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Simplest Neural Network for 
Classification – Logistic Regression

• Binary Classification

+

-

activation = w0 + w1x1 + w2x2 + …, wdxd

P(y = 1) = f(x) =  

x1 x2 xd

g(a)

……1

wnew = wcur −
∂Error
∂w

= wcur − ( f (x)− y)x

Loss/cross-entropy: 
-(ylog(o) + (1-y)log(1- o))

w0 w1 w2 wd

g: sigmoid
function

a: activation

O: output f(x)
y: target (0 or 1)

1

1+ e−w0− wixi∑
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Simplest Neural Network for 
Classification – Logistic Regression

• Multi Classification

activation = w0 + w1x1 + w2x2 + …, wdxd

P(yi = 1) = f(x) =  

x1 x2 xd

1

……1

Loss/cross-entropy: 

w10 w11 w12

w1d

g: softmax
a: activation

O: output f(x)
y: target (0 or 1)

ewi0+ wijx j∑

∑ ewi0+ wijx j∑

m
wm0

wmd

− yi logoi
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Perceptron
Learning to map input to output (label) and is guided by output. 

Training

Testing

+

-

f(x) = w0 + w1x1 + w2x2 + …, wdxd

f(x) > 0: positive class (1)
f(x) < 0: negative class (0)

Learning is to adjust w to minimize the squared 
error between f(x) and true y. 

Perceptron – 1960s

x1 x2 xd

f(x) = 
σ(Σ(x))

……1

Label information

wnew = wcur −
∂Error
∂w

= wcur − (o− y)x

Error: (o - y)2

w0 w1 wd

Activation 
function:
Delta function
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Simplest Neural Network for 
Regression – Linear Regression

x1 x2 xd

I(a)

……1

wnew = wcur −
∂Error
∂w

= wcur − (o− y)x

w0 w1 w2 wd

Activation function: identity  
function

a: activation

Y: target
O: output

Error: (o-y)2

Output = w0 + w1x1 + w2x2 + …, wdxd
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TensorFlow Demo of One-Node 
Network

• Data Sets: MNIST digit recognition data or Iris 
flower classification data

• Google’s TensorFlow installation: 
https://www.tensorflow.org/

• Install it on mac: 
https://www.tensorflow.org/install/install_ma
c

• Activate tensorflow: $source 
~/tensorflow/bin/activate
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Tensor
Flow

Model 
for 

Linear 
Regres
sion I
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Tensor 
Flow 

Linear 
Model 

II
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Logistic Regression for Hand Writing 
Classification
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Neural Network

x1 x2 xd

f(Σ)

……1

f(Σ) f(Σ)…

f(Σ)

o
Error: (o-y)2

Forward
Propagation

Backward
Propagation

1980s – Neural Network Revolution

Hidden layer
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Two-Layer Neural Network

å
=

M

j
jkj zw

0

å
=

d

i
iji xw

0

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit ak: 

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj: 
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Adjust Weights by Training

• How to adjust weights?
• Adjust weights using known examples 

(training data) (x1,x2,x3,…,xd,t). 
• Try to adjust weights so that the difference 

between the output of the neural network y and 
t (target) becomes smaller and smaller.

• Goal is to minimize Error (difference) as we 
did for one layer neural network
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Adjust Weights using Gradient 
Descent

Data: (x1,x2,x3,…,xn)   target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

for each example, compute output y calculate error E = (y-t)2

compute the derivative of E over w: dw=
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations (epochs)

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶
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Stochastic Gradient Descent

Data: (x1,x2,x3,…,xn)   target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

Randomize the order of examples, divide into batches
for each example in a batch, compute output y and error E = (y-t)2

compute the derivative of E over w: dw=
Add the derivatives of a batch together
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations (epochs)

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶
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Neural Network Learning: Two 
Processes

• Forward propagation: present an example 
(data) into neural network. Compute activation 
into units and output from units. 

