p(a)m_b(a) \\ \Rightarrow P(a \mid \widetilde{h}) &= \frac{p(a)m_b(a)}{\sum p(a)m_b(a)} \end{split}$$

Complexity of Variable Elimination

• Suppose in one elimination step we compute

$$m_{x}(y_{1},...,y_{k}) = \sum_{x} m'_{x}(x, y_{1},..., y_{k})$$
$$m'_{x}(x, y_{1},..., y_{k}) = \prod_{i=1}^{k} m_{i}(x, \mathbf{y}_{c_{i}})$$

This requires

• $k \bullet |\operatorname{Val}(X)| \bullet \prod_{i} |\operatorname{Val}(\mathbf{Y}_{C_i})|$ multiplications

- For each value of $x_i y_{1}, ..., y_k$, we do k multiplications

- $|\operatorname{Val}(X)| \bullet \prod_{i} |\operatorname{Val}(\mathbf{Y}_{c_i})|$ additions
 - For each value of y_1, \dots, y_k , we do /Va/(X)/ additions

Complexity is **exponential** in number of variables in the intermediate factor
Understanding Variable Elimination

moralization

graph elimination

Elimination Cliques

 $m_g(e)$

 $m_d(a,c)$

 $m_h(e,f)$

 $m_c(a,b)$

Understanding Variable Elimination

• A graph elimination algorithm

- Intermediate terms correspond to the cliques resulted from elimination
 - "good" elimination orderings lead to small cliques and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - finding the optimum ordering is NP-hard, but for many graph optimum or nearoptimum can often be heuristically found
- Applies to undirected GMs

A Clique Tree

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree

Messages can be reused

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree
 - Another query ...

Messages m_f and m_h are reused, others need to be recomputed

The Junction Tree Algorithm

Shafer-Shenoy algorithm

Message from clique *i* to clique *j*:

$$\mu_{i \to j} = \sum_{C_i \setminus S_{ij}} \psi_{C_i} \prod_{k \neq j} \mu_{k \to i}(S_{ki})$$

Clique marginal

$$p(C_i) \propto \psi_{C_i} \prod_k \mu_{k \to i}(S_{ki})$$

The Sketch of Junction Tree Algorithm

• The algorithm

- Construction of junction trees --- a special clique tree
- Propagation of probabilities --- a message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A generic exact inference algorithm for any GM
- **Complexity**: exponential in the size of the maximal clique --a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT
- Many well-known algorithms are special cases of JT
 - Forward-backward, Kalman filter, Peeling, Sum-Product ...

A Junction Tree Algorithm for HMM

• A junction tree for the HMM

- Rightward pass $\mu_{t \to t+1}(y_{t+1}) = \sum_{y_t} \psi(y_t, y_{t+1}) \mu_{t-1 \to t}(y_t) \mu_{t\uparrow}(y_{t+1})$ $= \sum_{y_t} p(y_{t+1} \mid y_t) \mu_{t-1 \to t}(y_t) p(x_{t+1} \mid y_{t+1})$ $= p(x_{t+1} \mid y_{t+1}) \sum_{y_t} a_{y_t, y_{t+1}} \mu_{t-1 \to t}(y_t)$ • This is exactly the forward algorithm!
- Leftward pass ...

$$\mu_{t-1\leftarrow t}(y_t) = \sum_{y_{t+1}} \psi(y_t, y_{t+1}) \mu_{t\leftarrow t+1}(y_{t+1}) \mu_{t\uparrow}(y_{t+1})$$
$$= \sum_{y_{t+1}} p(y_{t+1} | y_t) \mu_{t\leftarrow t+1}(y_{t+1}) p(x_{t+1} | y_{t+1})$$

This is exactly the backward algorithm!

Summary

• Represent dependency structure with a directed acyclic graph

- Node <-> random variable
- Edges encode dependencies
 - Absence of edge -> conditional independence
- Plate representation
- A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
 - Local specification → globally consistent distribution
 - Local representation for exponentially complex state-space
- Support efficient inference and learning