
Jianlin Cheng
Department of EECS

University of Missouri – Columbia
2019

Acknowledgements
Some content of this teaching presentation was
drawn from many sources created by great
scientists in the field of deep learning (Hinton,
LeCun, Bengio, Ng, et al.).

CS8725 - Supervised Learning

Simplest Neural Network for
Classification – Logistic Regression

• Binary Classification

+

-

activation = w0 + w1x1 + w2x2 + …, wdxd

P(y = 1) = f(x) =

x1 x2 xd

g(a)

……1

wnew = wcur −
∂Error
∂w

= wcur − (f (x)− y)x

Loss/cross-entropy:
-(ylog(o) + (1-y)log(1- o))

w0 w1 w2 wd

g: sigmoid
function

a: activation

O: output f(x)
y: target (0 or 1)

1

1+ e−w0− wixi∑

CS8725 - Supervised Learning

Simplest Neural Network for
Classification – Logistic Regression

• Multi Classification

activation = w0 + w1x1 + w2x2 + …, wdxd

P(yi = 1) = f(x) =

x1 x2 xd

1

……1

Loss/cross-entropy:

w10 w11 w12

w1d

g: softmax
a: activation

O: output f(x)
y: target (0 or 1)

ewi0+ wijx j∑

∑ ewi0+ wijx j∑

m
wm0

wmd

− yi logoi
i=1

m

∑

CS8725 - Supervised Learning

Perceptron
Learning to map input to output (label) and is guided by output.

Training

Testing

+

-

f(x) = w0 + w1x1 + w2x2 + …, wdxd

f(x) > 0: positive class (1)
f(x) < 0: negative class (0)

Learning is to adjust w to minimize the squared
error between f(x) and true y.

Perceptron – 1960s

x1 x2 xd

f(x) =
σ(Σ(x))

……1

Label information

wnew = wcur −
∂Error
∂w

= wcur − (o− y)x

Error: (o - y)2

w0 w1 wd

Activation
function:
Delta function

CS8725 - Supervised Learning

Simplest Neural Network for
Regression – Linear Regression

x1 x2 xd

I(a)

……1

wnew = wcur −
∂Error
∂w

= wcur − (o− y)x

w0 w1 w2 wd

Activation function: identity
function

a: activation

Y: target
O: output

Error: (o-y)2

Output = w0 + w1x1 + w2x2 + …, wdxd

CS8725 - Supervised Learning

TensorFlow Demo of One-Node
Network

• Data Sets: MNIST digit recognition data or Iris
flower classification data

• Google’s TensorFlow installation:
https://www.tensorflow.org/

• Install it on mac:
https://www.tensorflow.org/install/install_ma
c

• Activate tensorflow: $source
~/tensorflow/bin/activate

CS8725 - Supervised Learning

https://www.tensorflow.org/
https://www.tensorflow.org/install/install_mac

Tensor
Flow

Model
for

Linear
Regres
sion I

CS8725 - Supervised Learning

Tensor
Flow

Linear
Model

II

CS8725 - Supervised Learning

Logistic Regression for Hand Writing
Classification

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Neural Network

x1 x2 xd

f(Σ)

……1

f(Σ) f(Σ)…

f(Σ)

o
Error: (o-y)2

Forward
Propagation

Backward
Propagation

1980s – Neural Network Revolution

Hidden layer

CS8725 - Supervised Learning

Two-Layer Neural Network

å
=

M

j
jkj zw

0

å
=

d

i
iji xw

0

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

å å
= =

´=
M

j

d

i
ijikjk xwgwfy

0 0
))((

Z0=1

1

x0

CS8725 - Supervised Learning

Adjust Weights by Training

• How to adjust weights?
• Adjust weights using known examples

(training data) (x1,x2,x3,…,xd,t).
• Try to adjust weights so that the difference

between the output of the neural network y and
t (target) becomes smaller and smaller.