• Backward propagation: propagate error back 
from output layer to the input layer and 
compute derivatives (or gradients). 
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Forward Propagation
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y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak: 

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj: 

zj

yk

Time complexity?
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Forward Propagation
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y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak: 

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj: 

zj

yk

Time complexity?
O(dM + MC) = O(W)
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Backward Propagation
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Backward Propagation
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If no back-propagation, time
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TensorFlow Demo of Simple Neural 
Networks

• Data Sets: Iris flower classification data
• Google’s TensorFlow installation: 

https://www.tensorflow.org/

CS8725 - Supervised Learning
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Keras
• Keras is an open-source neural-network library written in Python. It is 

capable of running on top of TensorFlow, Microsoft Cognitive 
Toolkit, Theano, or PlaidML.[1][2] Designed to enable fast 
experimentation with deep neural networks, it focuses on being user-
friendly, modular, and extensible. It was developed as part of the 
research effort of project ONEIROS (Open-ended Neuro-Electronic 
Intelligent Robot Operating System),[3] and its primary author and 
maintainer is François Chollet, a Google engineer. Chollet also is the 
author of the XCeption deep neural network model[4].

• In 2017, Google's TensorFlow team decided to support Keras in 
TensorFlow's core library.[5]Chollet explained that Keras was conceived 
to be an interface rather than a standalone machine 
learning framework. It offers a higher-level, more intuitive set of 
abstractions that make it easy to develop deep learning models 
regardless of the computational backend used.[6] Microsoft added 
a CNTK backend to Keras as well, available as of CNTK v2.0.[7][8]
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An Example with TensorFlow in 
Keras for MNIST Classification

CS8725 - Supervised Learning

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

https://www.tensorflow.org/overview/



x1 x2 xd

f(Σ)

……1

f(Σ) f(Σ)…

f(Σ)

o

f(Σ) f(Σ) f(Σ)…

f(Σ) f(Σ) f(Σ)…

…… Vanishing
Gradient or
Explosion
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Neural Network’s Winter in 1990s

• A standard three-layer 
neural network is a 
universal approximator

• Hard to train multi-layer 
neural networks

• Get different models 
from different training 
(local minimal)
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How to Construct Deep Networks?

G. Hinton

2000s
CS8725 - Supervised Learning



Learning by Composition? – A Face 
Recognition Analogy

Image pixels

Lines, circles, 
squares

Face or not ?

……

Brain Learning
CS8725 - Supervised Learning



Breakthrough
Deep Learning: machine learning 
algorithms based on learning 
multiple levels of representation / 
abstraction
Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural 
language processing / understanding

CS8725 - Supervised Learning



Machine Learning for Artificial 
Intelligence

Four key ingredients for ML towards AI
• Lots & lots of data
• Very flexible models
• Enough computing power
• Technical improvement (ReLu function, ResNet, 

semi-supervised learning)
• Powerful priors that can defeat the curse of 

dimensionality
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Linear Activation Function
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Sigmoid Function
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Hyperbolic Tangent Function (TanH)
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Rectified Linear Unit (ReLU)
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Leaky ReLU
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Bypassing the curse of
dimensionality

• We need to build compositionality into our ML 
models just as human languages exploit 
compositionality

• Exploiting compositionality gives an exponential 
gain in representational power: (1) distributed 
representations/embeddings (feature learning); (2) 
deep architecture ( multi-levels of feature learning)

• Additional prior: compositionality is useful to 
describe the world around us efficiently

CS8725 - Supervised Learning



Classical Symbolic AI vs
Learning Distributed Representations
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Exponential advantage of distributed
representations
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Each feature can be discovered without the need 
for seeing the exponentially large number of 

configurations of the other features
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Exponential advantage of distributed
representations
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Exponential advantage of depth
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Why does it work? No Free Lunch
• It only works because we are making some 

assumptions about the data generating 
distribution

• Worse-case distributions still require exponential 
data

• But the world has structure and we can get an 
exponential gain by exploiting some of it
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Exponential advantage of depth

CS8725 - Supervised Learning



Construct Deep Networks
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Typical Deep Multilayer Neural Net 
Architecture
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Computing Gradients by Back-Propagation
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Running Backprop
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Modular Classes
dC/dW = dC/dY . dY/dx
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Modular Classes

(replace linear filter with non-linear filter in convolutional neural network)
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Any architecture works
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Backprop in Pratice
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Free Deep 
Learning Book

2016

URL: http://www.deeplearningbook.org
CS8725 - Supervised Learning

Ian Goodfellow and Yoshua Bengio and Aaron 
Courville

http://www.deeplearningbook.org/
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Deep Learning = Training Multistage 
Machines

