Introduction to Bioinformatics

Jianlin Cheng, PhD

Department of Computer Science
Informatics Institute

․ㅝ Mizzou

University of Missouri
2011

Topics

- Introduction
- Biological Sequence Alignment and Database Search
- Analysis of gene expression data

What's Bioinformatics?

An interdisciplinary science of developing and applying computational techniques to address problems in molecular biology

- Develop bioinformatics algorithms and tools
- Apply bioinformatics tools to address biological problems

History of Bioinformatics

How does a new interdisciplinary science emerge?

Natural Sciences

Engineering/Math

Genome Sequencing

High-Throughput Sequencing

- Transcriptome (EST, RNA-Seq, Chip-Seq)
- Proteomics (Mass Spectrometry)
- Metabolomics

Growth of GenBank
(1982-2008)

Base Pairs of DNA (billions)

What can we do with these huge amount of data?

Find buried treasure - Doug Brutlag, 1999.

Typical Bioinformatics Problems

- What family does this gene / protein belong to?
- Are there other known homologous proteins?
- What is the function and structure of this protein?
- What biological pathway does this protein participate in?
- Is a mutation on a gene / protein related to a phenotype or disease?
- Is a gene differentially expressed in a biological condition?

Fundamental Problems: Sequence Comparison

- Why do we compare sequences?
- What's similarity between two sequences?
- How to compare sequences?
- Is similarity significant?

Importance of Similarity Comparison

- Identify evolutionary relationship between genes and proteins
- Similar genes/proteins have similar function
- Similar proteins have similar structures

Global Pairwise Sequence Alignment

Three Main Issues

1.Definition of alignment score
2. Algorithms of finding the optimal alignment
3. Evaluation of significance of alignment score

A simple scoring scheme

- Score of character pair: S (match)=1, S (not_match)
$=-1, S($ gap-char $)=-1$
- Score of an alignment $=$

ITAKPAKTPTSPKEQAIGLSVTFLSFLLPAGWVLYHL
ITAKPQWLKSTE-------SVTFLSFLLPQTQGLYHL

$$
5-7-7+10-4+4=1
$$

Optimization

- How can we find the best alignment to maximize alignment score?
- How many possible alignments exist for two sequences with length m and n ?

Total Number of Possible Alignments

$$
\mathbf{m}+\mathbf{n}
$$

Total Number of Alignments

Select m positions out of $m+n$ possible positions:

$$
\binom{m+n}{m}=\frac{(m+n)!}{m!n!}
$$

Exponential!

If $m=300, n=300$, total $=10^{37}$

Divide and Conquer

Goal: align prefix $\mathrm{P}[1 . . \mathrm{i}]$ and prefix $\mathrm{Q}[1 . . \mathrm{j}]$
i

```
Seq P: AGATCAGAAATGG
Seq Q: ATAGAATCC
    j
```

Three possibilities assuming we know the optimal alignment of smaller prefixes:

Case 1

Use alignment of $\mathrm{P}[1 . \mathrm{i}-1]$ and $Q[1 . . j-1]$, pair $P[i]$ and $Q[j]$

Case 2
Use alignment of $\mathrm{P}[1 . . \mathrm{i}]$ And $Q[1 . . j-1]$, pair $Q[j]$ with gap

Case 3
Use alignment of $\mathrm{P}[1 . . \mathrm{i}-1]$ and $Q[1 . . j]$, pair $P[i]$ with gap.

Needleman and Wunsch Algorithm

- Given sequences P and Q , we use a matrix M to record the optimal alignment scores of all prefixes of P and Q . $\mathrm{M}[i, j]$ is the best alignment score for the prefixes $\mathrm{P}[1 . . \mathrm{i}]$ and $\mathrm{Q}[1 . . \mathrm{j}]$.
- $\mathbf{M}[\mathbf{i}, \mathbf{j}]=$
max [

```
                M[i-1,j-1] + S(P[i],Q[j]),
                M[i,j-1] + S(-, Q[j])
                M[i-1,j] + S(P[i], -)
        ]
```

Dynamic Programming

Dynamic Programming Algorithm

Three-Step Algorithm:
-Initialization
- Matrix fill (scoring)
-Trace back (alignment)

1. Initialization of Matrix M

	-	A	T	A	G	A	A	T
-	0	-1	-2	-3	-4	-5	-6	-7
A	-1							
G	-2							
A	-3							
T	-4							
C	-5							
A	-6							
G	-7							
A	-8							
A	-9							
A	-10							
T	-11							
G	-12							