• Goal is to minimize Error (difference) as we
did for one layer neural network

CS8725 - Supervised Learning

Adjust Weights using Gradient
Descent

Data: (x1,x2,x3,…,xn) target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

for each example, compute output y calculate error E = (y-t)2

compute the derivative of E over w: dw=
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations (epochs)

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶

CS8725 - Supervised Learning

Stochastic Gradient Descent

Data: (x1,x2,x3,…,xn) target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

Randomize the order of examples, divide into batches
for each example in a batch, compute output y and error E = (y-t)2

compute the derivative of E over w: dw=
Add the derivatives of a batch together
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations (epochs)

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶

CS8725 - Supervised Learning

Neural Network Learning: Two
Processes

• Forward propagation: present an example
(data) into neural network. Compute activation
into units and output from units.

• Backward propagation: propagate error back
from output layer to the input layer and
compute derivatives (or gradients).

CS8725 - Supervised Learning

Forward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

…

…

…

y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

zj

yk

Time complexity?

CS8725 - Supervised Learning

Forward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

…

…

…

y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

zj

yk

Time complexity?
O(dM + MC) = O(W)

CS8725 - Supervised Learning

Backward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

å
=

-=
C

k
kk tyE

1

2)(
2
1

…

…

…

y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

f

ak:

g

aj:

Time complexity?

kk
k

ty
y
E

-=
¶
¶

kkkk
k

k

kk

afty
a
y

y
E

a
E d=-=

¶
¶

¶
¶

=
¶
¶)(')(

jk
kj

k

kkj

z
w
a

a
E

w
E d=

¶
¶

¶
¶

=
¶
¶

j

C

k
jkjk

c

k j

j

j

k

k

k

kj

agw
a
z

z
a

a
y

y
E

a
E dd ==

¶

¶

¶
¶

¶
¶

¶
¶

=
¶
¶ åå

== 11
)('

ij
j

jji

x
wji
a

a
E

w
E d=

¶

¶

¶
¶

=
¶
¶

CS8725 - Supervised Learning

Backward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

å
=

-=
C

k
kk tyE

1

2)(
2
1

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

f

ak:

g

aj:

Time complexity?
O(CM+Md) = O(W)

kk
k

ty
y
E

-=
¶
¶

kkkk
k

k

kk

afty
a
y

y
E

a
E d=-=

¶
¶

¶
¶

=
¶
¶)(')(

jk
kj

k

kkj

z
w
a

a
E

w
E d=

¶
¶

¶
¶

=
¶
¶

j

C

k
jkjk

c

k j

j

j

k

k

k

kj

agw
a
z

z
a

a
y

y
E

a
E dd ==

¶

¶

¶
¶

¶
¶

¶
¶

=
¶
¶ åå

== 11
)('

ij
j

jji

x
wji
a

a
E

w
E d=

¶

¶

¶
¶

=
¶
¶

If no back-propagation, time
complexity is: (MdC+CM) CS8725 - Supervised Learning

Example 2)(
2
1 tyE -=

)(ty
a
y

y
E

a
E

kk

-=
¶
¶

¶
¶

=
¶
¶

=d

j
j

z
w
E d=

¶
¶

å
=

M

i
iji xw

1
…

…

x1 xi xd

y

z1 zj zM

wjiw11 w1i

wj

f linear function

ak:

g is sigmoid:

aj:

)1()()(' jjjjjj zzwtyagw --== dd

ijjjij
ji

xzzwtyx
w
E)1()(--==

¶
¶ d

CS8725 - Supervised Learning

TensorFlow Demo of Simple Neural
Networks

• Data Sets: Iris flower classification data
• Google’s TensorFlow installation:

https://www.tensorflow.org/

CS8725 - Supervised Learning

https://www.tensorflow.org/

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Keras
• Keras is an open-source neural-network library written in Python. It is

capable of running on top of TensorFlow, Microsoft Cognitive
Toolkit, Theano, or PlaidML.[1][2] Designed to enable fast
experimentation with deep neural networks, it focuses on being user-
friendly, modular, and extensible. It was developed as part of the
research effort of project ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System),[3] and its primary author and
maintainer is François Chollet, a Google engineer. Chollet also is the
author of the XCeption deep neural network model[4].