CS8725 - Supervised Learning



Overall Architecture: multiple stages of 
Normalization → Filter Bank → Non-Linearity 

→ Pooling

log prob. 

tanh, ….
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Convolutional Architecture
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Multiple Convolutions

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/
CS8725 - Supervised Learning



Convolutional Networks (vintage 
1990)
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1D (Temporal) convolutional net
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1D CNN for Protein Fold Classification
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Deep 1D-Convoluation Neural 
Network

Rectified Linear Unit (ReLU): f(x) = max(0,  x)
Output layer: 1,195 nodes with sigmoid function

Hou et al., 2017CS8725 - Supervised Learning



Training Data
Distribution of sequence lengths of protein domains in SCOP 1.75 database

16,712 protein domains
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Batch Training Using Binning and Padding 
according to Sequence Length

Hou et al., 2017CS8725 - Supervised Learning



Demo of Training DCNN
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Accuracy on Validation Datasets of 
SCOP1.75

Accuracy on Independent Dataset of 
SCOP 2.06 (4,418 proteins, Sim <= 40%)

Num of 
Predictions

Set 1 (Sim
< 95%)

Set 2 (Sim
< 70%)

Set 3 (Sim
< 40%)

Set 4 (Sim
< 25%)

Average

Top 1 80.4% 78.2% 75.8% 67.0% 75.3%
Top 5 93.7% 92.4% 90.0% 87.6% 91.0%

Method Top 1 Top 5
DeepSF 77% 92%
MajorityAssignment 4% 16%
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Simple ConvNet for MNIST [LeCun
1998]
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Convolution Example without Padding
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Sliding Window ConvNet + Weighted 
FSM (Fixed Post-Proc)
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Why Multiple Layers? The World is Compositional
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ConvNets are somewhat inspired by 
the Visual Cortex
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What are ConvNets Good For

CS8725 - Supervised Learning



CNN – Translation Invariance
• The 2-d planes of nodes (or their outputs) at subsequent layers in a 

CNN are called feature maps
• To deal with translation invariance, each node in a feature map has 

the same weights (based on the feature it is looking for), and each 
node connects to a different overlapping receptive field of the 
previous layer 

• Thus each feature map searches the full previous layer to see if, 
where, and how often its feature occurs (precise position less critical)
– The output will be high at each node in the map corresponding to a 

receptive field where the feature occurs
– Later layers could concern themselves with higher order combinations of 

features and rough relative positions
– Each calculation of a node’s net value, Σxw+b in the feature map, is called 

a convolution, based on the similarity to standard convolutions
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CNN Structure
• Each node (e.g. convolution) is calculated for each receptive field in the 

previous layer
– During training the corresponding weights are always tied to be the same 

(ala BPTT) 
– Thus a relatively small number of unique weight parameters to learn, 

although they are replicated many times in the feature map
– Each node output in CNN is f(Σxw + b) (ReLU, tanh etc.)
– Multiple feature maps in each layer
– Each feature map should learn a different translation invariant feature
– Since after first layer, there are always multiple feature maps to connect to 

the next layer, it is a pre-made human decision as to which previous maps 
the current convolution map receives inputs from, could connect to all or a 
subset

• Convolution layer causes total number of features to increase
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Sub-Sampling (Pooling)
• Convolution and sub-sampling layers are interleaved
• Sub-sampling (Pooling) allows number of features to be diminished, 

and to pool information
– Pooling replaces the network output at a certain point with a summary 

statistic of nearby outputs
– Max-Pooling common (Just as long as the feature is there, take the max, 

as exact position is not that critical), also averaging, etc.
– Pooling smooths the data  and reduces spatial resolution and thus 

naturally decreases importance of exactly where a feature was found, just 
keeping the rough location – translation invariance

– 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.
– Convolution usually increases number of feature maps, pooling keeps 

same number of reduced maps (one-to-one correspondence of 
convolution map to pooled map) as the previous layer
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Pooling Example (Summing or 
averaging)

CS8725 - Supervised Learning



Pooling (cont.)
l Common layers are convolution, non-linearity, then pool 

(repeat)
l Note that pooling always decreases map volumes (unless 

pool stride = 1, highly overlapped), making real deep nets 
more difficult.  Pooling is sometimes used only after 
multiple convolved layers and sometimes not at all. 

