Introduction to Bioinformatics

Jianlin Cheng, PhD

Department of Computer Science Informatics Institute

2011

Topics

- Introduction
- Biological Sequence Alignment and Database Search
- Analysis of gene expression data

What's Bioinformatics?

An interdisciplinary science of developing and applying computational techniques to address problems in molecular biology

- Develop bioinformatics algorithms and tools
- Apply bioinformatics tools to address biological problems

Genome Sequencing

					m	ammals	
					birds		
					amphil	bians	
					bony fis	h	
				insec	ets		
				plants			
			fung	i			
		bacteri	a				
$\overline{\mathbf{v}}$	iruses						

High-Throughput Sequencing

- Transcriptome (EST, RNA-Seq, Chip-Seq)
- Proteomics (Mass Spectrometry)
- Metabolomics

What can we do with these huge amount of data?

Find buried treasure - Doug Brutlag, 1999.

Typical Bioinformatics Problems

- What family does this gene / protein belong to?
- Are there other known homologous proteins?
- What is the function and structure of this protein?
- What biological pathway does this protein participate in?
- Is a mutation on a gene / protein related to a phenotype or disease?
- Is a gene differentially expressed in a biological condition?

Fundamental Problems: Sequence Comparison

- Why do we compare sequences?
- What's similarity between two sequences?
- How to compare sequences?
- Is similarity significant?

Importance of Similarity Comparison

- Identify evolutionary relationship between genes and proteins
- Similar genes/proteins have similar function
- Similar proteins have similar structures

Global Pairwise Sequence Alignment

ITAKPAKT-TSPKEQAIGLSVTFLSFLLPAG-VLYHL

Three Main Issues

Definition of alignment score
 Algorithms of finding the optimal alignment
 Evaluation of significance of alignment score

A simple scoring scheme

- Score of character pair: S(match)=1, $S(not_match)$ = -1, S(gap-char) = -1 _n
- Score of an alignment =

$$\sum_{1}^{n} S_{i}$$

ITAKPAKTPTSPKEQAIGLSVTFLSFLLPAGWVLYHL ITAKPQWLKSTE----SVTFLSFLLPQTQGLYHL

$$5 - 7 - 7 + 10 - 4 + 4 = 1$$

Optimization

- How can we find the best alignment to maximize alignment score?
- How many possible alignments exist for two sequences with length m and n?

Total Number of Possible Alignments

m + **n**

Total Number of Alignments

Select m positions out of m+n possible positions:

$$\binom{m+n}{m} = \frac{(m+n)!}{m!n!}$$

Exponential!

If m = 300, n = 300, total = 10^{37}

Divide and Conquer

```
Goal: align prefix P[1..i] and prefix Q[1..j]
i
Seq P: AGATCAGAAATGG
Seq Q: ATAGAATCC
j
```

Three possibilities assuming we know the optimal alignment of smaller prefixes:

Needleman and Wunsch Algorithm

- Given sequences P and Q, we use a matrix M to record the optimal alignment scores of all prefixes of P and Q. M[i,j] is the best alignment score for the prefixes P[1..i] and Q[1..j].
- M[i,j] =

```
max [
```

```
M[i-1,j-1] + S(P[i],Q[j]),

M[i,j-1] + S(-,Q[j])

M[i-1,j] + S(P[i], -)
```

Dynamic Programming

Dynamic Programming Algorithm

Three-Step Algorithm:

- Initialization
- •Matrix fill (scoring)
- •Trace back (alignment)

1. Initialization of Matrix M

i

2. Fill Matrix

2. Fill Matrix

2. Fill Matrix

3. Trace Back

Local vs. Global Alignment

Global Alignment

--T--CC-C-AGT--TATGT-CAGGGGACACG-A-GCATGCAGA-GAC

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Smith-Waterman Algorithm

- Same dynamic program algorithm as global alignment except for three differences.
- 1. All negative scores is converted to 0
- 2. Alignment can start from anywhere in the matrix
- 3. Alignment can end at anywhere in the matrix

Application Example (Alignment – Structure)

TARGET

ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

Source: A. Fisher, 2005

Global and Local Alignment Tools

• NEEDLE (global alignment)

http://bioweb.pasteur.fr/seqanal/interfaces/needle. html

• WATER (local alignment)

http://bioweb.pasteur.fr/seqanal/interfaces/water.ht ml

Scoring Matrix

- How to accurately measure the similarity between amino acids (or nucleotides) is one key issue of sequence alignment.
- For nucleotides, a simple identical / not identical scheme is mostly ok.
- Due to various properties of amino acids, it is hard and also critical to measure the similarity between amino acids.