• In 2017, Google's TensorFlow team decided to support Keras in
TensorFlow's core library.[5]Chollet explained that Keras was conceived
to be an interface rather than a standalone machine
learning framework. It offers a higher-level, more intuitive set of
abstractions that make it easy to develop deep learning models
regardless of the computational backend used.[6] Microsoft added
a CNTK backend to Keras as well, available as of CNTK v2.0.[7][8]

CS8725 - Supervised Learning

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/PlaidML
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/CNTK
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras

An Example with TensorFlow in
Keras for MNIST Classification

CS8725 - Supervised Learning

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

https://www.tensorflow.org/overview/

x1 x2 xd

f(Σ)

……1

f(Σ) f(Σ)…

f(Σ)

o

f(Σ) f(Σ) f(Σ)…

f(Σ) f(Σ) f(Σ)…

…… Vanishing
Gradient or
Explosion

CS8725 - Supervised Learning

Neural Network’s Winter in 1990s

• A standard three-layer
neural network is a
universal approximator

• Hard to train multi-layer
neural networks

• Get different models
from different training
(local minimal)

å å
= =

´=
M

j

d

i
ijikjk xwgwfy

0 0
))((

CS8725 - Supervised Learning

How to Construct Deep Networks?

G. Hinton

2000s
CS8725 - Supervised Learning

Learning by Composition? – A Face
Recognition Analogy

Image pixels

Lines, circles,
squares

Face or not ?

……

Brain Learning
CS8725 - Supervised Learning

Breakthrough
Deep Learning: machine learning
algorithms based on learning
multiple levels of representation /
abstraction
Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding

CS8725 - Supervised Learning

Machine Learning for Artificial
Intelligence

Four key ingredients for ML towards AI
• Lots & lots of data
• Very flexible models
• Enough computing power
• Technical improvement (ReLu function, ResNet,

semi-supervised learning)
• Powerful priors that can defeat the curse of

dimensionality

CS8725 - Supervised Learning

Linear Activation Function

CS8725 - Supervised Learning

Sigmoid Function

CS8725 - Supervised Learning

Hyperbolic Tangent Function (TanH)

CS8725 - Supervised Learning

Rectified Linear Unit (ReLU)

CS8725 - Supervised Learning

Leaky ReLU

CS8725 - Supervised Learning

Bypassing the curse of
dimensionality

• We need to build compositionality into our ML
models just as human languages exploit
compositionality

• Exploiting compositionality gives an exponential
gain in representational power: (1) distributed
representations/embeddings (feature learning); (2)
deep architecture (multi-levels of feature learning)

• Additional prior: compositionality is useful to
describe the world around us efficiently

CS8725 - Supervised Learning

Classical Symbolic AI vs
Learning Distributed Representations

CS8725 - Supervised Learning

Exponential advantage of distributed
representations

CS8725 - Supervised Learning

Each feature can be discovered without the need
for seeing the exponentially large number of

configurations of the other features

CS8725 - Supervised Learning

Exponential advantage of distributed
representations

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Exponential advantage of depth

CS8725 - Supervised Learning

Why does it work? No Free Lunch
• It only works because we are making some

assumptions about the data generating
distribution

• Worse-case distributions still require exponential
data

• But the world has structure and we can get an
exponential gain by exploiting some of it

CS8725 - Supervised Learning

Exponential advantage of depth

CS8725 - Supervised Learning

Construct Deep Networks

CS8725 - Supervised Learning

Typical Deep Multilayer Neural Net
Architecture

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Computing Gradients by Back-Propagation

CS8725 - Supervised Learning

Running Backprop

CS8725 - Supervised Learning

Modular Classes
dC/dW = dC/dY . dY/dx

CS8725 - Supervised Learning

Modular Classes

(replace linear filter with non-linear filter in convolutional neural network)
CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Any architecture works

CS8725 - Supervised Learning

Backprop in Pratice

CS8725 - Supervised Learning

Free Deep
Learning Book

2016

URL: http://www.deeplearningbook.org
CS8725 - Supervised Learning

Ian Goodfellow and Yoshua Bengio and Aaron
Courville

http://www.deeplearningbook.org/

CS8725 - Supervised Learning

Deep Learning = Training Multistage
Machines

CS8725 - Supervised Learning

Overall Architecture: multiple stages of
Normalization → Filter Bank → Non-Linearity

→ Pooling

log prob.

tanh, ….