l At later layers pooling can make network invariant to more than just translation –
learned invariances
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CNN Training
• Trained with BP but with weight tying in each feature map

– Randomized initial weights through entire network
– Just average the weight updates over the tied weights in feature map 

layers
• Convolution layer

– Each feature map has one weight matrix for each input and one bias
– Thus a feature map with a 5x5 receptive field (filter) would have a total of 

26 weights, which are the same coming into each node of the feature map
– If a convolution layer had 10 feature maps, then only a total of 260 unique 

weights to be trained in that layer (much less than an arbitrary deep net 
layer without sharing)

• Sub-Sampling (Pooling) Layer
– All elements of receptive field max’d, averaged, summed, etc.  Result 

multiplied by one trainable weight and a bias added, then passed through 
non-linear function (detector, e.g. ReLU) for each pooling node

– If a layer had 10 pooling feature maps, then 20 unique weights to be 
trained
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CNN Hyperparameters
• Structure itself, number of layers, size of filters, 

number of feature maps in convolution layers, 
connectivity between layers, activation functions, final 
supervised layers, Pooling parameters, etc.

• Drop-out often used in final fully connected layers for 
overfit avoidance – less critical in convolution/pooling 
layers which already regularize due to weight sharing

• Stride – if don’t have to test every location for the 
feature (i.e. stride = 1), could sample more coarsely
– Another option for down-sampling

• As is, the feature map would always decrease in volume 
which is not always desirable - Zero-padding avoids this 
and lets us maintain up to the same volume
– Would shrink fast for large kernel/filter sizes and would limit 

the depth (number of layers) in the network
– Also allows the different filter sizes to fit arbitrary map 

widths
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ILSVRC Image net Large Scale Vision 
Recognition Competition

CS8725 - Supervised Learning

RGB: 224 x 224 x 3 = 150,528 raw real valued features



Example CNNs Structures ILSVRC 
winners

• Note Pooling considered part of the 
layer

• 96 convolution kernels, then 256, 
then 384

• Stride of 4 for first convolution kernel, 
1 for the rest

• Pooling layers with 3x3 receptive 
fields and stride of 2 throughout

• Finishes with fully connected (fc) MLP 
with 2 hidden layers and 1000 output 
nodes for classes
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Example CNNs Structures ILSVRC winners
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Increasing Depth
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Go Deep with Residual 
Network

He et al., 2015 CS8725 - Supervised Learning
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CNN Summary
• High accuracy for image applications – Breaking all records and 

doing it using just using just raw pixel features!
• Special purpose net – good for images or problems with strong 

grid-like or sequential local spatial/temporal correlation
• Once trained on one problem (e.g. vision) could use same net 

(often tuned) for a new similar problem – general creator of vision 
features  (Transfer learning)

• Unlike traditional nets, handles variable sized inputs
– Same filters and weights, just convolve across different sized image 

and dynamically scale size of pooling regions (not # of nodes), to 
normalize

– Different sized images, different length speech segments, etc.
• Lots of hand crafting and CV tuning to find the right recipe of 

receptive fields, layer interconnections, etc.
– Lots more Hyperparameters than standard nets, and even than 

other deep networks, since the structures of CNNs are more 
handcrafted

– CNNs getting wider and deeper with speed-up techniques (e.g. GPU, 
ReLU, etc.) and lots of current research, excitement, and success
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Demo of DCNN 
with TensorFlow

Build a DCNN to classify digital images
on MNIST dataset
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Key code
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Train and Evaluate

CS8725 - Supervised Learning



Dilated Convolution
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Deep Belief Network – Learning 
Representation of Data First
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…… Vanishing
Gradient
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Image pixels

Lines, circles, 
squares

Face or not ?

……

Brain Learning
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A Deep 
Learning 
Success
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Energy Based Models
p(x) – probability of our data; data is represented by 

feature vector x.

and

Attach an energy function (ie, E(x)) to score a 
configuration (ie, each possible input x).

We want desirable data to have low energy.  Thus, tweak 
the parameters of E(x) accordingly.  