2. Fill Matrix

	A	T	A	G	A		A	T	
-	0 ${ }^{-1}$ -7	-2	-3	-4	-5		6	-7	
A	-1 1 								
G	-2 ${ }^{\text {a }}$								
A	-3 ${ }^{-1}$								
T	-4 -2 -5								
C									
A	-6 -4 -7								
G									
A	-8 -6 -9								
A	-9 -7 9 7 10								
A	-10 -8 -10								
T	-11 -9 12								
G	-12 -10								

2. Fill Matrix

	A	T	A	G	A			
-	0 -1 -1	-2	-3	-4	-5	-6	-7	
A	-1×1	$\stackrel{0}{ }$						
G	-2×6	0						
A	-3 ${ }^{-1}$	-1						
T	-4 -2	${ }^{1} 0$						
C	-5 -3	-1						
A	-6 ${ }^{-7}$	-2						
G	-7 -5 -8	-3						
A	-8 -6	-4						
A	-9 -7 -10	-5						
A	-10 -8	-6						
T	-11 -9 18	-7						
G	-12 -10	-8						

2. Fill Matrix

3. Trace Back

Local vs. Global Alignment

- Global Alignment

- Local Alignment—better alignment to find conserved segment Transcription binding site
tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Smith-Waterman Algorithm

Same dynamic program algorithm as global alignment except for three differences.

1. All negative scores is converted to 0
2. Alignment can start from anywhere in the matrix
3. Alignment can end at anywhere in the matrix

Application Example (Alignment - Structure)

TARGET
 TEMPLATE

ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

Source: A. Fisher, 2005

Global and Local Alignment Tools

- NEEDLE (global alignment)
http://bioweb.pasteur.fr/seqanal/interfaces/needle. html
- WATER (local alignment)
http://bioweb.pasteur.fr/seqanal/interfaces/water.ht ml

Scoring Matrix

- How to accurately measure the similarity between amino acids (or nucleotides) is one key issue of sequence alignment.
- For nucleotides, a simple identical / not identical scheme is mostly ok.
- Due to various properties of amino acids, it is hard and also critical to measure the similarity between amino acids.

Evolutionary Substitution Approach

- During evolution, the substitution of similar (or dissimilar) amino acids is more (or less) likely to be selected within protein families than random substitutions (M. Dayhoff)
- The frequency / probability one residue substitutes another one is an indicator of their similarity.

PAM Scoring Matrices
 (M. Dayhoff)

- Select a number of protein families.
- Align sequences in each family and count the frequency of amino acid substitution of each column. The frequency is used to compute the empirical substitution probability of which residue i substitutes residue $\mathrm{j}\left(\mathrm{P}_{\mathrm{ij}}\right)$.
- Similarity score is ratio of observed substitution probability over the random substitution probability. $\mathbf{S}(\mathbf{i}, \mathbf{j})=\log \left(\mathbf{P}_{\mathrm{ij}} /\left(\mathbf{P}_{\mathbf{i}} * \mathbf{P}_{\mathbf{j}}\right)\right) . \mathrm{P}_{\mathrm{i}}$ is the observed probability of residue i and P_{j} is the observed probability of residue j
- PAM: Point Accepted Mutation

A Simplified Example

ACGTCGAGT ACCACGTGT CACACTACT ACCGCATGA АСССТАТСТ TCCGTAACA ACCATAAGT AGCATAAGT ACTATAAGT ACGATAAGT

$$
\mathrm{P}(\mathrm{~A}<->\mathrm{C})=0.07+0.07=0.14
$$

Substitution Frequency Table

	A	C	G	T
A	30	6	12	6
C	6	0	2	1
G	12	2	1	2
T	6	1	2	0

Total number bf substitutions: 90

	A	C	G	T
A	.33	.07	.14	.07
C	.07	0	.02	.01
G	.14	.02	.01	.02
T	.07	.01	.02	0

A Simplified Example

ACGTCGAGT ACCACGTGT CACACTACT ACCGCATGA АСССТАТСТ TCCGTAACA ACCATAAGT AGCATAAGT ACTATAAGT ACGATAAGT
$P(A<->C)=0.07+0.07=0.14$ $S(A, C)=\log (0.14 /(0.6 * 0.1))=0.36$