CS8725 - Supervised Learning

Convolutional Architecture

CS8725 - Supervised Learning

Multiple Convolutions

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/
CS8725 - Supervised Learning

Convolutional Networks (vintage
1990)

CS8725 - Supervised Learning

1D (Temporal) convolutional net

CS8725 - Supervised Learning

1D CNN for Protein Fold Classification

CS8725 - Supervised Learning

Deep 1D-Convoluation Neural
Network

Rectified Linear Unit (ReLU): f(x) = max(0, x)
Output layer: 1,195 nodes with sigmoid function

Hou et al., 2017CS8725 - Supervised Learning

Training Data
Distribution of sequence lengths of protein domains in SCOP 1.75 database

16,712 protein domains

CS8725 - Supervised Learning

Batch Training Using Binning and Padding
according to Sequence Length

Hou et al., 2017CS8725 - Supervised Learning

Demo of Training DCNN

CS8725 - Supervised Learning

Accuracy on Validation Datasets of
SCOP1.75

Accuracy on Independent Dataset of
SCOP 2.06 (4,418 proteins, Sim <= 40%)

Num of
Predictions

Set 1 (Sim
< 95%)

Set 2 (Sim
< 70%)

Set 3 (Sim
< 40%)

Set 4 (Sim
< 25%)

Average

Top 1 80.4% 78.2% 75.8% 67.0% 75.3%
Top 5 93.7% 92.4% 90.0% 87.6% 91.0%

Method Top 1 Top 5
DeepSF 77% 92%
MajorityAssignment 4% 16%

CS8725 - Supervised Learning

Simple ConvNet for MNIST [LeCun
1998]

CS8725 - Supervised Learning

Convolution Example without Padding

CS8725 - Supervised Learning

Sliding Window ConvNet + Weighted
FSM (Fixed Post-Proc)

CS8725 - Supervised Learning

Why Multiple Layers? The World is Compositional

CS8725 - Supervised Learning

ConvNets are somewhat inspired by
the Visual Cortex

CS8725 - Supervised Learning

What are ConvNets Good For

CS8725 - Supervised Learning

CNN – Translation Invariance
• The 2-d planes of nodes (or their outputs) at subsequent layers in a

CNN are called feature maps
• To deal with translation invariance, each node in a feature map has

the same weights (based on the feature it is looking for), and each
node connects to a different overlapping receptive field of the
previous layer

• Thus each feature map searches the full previous layer to see if,
where, and how often its feature occurs (precise position less critical)
– The output will be high at each node in the map corresponding to a

receptive field where the feature occurs
– Later layers could concern themselves with higher order combinations of

features and rough relative positions
– Each calculation of a node’s net value, Σxw+b in the feature map, is called

a convolution, based on the similarity to standard convolutions

CS8725 - Supervised Learning

CNN Structure
• Each node (e.g. convolution) is calculated for each receptive field in the

previous layer
– During training the corresponding weights are always tied to be the same

(ala BPTT)
– Thus a relatively small number of unique weight parameters to learn,

although they are replicated many times in the feature map
– Each node output in CNN is f(Σxw + b) (ReLU, tanh etc.)
– Multiple feature maps in each layer
– Each feature map should learn a different translation invariant feature
– Since after first layer, there are always multiple feature maps to connect to

the next layer, it is a pre-made human decision as to which previous maps
the current convolution map receives inputs from, could connect to all or a
subset

• Convolution layer causes total number of features to increase

CS8725 - Supervised Learning

Sub-Sampling (Pooling)
• Convolution and sub-sampling layers are interleaved
• Sub-sampling (Pooling) allows number of features to be diminished,

and to pool information
– Pooling replaces the network output at a certain point with a summary

statistic of nearby outputs
– Max-Pooling common (Just as long as the feature is there, take the max,

as exact position is not that critical), also averaging, etc.
– Pooling smooths the data and reduces spatial resolution and thus

naturally decreases importance of exactly where a feature was found, just
keeping the rough location – translation invariance