Evolutionary Substitution Approach

- During evolution, the substitution of similar (or dissimilar) amino acids is more (or less) likely to be selected within protein families than random substitutions (M. Dayhoff)
- The frequency / probability one residue substitutes another one is an indicator of their similarity.

PAM Scoring Matrices (M. Dayhoff)

- Select a number of protein families.
- Align sequences in each family and count the frequency of amino acid substitution of each column. The frequency is used to compute the empirical substitution probability of which residue i substitutes residue j (P_{ii}).
- Similarity score is ratio of observed substitution probability over the random substitution probability.
 S(i,j) = log(P_{ij} / (P_i * P_j)). P_i is the observed probability of residue i and P_j is the observed probability of residue j
- PAM: Point Accepted Mutation

A Simplified Example

ACGTCGAGT ACCACGTGT CACACTACT ACCGCATGA ACCCTATCT TCCGTAACA ACCATAAGT AGCATAAGT ACTATAAGT ACGATAAGT

Substitution Frequency Table

	A	С	G	Т
A	30	6	12	6
С	6	0	2	1
G	12	2	1	2
Т	6	1	2	0

Total number of substitutions: 90

	Α	С	G	Т
А	.33	.07	.14	.07
С	.07	0	.02	.01
G	.14	.02	.01	.02
Т	.07	.01	.02	0

P(A < ->C) = 0.07 + 0.07 = 0.14

A Simplified Example

ACGTCGAGT ACCACGTGT CACACTACT ACCGCATGA ACCCTATCT TCCGTAACA ACCATAAGT AGCATAAGT ACTATAAGT ACGATAAGT

Substitution Frequency Table

			-	
	A	С	G	Т
A	30	6	12	6
С	6	0	2	1
G	12	2	1	2
Т	6	1	2	0

Total number of substitutions: 90

	A	С	G	Т
А	.33	.07	.14	.07
С	.07	0	.02	.01
G	.14	.02	.01	.02
Т	.07	.01	.02	0

P(A <->C) = 0.07 + 0.07 = 0.14S(A,C) = log(0.14/(0.6*0.1)) = 0.36

 \mathbf{C} 12 ${\boldsymbol{S}}$ 0 \mathbf{Z} Т -21 3 Ρ -31 06 A -2 1 1 1 2 -3 0 -1 G 1 1 5 0 0 2 -4 1 0 -1 Ν 0 1 2 D -5 0 0 -1 4 0 0 1 0 -1 1 -5 3 2 Е 0 -1 0 4 ្ឋ 2 -5 -1 -1 0 4 1 1 36 12 -3 -1 -1 0 - 1 - 2 \mathbf{Z} Н R 0 -1 -1 -40 - 2 - 36 0 -1 0 3 К -5 1 5 0 -20 0 0 -1 -1 1 0 M -5 -2 -1 -2 -1 -20 -3 $-\mathbf{2}$ -3-26 Ι -2 -10 - 2-2-2 $-\mathbf{Z}$ -22 5 -3 L -6 -34 Z 6 -34 2 V -2 -1-2 -2 -2 -2 \mathbf{Z} 4 0 -1 -Z 2 - 1F -5 -2 -4 -51 -4 -3- 5 0 9 0 - 4 - 4 - 2 - 1 - 1 - 2Y 0 - 3 - 3 - 57 10 -2 -4 -5 -2 -6W. -8 -30 17 -5 2 - 30 С \mathbf{S} L P A G Е \mathbf{Q} Η R К M Ι V F Y ¥ Т N D

PAM250 Matrix (log odds multiplied by 10)

BLOSUM Matrices (Henikoff and Henikoff)

- PAM matrices don't work well for aligning evolutionarily divergent sequences.
- BLOSUM: BLOcks SUbstitution Matrix
- PAM based on observed mutations throughout global alignment. BLOSUM based on highly conserved local regions /blocks without gaps.
- BLOSUMn is a matrix calculated from proteins share at most n% identity. BLOSUM62 is the most widely used matrix (BLAST, PSI-BLAST, CLUSTALW)

- VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS----HGSA -VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS----HGSA VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSNPGAVMGNP -VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASE

Block 1 Block2

```
С
   9
S -1 4
Т
        1
   -1
           5
P -3 -1 -1
              - 7
A
        1
           0 -1
   0
                   4
G
  -3 0 -2 -2
                     6
                  0
Ν
   -3
        1
           0 - 2 - 2
                        6
                      0
D
  -3
                           6
        0 -1 -1 -2 -1
                         1
В
                           25
                         0
   -4
             -1 -1 -2
        0 -1
Q
                           025
   -3
        0 -1
             -1 -1 -2
                         0
Η
                         1 -1
                               0 0 8
  -3 -1 -2 -2 -2 -2
R
   -3 -1 -1
             -2 -1 -2
                         0 - 2
                                0
                                    1
                                       05
К
                                1
  -3
                          0
                           -1
                                    1 -1
                                           \mathbf{Z}
        0
                 -1
                    -2
                                              5
M
  -1 -1
                            -3
                                    0 -2
                                                  5
                               -\mathbf{Z}
Ι
                                                  1
                                                     4
   -1 -
                                              -3
                                                    Z 4
L
  -1 -2
                                                  \mathbf{Z}
                                             -2
V
                                             -2
                                                  1
                                                    3
   -1 -2
                                                         1 4
           0
             -2
                                           -3
F
                                                  0
                                                     0
  -2 -2 -2
                                             -3
                                                         0 -1
                                                                6
             -4
                                         -2 -2 -1 -1 -1 -1
Y
  -2 -2 -2 -3
                                       \mathbf{Z}
                                                                3
                                                                   7
                          \mathbf{Z}
                 -\mathbf{Z}
W
   -2 -3
                                                                1
                                                                   2 11
          -\mathbf{Z}
                                             -3
                                                      R
                                                         2 - 3
                 -3
    C
       3
           Т
              P
                 A
                     G
                         N
                             D
                               Е
                                   _ Q
                                      н
                                          R K
                                                 M
                                                     Ι
                                                         L
                                                           V
                                                               F
                                                                   Y
                                                                      - 67
```

BLOSUM62 Matrix

Significance of Sequence Alignment

- Why do we need significant test?
- Mathematical view: unusual versus "by chance"
- Biological view: evolutionary related or not?

Randomization Approach

- Randomization is a fundamental idea due to Fisher.
- Randomly permute chars within sequence P and Q to generate new sequences (P' and Q'). Align new sequences and record alignment scores.
- Assuming these scores obey normal distribution, compute mean (u) and standard derivation (σ) of alignment scores

Normal distribution of alignment scores of two sequences

•If $S = u+2 \sigma$, the probability of observing the alignment score equal to or more extreme than this by chance is 2.5%, e.g., $P(S \ge u+2 \sigma) = 2.5\%$. Thus we are 97.5% confident that the alignment score is significant (not by chance). •For any score x, we can compute $P(S \ge x)$, which is called p-value.

Figure: Histogram of alignment scores

Model-Based Approach (Karlin and Altschul)

http://www.people.virginia.edu/~wrp/cshl02/Altschul/Altschul-3.html

• Extreme Value Distribution $P(S \ge x) = 1 - exp(-Kmn e^{-\lambda X})$

K and lamda are statistical parameters depending on substitution matrix. For BLOSUM62, lamda=0.252, K=0.35

P-Value

- P(S≥x) is called p-value. It is the probability that random sequences has alignment score equal to or bigger than x.
- Smaller -> more significant.

Problems of Using Dynamic Programming to Search Large Sequence Database

- Search homologs in DNA and protein database is often the first step of a bioinformatics study.
- DP is too slow for large sequence database search such as Genbank and UniProt. Each DP search can take hours.
- Most DP search time is wasted on unrelated sequences or dissimilar regions.
- Developing fast, practical sequence comparison methods for database search is important.

Fast Sequence Search Methods

- All successful, rapid sequence comparison methods are based on a simple fact: similar sequences /regions **share some common words**.
- First such method is FASTP (Pearson & Lipman, 1985)
- Most widely used methods are BLAST (Altschul et al., 1990) and PSI-BLAST (Altschul et al., 1997).

