

Recursive Protein Structure Modeling

Jianlin Cheng, PhD

Department of Computer Science Informatics Institute University of Missouri, Columbia

Presented at BIBM Computational Structural Bioinformatics Workshop, Nov. 12, 2011

Protein Structure Prediction – A Key Challenge in the Genomic Era

Genome Sequencing

Genome Interpretation

Growth of PDB Structures

Images.google.com

Computational Protein Structure Prediction

Structure = f (sequence)? \leftarrow E = MC²

Computational Simulation

Images.google.com

Template-Based Modeling

Images.google.com

Template-Based Modeling

TARGET

TEMPLATE

ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

Modeller

A. Fisher, 2005

Template-Free (Ab Initio) Modeling

Protein Structure Space

Dill & Chan, 1997

Template-Free Modeling

3D Simulation

minimum free energy

Methods: molecular dynamics, fragment assembly, distance / contact-based modeling

Combination of Template-Free and Template-Based Modeling

Protein Modeling Spectrum

Region Decomposition from Alignment

B)

Template: 1TWIA

Recursive Protein Modeling – Integrate TBM and FM

Recursive Modeling Mimics Protein Folding Cascade

ks.uiuc.edu

Case 1: Domain-Level Recursive Protein Modeling – CASP9 T0547

Case 2: Refine uncertain regions of a largely template-based modeling (T0539)

GDT-TS = 0.64

Before tail refinement GDT-TS = 0.64 After tail refinement GDT-TS = 0.73

Before tail refinement GDT-TS = 0.64 After tail refinement GDT-TS = 0.73 Superposition Green: model, Blue: structure

Case 3: Expanding a template-based core into a full structure (T0616)

Native Structure

Native Structure

Template-based modeling (GDT-TS = 0.34)

Native Structure

Template-based modeling (GDT-TS = 0.34)

Template-based + Ab Initio (GDT-TS = 0.39)

Advantages of Recursive Protein Modeling

- Avoiding error-prone hard decisions on the classification of a protein target or a region
- Combining the strength of template-based modeling and template-free modeling
- Improving sampling efficiency by recursively expanding certain regions
- Easy to implement and improve

Acknowledgements

Xin Deng

Jesse Eickholt

Zheng Wang

Comparison with Previous Approaches

Compared with loop modeling

<u>Region of any size</u>: loop, partial domain, domain, multiple domains

<u>Region of any type</u>: helix, strand, loop

• Compared with TASSER

<u>Common</u>: template-based + template-free <u>Different</u>: gap filling VS. alternated, recursive certainty expansion