– 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.
– Convolution usually increases number of feature maps, pooling keeps

same number of reduced maps (one-to-one correspondence of
convolution map to pooled map) as the previous layer

CS8725 - Supervised Learning

Pooling Example (Summing or
averaging)

CS8725 - Supervised Learning

Pooling (cont.)
l Common layers are convolution, non-linearity, then pool

(repeat)
l Note that pooling always decreases map volumes (unless

pool stride = 1, highly overlapped), making real deep nets
more difficult. Pooling is sometimes used only after
multiple convolved layers and sometimes not at all.

l At later layers pooling can make network invariant to more than just translation –
learned invariances

CS8725 - Supervised Learning

CNN Training
• Trained with BP but with weight tying in each feature map

– Randomized initial weights through entire network
– Just average the weight updates over the tied weights in feature map

layers
• Convolution layer

– Each feature map has one weight matrix for each input and one bias
– Thus a feature map with a 5x5 receptive field (filter) would have a total of

26 weights, which are the same coming into each node of the feature map
– If a convolution layer had 10 feature maps, then only a total of 260 unique

weights to be trained in that layer (much less than an arbitrary deep net
layer without sharing)

• Sub-Sampling (Pooling) Layer
– All elements of receptive field max’d, averaged, summed, etc. Result

multiplied by one trainable weight and a bias added, then passed through
non-linear function (detector, e.g. ReLU) for each pooling node

– If a layer had 10 pooling feature maps, then 20 unique weights to be
trained

CS8725 - Supervised Learning

CNN Hyperparameters
• Structure itself, number of layers, size of filters,

number of feature maps in convolution layers,
connectivity between layers, activation functions, final
supervised layers, Pooling parameters, etc.

• Drop-out often used in final fully connected layers for
overfit avoidance – less critical in convolution/pooling
layers which already regularize due to weight sharing

• Stride – if don’t have to test every location for the
feature (i.e. stride = 1), could sample more coarsely
– Another option for down-sampling

• As is, the feature map would always decrease in volume
which is not always desirable - Zero-padding avoids this
and lets us maintain up to the same volume
– Would shrink fast for large kernel/filter sizes and would limit

the depth (number of layers) in the network
– Also allows the different filter sizes to fit arbitrary map

widths
CS8725 - Supervised Learning

ILSVRC Image net Large Scale Vision
Recognition Competition

CS8725 - Supervised Learning

RGB: 224 x 224 x 3 = 150,528 raw real valued features

Example CNNs Structures ILSVRC
winners

• Note Pooling considered part of the
layer

• 96 convolution kernels, then 256,
then 384

• Stride of 4 for first convolution kernel,
1 for the rest

• Pooling layers with 3x3 receptive
fields and stride of 2 throughout

• Finishes with fully connected (fc) MLP
with 2 hidden layers and 1000 output
nodes for classes

CS8725 - Supervised Learning

Example CNNs Structures ILSVRC winners

CS8725 - Supervised Learning

Increasing Depth

CS8725 - Supervised Learning

Go Deep with Residual
Network

He et al., 2015 CS8725 - Supervised Learning

CS8725 - Supervised Learning

CNN Summary
• High accuracy for image applications – Breaking all records and

doing it using just using just raw pixel features!
• Special purpose net – good for images or problems with strong

grid-like or sequential local spatial/temporal correlation
• Once trained on one problem (e.g. vision) could use same net

(often tuned) for a new similar problem – general creator of vision
features (Transfer learning)

• Unlike traditional nets, handles variable sized inputs
– Same filters and weights, just convolve across different sized image

and dynamically scale size of pooling regions (not # of nodes), to
normalize

– Different sized images, different length speech segments, etc.
• Lots of hand crafting and CV tuning to find the right recipe of

receptive fields, layer interconnections, etc.
– Lots more Hyperparameters than standard nets, and even than

other deep networks, since the structures of CNNs are more
handcrafted

– CNNs getting wider and deeper with speed-up techniques (e.g. GPU,
ReLU, etc.) and lots of current research, excitement, and success