Basic Local Alignment Search Tool (S. Altschul, W. Gish, W. Miller, E. Meyer and D. Lipman)

- 1. Compile a list of words for a query
- 2. Scan sequences in database for word hits
- 3. Extending hits

David Lipman

Stephen Altschul

Compile Word List

- Words: w-mer with length w.
- Protein 4-mer and DNA 12-mer
 Query:

DSRSKGEPRDSGTLQSQEAKAVKKTSLFE Words: DSRS, SRSK, RSKG, KGEP....

Example of extension

 Query:
 DSRSKGEPRDSGTLQSQEAKAVKKTSLFE

 Words:
 DSRS, SRSK, RSKG, KGEP....

Database Sequence: PESRSKGEPRDSGKKQMDSOKPD

Maximum Segment Pair: ESRSKGEPRDSG

P-Value and E-Value

- P-value
- E-value = database size * p-value
- Common threshold: 0.01

P-value = Prob(score >=S)

Usage of BLAST

- Versions: BLASTP, BLASTN, BLASTX (translated)
- Sequence Databases: NR, PDB, SwissProt, Gene databases of organisms, or your own databases
- Expectation value
- Low complexity
- Similarity matrix (PAM or BLOSUM)
- Output format

NCBI Online Blast

Google - ncbi	💌 🕂 Ġ Search 👻 🚰	ageRank 🗚 Check 🝷 🦄 AutoLink 🐨 AutoFill 🛃 Options 🤌				
$rac{}{}$ NCBI $ ightarrow$ BLAST		Latest news: 7 May 2006 : BLAST 2.2.14 released				
bout • Getting started • News • FAQs	The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. program compares nucleotide or protein sequences to sequence databases and calculates the statisti significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families.					
lore info	Nucleotide	Protein				
 NAR 2004 NCBI Handbook The Statistics of Sequence Similarity Scores Software 	 Quickly search for highly similar sequence (megablast) Quickly search for divergent sequences (discontiguous megablast) Nucleotide-nucleotide BLAST (blastn) Search for short, nearly exact matches Search trace archives with megablast or discontiguous megablast 	 Protein-protein BLAST (blastp) Position-specific iterated and pattern-hit initiated BLAST (PSI- and PHI-BLAST) Search for short, nearly exact matches Search the conserved domain database (rpsblast) Protein homology by domain architecture (cdart) 				
DownloadsDeveloper info	Translated	Genomes				
Other resources References NCBI Contributors Mailing list Contact us 	 Translated query vs. protein database (blastx) Protein query vs. translated database (tblastn) Translated query vs. translated database (tblastx) 	 Human, mouse, rat, chimp, cow, pig, dog, sheep, cat Chicken, puffer fish, zebrafish Fly, honey bee, other insects Microbes, environmental samples Plants, nematodes Fungi, protozoa, other eukaryotes 				

DNA Blast

🕲 N	CBI Bl	ast - M	ozilla	Firefox	:														
Ele	Edit	⊻iew	Go	Bookn	narks	Tools	Help												
	- [> -	Z			Sh	ttp://w	ww.ncbi	i.nlm.nih	n.gov/BL	AST/Bla	st.cgi?	CMD=\	Veb8	LAYO	UT=Tw	oWind	dows8A	υто_
Goo	ogle •	ncbi					-	• G	Search	- 🚿	PageB	ank AB	Ched	. - 1	K A	utoLink	Ŷ.	AutoFil	
٢																			
		<u>S</u> 6	earch																
	Set st	ubsequ	ence	From:			To:												
	Choo	se data	base	nr			¥												
l		1	Now:	BL.	AST] or (Reset q	uery	Reset a	I									
\overline{c}			_																
		Opt	ions	for adv	anced	l blastir	ng												
	Lin	nit by e g	ntrez uery					or sel	ect fro	m:All o	organi	sms							V
	2	hoose	filter	🗹 Lo	w con	nplexity	н	uman r	epeats	🗆 Ma	isk for l	lookup	table	only		/lask lo	wer o	ase	
		E	spect	10															
		Word	l Size	11 •	·														
L	Oth	er adva	nced]						

Protein Blast

<u>Search</u>	
Set subsequence	From: To:
Choose database	nr 💌
Do CD-Search	
Now:	BLAST! or Reset query Reset all

Options	for advanced blasting
Limit by entrez query	or select from: All organisms
Compositional adjustments	Composition-based statistics
<u>Choose filter</u>	\blacksquare Low complexity \square Mask for lookup table only \square Mask lower case
Expect	10
Word Size	3 💌