Restricted Boltzann Machines (RBM)
CS8725 - Supervised Learning



EBMs with Hidden Units

To increase power of EBMs, add hidden 

variables.

By using the notation,

We can rewrite p(x) in a form similar to the 

standard EBM,

Free energy

Restricted Boltzmann Machines (RBM)

log(P(x)) = -F(x) – log(Z)

CS8725 - Supervised Learning



Tweakin’ Parameters

Now we need to adjust the model so it reflects 
our data, do ML 
• Likelihood fn

• Avg. Log-likelihood fn

CS8725 - Supervised Learning



Tweakin’ Parameters

• Take the derivative
-

-

-

-

-

-

-
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Tweakin’ Parameters

• Take the derivative

This is an expectation over all 
possible configurations of input 
x.  

Restricted Boltzann Machines (RBM)

Can think of as an expectation 
over dataset.
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Transition to RBM
Looks like training a EBM is, in general,  a 
tall task.  But after much 

Jump to an end result…
Restricted Boltzmann Machines (RBM)
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RBMs
• Represented by a bipartite 

graph, with symmetric, 
weighted connections 

• One layer has visible nodes 
and the other hidden (ie, 
latent) variables.

• Notes are often binary , 
stochastic units (ie, assume 0 
or 1 based on probability)

CS8725 - Supervised Learning



Unsupervised Restricted Boltzmann 
Machine (RBM)

• A model for a distribution over 
two layers of binary nodes
• Probability is defined via an 
�energy�

v

h

wij

cj

bi

hidden layer

visible layer

p(v,h) =

CS8725 - Supervised Learning



What’s gained by “Restricted”

1) Conditional probabilities factor nicely

2) Using binary units, we also can get

So we can get a sample of the visible or hidden 
nodes easily...

Restricted Boltzann Machines (RBM)

and

CS8725 - Supervised Learning



Training a RBM – Maximum Likelihood
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Gibbs Sampling 

Can sample from p(v,h) by repeatedly 
sampling from v and h using the eqns. for 
p(v|h) and p(h|v). 
As t →∞, (v(t) ,h(t)) converge to samples of 
p(v,h).
But… hard to know when equilibrium has been 
reach, can be computationaly expensive

Restricted Boltzann Machines (RBM)
CS8725 - Supervised Learning



Training a RBM - Contrastive 
Divergence based on Gibbs Sampling
Instead of attempting to sample from joint 
distribution p(v,h) (i.e. p∞), sample from p1(v,h).

Hinton, Neural Computation(2002)CS8725 - Supervised Learning



Learning Rule
Recall energy function

Calculating derivatives…

So,

CS8725 - Supervised Learning



A quick way to learn an RBM

0>< jihv 1>< jihv

)( 10 ><-><=D jijiij hvhvw e

i

j

i

j

t = 0                 t = 1   

Start with a training vector on the 
visible units.

Update all the hidden units in 
parallel

Update the all the visible units in 
parallel to get a “reconstruction”.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it works well. It is 
approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).

reconstructiondata
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Training a RBM via Contrastive 
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0                 t = 1   

j

i

Gradient of the likelihood with respect to wij ≈ the 
difference between interaction of vi and hj at time 0 and 
at time 1. 

Visible
Layer

Hidden
Layer
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Training a RBM via Contrastive 
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0                 t = 1   

j

i

Gradient of the likelihood with respect to wij ≈ the 
difference between interaction of vi and hj at time 0 and 
at time 1. 

Visible
Layer

Hidden
Layer
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Training a RBM via Contrastive 
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0                 t = 1   

j

i

Gradient of the likelihood with respect to wij ≈ the 
difference between interaction of vi and hj at time 0 and 
at time 1. 

Visible
Layer

Hidden
Layer

Δwi,j = <vi pj
0> - <pi

1pj
1>

σ: sigmoid function
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Challenges with RBMs
A number of choices to be made
– Types of nodes, learning weight, initial values, 

batch sizes, etc.
– Care should be taken to avoid over-fitting

A RBM “manual” is available on line…
http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf

Software package: Pylearn2: 
http://deeplearning.net/software/pylearn2/

On both GPU and CPU

CS8725 - Supervised Learning

http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf
http://deeplearning.net/software/pylearn2/


Calculations need for 
training and classification 
made use of CUDAMat and 
GPUs

Train with over one million 
parameters in about an hour
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Why ???
Okay, we can model p(x).  
But how to…
1. Find p(label|x).  We want a 

classifier!
2. Improve the model for p(x).