CS8725 - Supervised Learning

Demo of DCNN
with TensorFlow

Build a DCNN to classify digital images
on MNIST dataset

CS8725 - Supervised Learning

Key code

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Train and Evaluate

CS8725 - Supervised Learning

Dilated Convolution

CS8725 - Supervised Learning

Deep Belief Network – Learning
Representation of Data First

CS8725 - Supervised Learning

x1 x2 xd

f(Σ)

……1

f(Σ) f(Σ)…

f(Σ)

o

f(Σ) f(Σ) f(Σ)…

f(Σ) f(Σ) f(Σ)…

…… Vanishing
Gradient

CS8725 - Supervised Learning

Image pixels

Lines, circles,
squares

Face or not ?

……

Brain Learning
CS8725 - Supervised Learning

http://theanalyticsstore.com/deep-learning/CS8725 - Supervised Learning

A Deep
Learning
Success

CS8725 - Supervised Learning

Energy Based Models
p(x) – probability of our data; data is represented by

feature vector x.

and

Attach an energy function (ie, E(x)) to score a
configuration (ie, each possible input x).

We want desirable data to have low energy. Thus, tweak
the parameters of E(x) accordingly.

Restricted Boltzann Machines (RBM)
CS8725 - Supervised Learning

EBMs with Hidden Units

To increase power of EBMs, add hidden

variables.

By using the notation,

We can rewrite p(x) in a form similar to the

standard EBM,

Free energy

Restricted Boltzmann Machines (RBM)

log(P(x)) = -F(x) – log(Z)

CS8725 - Supervised Learning

Tweakin’ Parameters

Now we need to adjust the model so it reflects
our data, do ML
• Likelihood fn

• Avg. Log-likelihood fn

CS8725 - Supervised Learning

Tweakin’ Parameters

• Take the derivative
-

-

-

-

-

-

-

CS8725 - Supervised Learning

Tweakin’ Parameters

• Take the derivative

This is an expectation over all
possible configurations of input
x.

Restricted Boltzann Machines (RBM)

Can think of as an expectation
over dataset.

CS8725 - Supervised Learning

Transition to RBM
Looks like training a EBM is, in general, a
tall task. But after much

Jump to an end result…
Restricted Boltzmann Machines (RBM)

CS8725 - Supervised Learning

RBMs
• Represented by a bipartite

graph, with symmetric,
weighted connections

• One layer has visible nodes
and the other hidden (ie,
latent) variables.

• Notes are often binary ,
stochastic units (ie, assume 0
or 1 based on probability)

CS8725 - Supervised Learning

Unsupervised Restricted Boltzmann
Machine (RBM)

• A model for a distribution over
two layers of binary nodes
• Probability is defined via an
�energy�

v

h

wij

cj

bi

hidden layer

visible layer

p(v,h) =

CS8725 - Supervised Learning

What’s gained by “Restricted”

1) Conditional probabilities factor nicely

2) Using binary units, we also can get

So we can get a sample of the visible or hidden
nodes easily...

Restricted Boltzann Machines (RBM)

and

CS8725 - Supervised Learning

Training a RBM – Maximum Likelihood

CS8725 - Supervised Learning

Gibbs Sampling

Can sample from p(v,h) by repeatedly
sampling from v and h using the eqns. for
p(v|h) and p(h|v).
As t →∞, (v(t) ,h(t)) converge to samples of
p(v,h).
But… hard to know when equilibrium has been
reach, can be computationaly expensive

Restricted Boltzann Machines (RBM)
CS8725 - Supervised Learning

Training a RBM - Contrastive
Divergence based on Gibbs Sampling
Instead of attempting to sample from joint
distribution p(v,h) (i.e. p∞), sample from p1(v,h).