Chars	Prob.
A	$6 / 10$
C	$1 / 10$
G	$2 / 10$
T	$1 / 10$

Substitution Frequency Table

	A	C	G	T
A	30	6	12	6
C	6	0	2	1
G	12	2	1	2
T	6	1	2	0

Total number bf substitutions: 90

	A	C	G	T
A	.33	.07	.14	.07
C	.07	0	.02	.01
G	.14	.02	.01	.02
T	.07	.01	.02	0

$$
\begin{aligned}
& \text { c } 12 \\
& \begin{array}{rrrr}
3 & 0 & 2 & \\
T & -2 & 1 & 3
\end{array} \\
& \begin{array}{llllll}
P & -5 & 1 & 0 & 6 & \\
A & -Z & 1 & 1 & 1 & 2
\end{array} \\
& \begin{array}{lllllll}
\mathrm{G} & -3 & 1 & 0 & -1 & 1 & 5 \\
\mathrm{~N} & -4 & 1 & 0 & -1 & 0 & 0
\end{array} \\
& \begin{array}{lllllllll}
& -4 & 1 & 0 & -1 & 0 & 0 & 2 & \\
\mathrm{D} & -5 & 0 & 0 & -1 & 0 & 1 & 2 & 4
\end{array} \\
& \begin{array}{llllllllll}
\mathrm{B} & -5 & 0 & 0 & -1 & 0 & 0 & 1 & 3 & 4
\end{array} \\
& \begin{array}{rrrrrrrrrrrrr}
9 & -5 & -1 & -1 & 0 & 0 & -1 & 1 & 2 & 2 & 4 & & \\
H & -5 & -1 & -1 & 0 & -1 & -2 & 2 & 1 & 1 & 3 & 6 & \\
\mathrm{R} & -4 & 0 & -1 & 0 & -2 & -3 & 0 & -1 & -1 & 1 & 2 & 6
\end{array} \\
& \begin{array}{lllllllllllll}
\mathrm{K} & -5 & 0 & 0 & -1 & -1 & -2 & 1 & 0 & 0 & 1 & 0 & 3
\end{array} \\
& \begin{array}{llllllllllllllll}
\mathrm{M} & -5 & -2 & -1 & -2 & -1 & -3 & -2 & -3 & -2 & -1 & -2 & 0 & 0 & 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
\mathrm{L} & -6 & -5 & -2 & -3 & -2 & -4 & -3 & -4 & -3 & -2 & -2 & -3 & -3 & 4 & 2 & 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllll}
C & \mathbf{S} & \mathrm{~T} & \mathrm{P} & \mathrm{~A} & \mathrm{G} & \mathrm{~N} & \mathrm{D} & \mathrm{E} & \mathrm{O} & \mathrm{H} & \mathrm{R} & \mathrm{~K} & \mathrm{M} & \mathrm{I} & \mathrm{~L} & \mathrm{Y} & \mathrm{~F} & \mathrm{Y} & \mathrm{H}
\end{array}
\end{aligned}
$$

PAM250 Matrix (log odds multiplied by 10)

BLOSUM Matrices

(Henikoff and Henikoff)

- PAM matrices don't work well for aligning evolutionarily divergent sequences.
- BLOSUM: BLOcks SUbstitution Matrix
- PAM based on observed mutations throughout global alignment. BLOSUM based on highly conserved local regions /blocks without gaps.
- BLOSUMn is a matrix calculated from proteins share at most n\% identity. BLOSUM62 is the most widely used matrix (BLAST, PSI-BLAST, CLUSTALW)

Block 1

Block2

$$
\begin{aligned}
& \begin{array}{lrrrr}
\mathrm{C} & \mathrm{~g} & & & \\
\mathrm{~s} & -1 & 4 & & \\
\mathrm{~T} & -1 & 1 & 5 & \\
\mathrm{P} & -3 & -1 & -1 & 7
\end{array} \\
& \begin{array}{llllll}
A & 0 & 1 & 0 & -1 & 4
\end{array} \\
& \begin{array}{rrrrrrr}
G & -3 & 0 & -2 & -2 & 0 & 6 \\
\mathrm{~N} & -3 & 1 & 0 & -2 & -2 & 0
\end{array} \\
& \text { D }-3 \quad 0 \quad-1-1-2-1 \quad 1 \\
& \text { B } \quad-4 \quad 0 \quad-1 \quad-1 \quad-1 \quad-2 \quad 0 \quad 2 \\
& \begin{array}{llllllll}
9 & -3 & 0 & -1 & -1 & -1 & -2 & 0 \\
H & -3 & -1 & -2 & -2 & -2 & -2 & 1
\end{array} \\
& \begin{array}{lllllllllllll}
\mathrm{R} & -3 & -1 & -1 & -2 & -1 & -2 & 0 & -2 & 0 & 1 & 0 & 5
\end{array} \\
& \begin{array}{llllllllllllll}
\mathrm{K} & -3 & 0 & -1 & -1 & -1 & -2 & 0 & -1 & 1 & 1 & -1 & 2 & 5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I } \quad \mathbf{- 1}-\mathbf{- 2}-1 \begin{array}{llllllllllllll}
& -3 & -1 & -4 & -3 & -3 & -3 & -3 & -3 & -3 & -3 & 1 & 4
\end{array} \\
& \begin{array}{lllllllllllllllll}
\text { L } & -1 & -2 & -1 & -3 & -1 & -4 & -3 & -4 & -3 & -2 & -3 & -2 & -2 & 2 & 2 & 4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllllll}
\mathrm{F} & -2 & -2 & -2 & -4 & -2 & -3 & -3 & -3 & -3 & -3 & -1 & -3 & -3 & 0 & 0 & 0 & -1 & 6 & \\
\mathrm{Y} & -2 & -2 & -2 & -3 & -2 & -3 & -2 & -3 & -2 & -1 & 2 & -2 & -2 & -1 & -1 & -1 & -1 & 3 & 7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllll}
C & S & T & P & A & G & N & D & E & G & H & R & K & M & I & L & V & F & Y & H
\end{array}
\end{aligned}
$$