The request ID is 1155545882-10456-164751611258.BLASTQ4

Format! or Reset all

Sequences producing significant alignments:	Score (Bits)	E Value
<pre>gi 67876011 ref ZP 00505069.1 Lipolytic enzyme, G-D-S-L:Clos</pre>	<u>344</u>	1e-93
gi 121831 sp P15329 GUNX CLOTM Putative endoglucanase X (EGX)	227	2e-58
<pre>gi 35213333 dbj BAC90705.1 gll2764 [Gloeobacter violaceus PC</pre>	103	5e-21
gi 89241797 emb CAJ81036.1 putative xylanase [Actinoplanes sp.	90.9	3e-17
<u>gi 46123721 ref XP 386414.1 </u> hypothetical protein FG06238.1 [87.4	3e-16
<u>gi 111057360 gb EAT78480.1 </u> hypothetical protein SNOG_14243 [Pha	83.2	7e-15
<u>gi 90294376 ref ZP 01213970.1 </u> hypothetical protein Bpse17_02	82.0	1e-14
<u>gi 52209736 emb CAH35705.1 </u> putative exported oxidase [Burkho	81.3	2e-14
<u>gi 76579113 gb ABA48588.1 </u> galactose oxidase-like protein [Bu	81.3	3e-14
gi 111225445 ref YP 716239.1 putative Glycosyl hydrolase [Fr	79.3	9e-14

Matched sequences ranked by score and evalue

Output Format

> gi|35213333|dbj|BAC90705.1| gll2764 [Gloeobacter violaceus PCC 7421]
 gi|37522333|ref|NP 925710.1| hypothetical protein gll2764 [Gloeobacter violaceus PCC 7421]
Length=559

Score = 103 bits (256), Expect = 5e-21, Method: Composition-based stats. Identities = 89/194 (45%), Positives = 115/194 (59%), Gaps = 12/194 (6%)

- Query 7 KIMPVGDSCTEGMGGGEMGSYRTELYRLLTQAGLSIDFVGSQRSGPSSLPDKDHEGHSGW 66 K+MP+GDS TEG G YRT+L+ L G + DFVGSQ SGPSSL DK+HEGH G+
- Sbjct 108 KVMPLGDSITEGFTVS--GGYRTDLWNSLVSEGSNADFVGSQSSGPSSLSDKNHEGHPGY 165
- Query 67 TIPQIASNINNWLNTHNPDVVFlwiggndlllngn--lnatglsnlIDQIFTVKPNVTLF 124 I QIA I++WL + P+ V L IG ND+ N + LS LIDQIF ++ +V L+
- Sbjct 166 FIDQIADGIDDWLPKYKPETVLLLIGTNDIEKNNDPGGAPGRLSALIDQIFALRSSVKLY 225
- Query 125 VADYYPWPE-AIKQ----YNAVIPGIVQQKANAGKKVYFVKLSEIQFDRNTDISWDGLHL 179 VA P + AI Q YNA IPGIV K GKKV +V + D++ D +H
- Sbjct 226 VASIPPADDSAINQRVLDYNAAIPGIVNGKITQGKKVVYVDIYNAL--TTADLA-DTVHP 282
- Query 180 SEIGYKKIANIWYK 193 GY KIA+ W++
- Sbjct 283 DAEGYAKIADRWFE 296

Significant local alignments

Database Search Using Sequence Profiles

- Multiple related sequences in protein family and super family (profile)
- More data, more robust, more sensitive
- Consider a group of related sequences (profile) is a **POWERFUL** idea

Why does a family of sequences help?

Protein Universe

Why does a family of sequences help?

Protein Universe

Why does a family of sequences help?

PSI-BLAST Algorithm

- Use BLAST to search database. Use significantly matched sequences to construct a profile / PSSM
- Repeat

Use PSSM to search database

Use significant matched sequences to construct a PSSM

• Until no new sequence is found or reach the maximum number of iterations.

Use PSI-BLAST Software

- Download: http://130.14.29.110/BLAST/download.shtml
- Command:

blastpgp –i seq_file –j iteration –h include_evalue_threshold –e report_evalue_threshold –d database –o output_file

- -i: input sequence file in FASTA format
- -j: number of iterations
- -d: sequence database
- -h: cut-off e-value of including a sequence into PSSM (profile)
- -e: cut-off e-value of reporting a sequence
- -o: output file