CS8725 - Supervised Learning



Deep Belief Nets
RBMs are typically used 
in stack
– Train them up one layer 

at a time
– Hidden units become 

visible units to the next 
layer up

If your goal is a 
discriminator, you train a 
classifier on the top level 
representation of your 
input. 

data
1W

2W

3W
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Training a Deep Network

…

…

…

…

…

…

…

[0,1]

Hinton and Salakhutdinov, Science, 2006

1. Weights are learned 
layer by layer via 
unsupervised learning.

2. Final layer is learned as a 
supervised neural 
network.

3. All weights are fine-
tuned using supervised 
back propagation.
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Why stack them up? Why does this 
work?

This is a good question, with a long complicated 
answer.

Basically, doing so can improve a lower 
variation bound on the probability of training 
data under the model.

Hinton, Osindero, & The, 2006
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How to generate from the model
• To generate data: 

o Get an equilibrium sample 
from the top-level RBM by 
performing alternating 
Gibbs sampling for a long 
time.

o Perform a top-down pass to 
get states for all the other 
layers.

So the lower level bottom-up 
connections  are not part of 
the generative model. They 
are just used for inference.

h2

data

h1

h3

2W

3W

1W

Slide modified from Hinton, 2007

Bonus when 

modeling p(x), w
e 

can see what th
e 

model believes in 
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Deep Autoencoders
• They always looked like a really 

nice way to do non-linear 
dimensionality reduction:
– But it is very difficult to 

optimize deep 
autoencoders using 
backpropagation.

• We now have a much better 
way to optimize them:
– First train a stack of 4 

RBM’s
– Then “unroll” them.  
– Then fine-tune with 

backprop.

1000  neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000  neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear 
units

Hinton & Salakhutdinov, 2006; slide form Hinton 
UCL tutorial  CS8725 - Supervised Learning



Some Applications

We will look at two 
applications done by Hinton’s 
Lab
• A model for digit recognition
• Cluster/search documents
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Applications: A model of digit recognition

• Classify digits (0 – 9) 
• Input is a 28x28 image from MNIST (training 

60k, test 10k examples)

CS8725 - Supervised Learning



Applications: A model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28 
pixel     
image

10 label 
neurons

The model learns to generate 
combinations of labels and images. 

To perform recognition we start with a 
neutral state of the label units and do an 
up-pass from the image followed by a few 
iterations of the top-level associative 
memory.

The top two layers form an 
associative memory  whose  
energy landscape models the 
low dimensional manifolds of 
the digits.

The energy valleys have names

Slide modified from Hinton, 2007

This is work from Hinton 
et al., 2006 

Matlab/Octave code available at
http://www.cs.utoronto.ca/~hinton/ CS8725 - Supervised Learning



Model in action
Hinton has provided an excellent way to view the model in 
action…

http://www.cs.toronto.edu/~hinton/digits.html
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More Digits
Samples generated by letting the associative memory 
run with one label clamped. There are 1000 iterations of 
alternating Gibbs sampling between samples.

Slide from Hinton, 2007CS8725 - Supervised Learning



Examples of correctly recognized handwritten digits 
that the neural network had never seen before 

Slide from Hinton, 2007

Even More Digits
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Extensions
Do classification.

One way (probably no 
the best), train 
generative model with 
labeled/unlabeled data 

Then train a NN on 
higher dimensional 
representation.  

2000 top-level neurons

500 neurons

500 neurons

28 x 28 pixel     
image

NN or SVM
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Applications: Classifying text documents 

• A document can be characterized by the 

frequency of words that appear (ie, word 

counts for some dictionary become feature 

vector)

• Goals…

1. Group/cluster similar documents

2. Find similar documents

CS8725 - Supervised Learning



How to compress the count vector 

Multi-layer auto-encoder
• Train a model to reproduce 

its input vector as its output
• This setup forces as much 

information as possible be 
compressed and passed thru 
the 10 numbers in the 
central bottleneck.