BLOSUM62 Matrix

Significance of Sequence Alignment

- Why do we need significant test?
- Mathematical view: unusual versus "by chance"
- Biological view: evolutionary related or not?

Randomization Approach

- Randomization is a fundamental idea due to Fisher.
- Randomly permute chars within sequence P and Q to generate new sequences (P^{\prime} and Q^{\prime}). Align new sequences and record alignment scores.
- Assuming these scores obey normal distribution, compute mean (u) and standard derivation (σ) of alignment scores

Normal distribution of alignment scores of two sequences
\cdot If $S=u+2 \sigma$, the probability of observing the alignment score equal to or more extreme than this by chance is 2.5%, e.g., $\mathrm{P}(\mathrm{S}>=\mathrm{u}+2 \sigma)=2.5 \%$.
Thus we are 97.5% confident that the alignment score is significant (not by chance).
-For any score x , we can compute $\mathrm{P}(\mathrm{S}>=\mathrm{x})$, which is called p -value.

Figure: Histogram of alignment scores

Model-Based Approach (Karlin and Altschul)

http://www.people.virginia.edu/~wrp/csh102/Altschul/Altschul-3.html

- Extreme Value Distribution

$$
P(S \geq x)=1-\exp p-\left(-m n e^{-1 \cdot x}\right)
$$

K and lamda are statistical parameters depending on substitution matrix. For BLOSUM62, lamda $=0.252, \mathrm{~K}=0.35$

P-Value

- $\mathrm{P}(\mathrm{S} \geq \mathrm{x})$ is called \mathbf{p}-value. It is the probability that random sequences has alignment score equal to or bigger than x .
- Smaller -> more significant.

Problems of Using Dynamic Programming to Search Large Sequence Database

- Search homologs in DNA and protein database is often the first step of a bioinformatics study.
- DP is too slow for large sequence database search such as Genbank and UniProt. Each DP search can take hours.
- Most DP search time is wasted on unrelated sequences or dissimilar regions.
- Developing fast, practical sequence comparison methods for database search is important.

Fast Sequence Search Methods

- All successful, rapid sequence comparison methods are based on a simple fact: similar sequences /regions share some common words.
- First such method is FASTP (Pearson \& Lipman, 1985)
- Most widely used methods are BLAST (Altschul et al., 1990) and PSI-BLAST (Altschul et al., 1997).

Basic Local Alignment Search Tool (S. Altschul, W. Gish, W. Miller, E. Meyer and D. Lipman)

1. Compile a list of words for a query
2. Scan sequences in database for word hits
3. Extending hits

David Lipman

Compile Word List

- Words: w-mer with length w.
- Protein 4-mer and DNA 12-mer Query:

DSRSKGEPRDSGTLQSQEAKAVKKTSLFE
Words: DSRS, SRSK, RSKG, KGEP....

Example of extension

Query: DSRSKGEPRDSGTLQSQEAKAVKKTSLFE

Words: DSRS, SRSK, RSKG, KGEP....

Database Sequence: PESRSKGEPRDSGKKQMDSOKPD

Maximum Segment Pair: ESRSKGEPRDSG

P-Value and E-Value

- P-value
- E -value = database size * p-value
- Common threshold: 0.01

P-value $=\operatorname{Prob}($ score $>=S)$

Usage of BLAST

- Versions: BLASTP, BLASTN, BLASTX (translated)
- Sequence Databases: NR, PDB, SwissProt, Gene databases of organisms, or your own databases
- Expectation value
- Low complexity
- Similarity matrix (PAM or BLOSUM)
- Output format