Hinton, Neural Computation(2002)CS8725 - Supervised Learning

Learning Rule
Recall energy function

Calculating derivatives…

So,

CS8725 - Supervised Learning

A quick way to learn an RBM

0>< jihv 1>< jihv

)(10 ><-><=D jijiij hvhvw e

i

j

i

j

t = 0 t = 1

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well. It is
approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).

reconstructiondata

CS8725 - Supervised Learning

Training a RBM via Contrastive
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

CS8725 - Supervised Learning

Training a RBM via Contrastive
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

CS8725 - Supervised Learning

Training a RBM via Contrastive
Divergence

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

Δwi,j = <vi pj
0> - <pi

1pj
1>

σ: sigmoid function

CS8725 - Supervised Learning

Challenges with RBMs
A number of choices to be made
– Types of nodes, learning weight, initial values,

batch sizes, etc.
– Care should be taken to avoid over-fitting

A RBM “manual” is available on line…
http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf

Software package: Pylearn2:
http://deeplearning.net/software/pylearn2/

On both GPU and CPU

CS8725 - Supervised Learning

http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf
http://deeplearning.net/software/pylearn2/

Calculations need for
training and classification
made use of CUDAMat and
GPUs

Train with over one million
parameters in about an hour

CS8725 - Supervised Learning

Why ???
Okay, we can model p(x).
But how to…
1. Find p(label|x). We want a

classifier!
2. Improve the model for p(x).

CS8725 - Supervised Learning

Deep Belief Nets
RBMs are typically used
in stack
– Train them up one layer

at a time
– Hidden units become

visible units to the next
layer up

If your goal is a
discriminator, you train a
classifier on the top level
representation of your
input.

data
1W

2W

3W

CS8725 - Supervised Learning

Training a Deep Network

…

…

…

…

…

…

…

[0,1]

Hinton and Salakhutdinov, Science, 2006

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a
supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

CS8725 - Supervised Learning

Why stack them up? Why does this
work?

This is a good question, with a long complicated
answer.

Basically, doing so can improve a lower
variation bound on the probability of training
data under the model.

Hinton, Osindero, & The, 2006

CS8725 - Supervised Learning

How to generate from the model
• To generate data:

o Get an equilibrium sample
from the top-level RBM by
performing alternating
Gibbs sampling for a long
time.

o Perform a top-down pass to
get states for all the other
layers.

So the lower level bottom-up
connections are not part of
the generative model. They
are just used for inference.

h2

data

h1

h3

2W

3W

1W

Slide modified from Hinton, 2007

Bonus when

modeling p(x), w
e

can see what th
e

model believes in

CS8725 - Supervised Learning

Deep Autoencoders
• They always looked like a really

nice way to do non-linear
dimensionality reduction:
– But it is very difficult to

optimize deep
autoencoders using
backpropagation.

• We now have a much better
way to optimize them:
– First train a stack of 4

RBM’s
– Then “unroll” them.
– Then fine-tune with

backprop.

1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000 neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear
units

Hinton & Salakhutdinov, 2006; slide form Hinton
UCL tutorial CS8725 - Supervised Learning

Some Applications

We will look at two
applications done by Hinton’s
Lab
• A model for digit recognition
• Cluster/search documents

CS8725 - Supervised Learning

Applications: A model of digit recognition

• Classify digits (0 – 9)
• Input is a 28x28 image from MNIST (training

60k, test 10k examples)

CS8725 - Supervised Learning

Applications: A model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28
pixel
image

10 label
neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do an
up-pass from the image followed by a few
iterations of the top-level associative
memory.

The top two layers form an
associative memory whose
energy landscape models the
low dimensional manifolds of
the digits.

The energy valleys have names

Slide modified from Hinton, 2007

This is work from Hinton
et al., 2006

Matlab/Octave code available at
http://www.cs.utoronto.ca/~hinton/ CS8725 - Supervised Learning

Model in action
Hinton has provided an excellent way to view the model in
action…

http://www.cs.toronto.edu/~hinton/digits.html

CS8725 - Supervised Learning

More Digits
Samples generated by letting the associative memory
run with one label clamped. There are 1000 iterations of
alternating Gibbs sampling between samples.

Slide from Hinton, 2007CS8725 - Supervised Learning

Examples of correctly recognized handwritten digits
that the neural network had never seen before

Slide from Hinton, 2007

Even More Digits

CS8725 - Supervised Learning

Extensions
Do classification.