• These 10 numbers are then 
a good way to compare 
documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons

250 neurons

250 neurons

10

Slide modified from Hinton, 2007
CS8725 - Supervised Learning



How to compress the count vector 

Multi-layer auto-encoder
• Train a model to reproduce 

its input vector as its output
• This setup forces as much 

information as possible be 
compressed and passed thru 
the 10 2 numbers in the 
central bottleneck.

• These 10 2 numbers are 
then a good way to compare 
documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons

250 neurons

250 neurons

10 2

Slide modified from Hinton, 2007

Or ‘2’ for easy 
visualization
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Residue-Residue Contact Prediction

Objective:
Predict if two residues (i, j) are in
contact (spatially close), i.e.
distance(i, j) < 8 Angstrom

SDDEVYQYIVSQVKQYGIEPAELLSRKYGDKAKYHLSQRW

1D Sequence

3D Structure
Eickholt & Cheng, 2012

i j



A Binary Classification Problem

SDDEVYQYIVSQVKQYGIEPCSAELLSRKYGDKAKYHLSQRW

Residue info, secondary structure, solvent accessibility, …

A Vector of ~400 Features (numbers between 0 and 1)

Probability that V and Y are in contact?

Cheng & Baldi, 2007; Tegge et al., 2009; Eickholt & Cheng, 2012 

i j



Input Features
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQRCQN

i j

Strand

Helix

Coil

Helix     100
Strand   010
Coil       001

Exposed

Buried

Exposed     10
Buried         01

20 numbers for residue profile
3 numbers 2 numbers

25  * 18 = 400 features for a pair (i, j)



A Vector of ~400 Features (numbers between 0 and 1)

~400 input nodes

~500 nodes

~500 nodes

~350 nodes

wi,j



Training a Deep Network

…

…

…

…

…

…

…

[0,1]

1239 Proteins for Training
Residue Pairs; Millions of 
Residue Pairs



GPU Implementation
Parallelize training of deep 
learning network with GPUs 
and CUDAMat

Train DNs with over 1M 
parameters in about an 
hour

…

…

…

…

…

…

[0,1]

…

LSDEKIINVDF KPSEERVREII

Eickholt & Cheng, 2012



Boosted Ensembles for Contact Prediction

…

…

…

…

…

…

[0,1]

…

…

…

…

…

…

…

[0,1]

…

…

…

…

…

…

…

[0,1]

…
……

[0,1]

Final output of ensemble 
is the weighted sum of 
individual DN outputs.

Eickholt and Cheng, Bioinformatics (2012)



Results on Test Data Set (196 
Proteins) and CASP

Metric Acc. L/5 Acc. L/5 
(one
shift)

Short Range
(6 <= |i-j| <12)

0.51 0.79

Medium
Range
(12 <= |i-j| <24)

0.38 0.65

Long Range
(|i-j| >= 24)

0.34 0.55

2012 2014 2016

2017



Deep Recurrent Neural Network 
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Temporal and Spatial Series Problem
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Recurrent Neural Network
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Recurrent Neural Network
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Increase the expressive power of RNN 
with more depth

CS8725 - Supervised Learning



Long-term dependencies
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RNN Tricks

• Clipping gradients (avoid exploding gradients)
• Momentum
• Initialization (start in right ballpark avoids 

exploding/vanishing)
• LSTM self-loops (avoid vanishing gradient)

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)
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Gated Recurrent Units and Long- and 
Short-Term Memory (LSTM)

CS8725 - Supervised Learning



RNN Tricks
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1D:  Secondary Structure Prediction

Coil

MWLKKFGINLLIGQSVOR

CCCCHHHHHCCCSSSSSS

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Neural Networks

Strand

Helix



Bidirectional Recurrent Neural Network 
for Protein Secondary Structure Prediction

CS8725 - Supervised Learning
Pollastri, Baldi, 2002
Cheng et al., 2006
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Saddle Point
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Piecewise Linear Nonlinearity

CS8725 - Supervised Learning



Stochastic Neurons as Regularizer:
Improving neural networks by prevenHng co-adaptaHon

of feature detectors (Hinton et al 2012, arXiv)
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Early Stopping
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Deep AutoEncoder
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Generative Adversarial Network 
(GAN)
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Deep Reinforcement Learning
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Stochastic Optimization Algorithms
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