NCBI Online Blast

Protein

 Blast
\qquad The request ID is 1155545882 -10456-164751611258.BLASTQ4

Formatl or Resetail

Set subsequence From: \square To:
Choose database
Do CD-Search
now: BLAST! or Reset query Resetail

Sequences producing significant alignments:	Score (Bits)	$\begin{gathered} \text { E } \\ \text { Value } \end{gathered}$			
gi\|67876011	ref	ZP $00505069.1 \mid$ Lipolytic enzyme, G-D-S-L:Clos	344	$1 \mathrm{e}-93$	
gi\|121831	sp	P15329	GUNX CLOTM Putative endoglucanase X (EGX)	227	2e-58
gi\|35213333	dbj	BAC90705.1	gl12764 [Gloeobacter violaceus PC.	103	$5 \mathrm{e}-21$
gi\|89241797	emb	CAJ81036.1	putative xylanase [Actinoplanes sp.	90.9	3e-17
gi\| $46123721\|r e f\| X P 386414.1 \mid$ hypothetical protein FG06238.1	87.4	$3 \mathrm{e}-16$			
gi\|111057360	gb	EAT78480.1	hypothetical protein SNOG_14243 [Pha	83.2	$7 \mathrm{e}-15$
gi\|90294376	ref	ZP $01213970.1 \mid$ hypothetical protein Bpse17_02...	82.0	$1 \mathrm{e}-14$	
gi\|52209736	emb	CAH35705.1	putative exported oxidase [Bu	81.3	$2 \mathrm{e}-14$
gi\|76579113	gb	ABA48588.1	galactose oxidase-like protein [Bu	81.3	$3 \mathrm{e}-14$
gi\|111225445	ref	YP 716239.1	putative Glycosyl hydrolase [Fr	79.3	$9 \mathrm{e}-14$

Matched sequences ranked by score and evalue

```
> gi|35213333|dbj|BAC90705.1| G gl12764 [Gloeobacter violaceus PCC 7421]
gi|37522333|ref|NP 925710.1| G hypothetical protein gl12764 [Gloeobacter violaceus PCC 7421]
Length=559
Score = 103 bits (256), Expect = 5e-21, Method: Composition-based stats.
Identities = 89/194 (45%), Positives = 115/194 (59%), Gaps = 12/194 (6%)
Query 7 KIMPVGDSCTEGMGGGEMGSYRTELYRLLTQAGLSIDFVGSQRSGPSSLPDKDHEGHSGW
    K+MP+GDS TEG G YRT+L+ L G + DFVGSQ SGPSSL DK+HEGH G+
Sbjct 108 KVMPLGDSITEGFTVS--GGYRTDLWNSLVSEGSNADFVGSQSSGPSSLSDKNHEGHPGY 165
Query 67 TIPQIASNINNWLNTHNPDVVFlwiggndlllngn--lnatglsnlIDQIFTVKPNVTLF 124
        I QIA I++WL + P+ V L IG ND+ N + IS LIDQIF ++ +V L+
Sbjct 166 FIDQIADGIDDWLPKYKPETVLLLIGTNDIEKNNDPGGAPGRLSALIDQIFALRSSVKLY 225
Query 125 VADYYPWPE-AIKQ----YNAVIPGIVQQKANAGKKVYFVKLSEIQFDRNTDISWDGLHL 179
    VA P + AI Q YNA IPGIV K GKKV +V + D++ D +H
Sbjct 226 VASIPPADDSAINQRVLDYNAAIPGIVNGKITQGKKVVYVDIYNAL--TTADLA-DTVHP 282
Query 180 SEIGYkKIANIWYK 193
            GY KIA+ W++
Sbjct 283 DAEGYAKIADRWFE 296
```


Database Search Using Sequence Profiles

- Multiple related sequences in protein family and super family (profile)
- More data, more robust, more sensitive
- Consider a group of related sequences (profile) is a POWERFUL idea

Why does a family of sequences help?

Protein Universe

Why does a family of sequences help?

Protein Universe

Why does a family of sequences help?

Family

Protein Universe

PSI-BLAST Algorithm

- Use BLAST to search database. Use significantly matched sequences to construct a profile / PSSM
- Repeat

Use PSSM to search database
Use significant matched sequences to construct a PSSM

- Until no new sequence is found or reach the maximum number of iterations.

Use PSI-BLAST Software

- Download: http://130.14.29.110/BLAST/download.shtml
- Command:
blastpgp -i seq_file -j iteration -h include_evalue_threshold -e report_evalue_threshold -d database -o output_file
-i: input sequence file in FASTA format
-j: number of iterations
-d: sequence database
-h: cut-off e-value of including a sequence into PSSM (profile)
-e: cut-off e-value of reporting a sequence
-o: output file