One way (probably no
the best), train
generative model with
labeled/unlabeled data

Then train a NN on
higher dimensional
representation.

2000 top-level neurons

500 neurons

500 neurons

28 x 28 pixel
image

NN or SVM

CS8725 - Supervised Learning

Applications: Classifying text documents

• A document can be characterized by the

frequency of words that appear (ie, word

counts for some dictionary become feature

vector)

• Goals…

1. Group/cluster similar documents

2. Find similar documents

CS8725 - Supervised Learning

How to compress the count vector

Multi-layer auto-encoder
• Train a model to reproduce

its input vector as its output
• This setup forces as much

information as possible be
compressed and passed thru
the 10 numbers in the
central bottleneck.

• These 10 numbers are then
a good way to compare
documents.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

10

Slide modified from Hinton, 2007
CS8725 - Supervised Learning

How to compress the count vector

Multi-layer auto-encoder
• Train a model to reproduce

its input vector as its output
• This setup forces as much

information as possible be
compressed and passed thru
the 10 2 numbers in the
central bottleneck.

• These 10 2 numbers are
then a good way to compare
documents.

2000 reconstructed counts

500 neurons

2000 word counts

500 neurons

250 neurons

250 neurons

10 2

Slide modified from Hinton, 2007

Or ‘2’ for easy
visualization

CS8725 - Supervised Learning

Residue-Residue Contact Prediction

Objective:
Predict if two residues (i, j) are in
contact (spatially close), i.e.
distance(i, j) < 8 Angstrom

SDDEVYQYIVSQVKQYGIEPAELLSRKYGDKAKYHLSQRW

1D Sequence

3D Structure
Eickholt & Cheng, 2012

i j

A Binary Classification Problem

SDDEVYQYIVSQVKQYGIEPCSAELLSRKYGDKAKYHLSQRW

Residue info, secondary structure, solvent accessibility, …

A Vector of ~400 Features (numbers between 0 and 1)

Probability that V and Y are in contact?

Cheng & Baldi, 2007; Tegge et al., 2009; Eickholt & Cheng, 2012

i j

Input Features
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQRCQN

i j

Strand

Helix

Coil

Helix 100
Strand 010
Coil 001

Exposed

Buried

Exposed 10
Buried 01

20 numbers for residue profile
3 numbers 2 numbers

25 * 18 = 400 features for a pair (i, j)

A Vector of ~400 Features (numbers between 0 and 1)

~400 input nodes

~500 nodes

~500 nodes

~350 nodes

wi,j

Training a Deep Network

…

…

…

…

…

…

…

[0,1]

1239 Proteins for Training
Residue Pairs; Millions of
Residue Pairs

GPU Implementation
Parallelize training of deep
learning network with GPUs
and CUDAMat

Train DNs with over 1M
parameters in about an
hour

…

…

…

…

…

…

[0,1]

…

LSDEKIINVDF KPSEERVREII

Eickholt & Cheng, 2012

Boosted Ensembles for Contact Prediction

…

…

…

…

…

…

[0,1]

…

…

…

…

…

…

…

[0,1]

…

…

…

…

…

…

…

[0,1]

…
……

[0,1]

Final output of ensemble
is the weighted sum of
individual DN outputs.

Eickholt and Cheng, Bioinformatics (2012)

Results on Test Data Set (196
Proteins) and CASP

Metric Acc. L/5 Acc. L/5
(one
shift)

Short Range
(6 <= |i-j| <12)

0.51 0.79

Medium
Range
(12 <= |i-j| <24)

0.38 0.65

Long Range
(|i-j| >= 24)

0.34 0.55

2012 2014 2016

2017

Deep Recurrent Neural Network

CS8725 - Supervised Learning

Temporal and Spatial Series Problem

CS8725 - Supervised Learning

Recurrent Neural Network

CS8725 - Supervised Learning

Recurrent Neural Network

CS8725 - Supervised Learning

Increase the expressive power of RNN
with more depth

CS8725 - Supervised Learning

Long-term dependencies

CS8725 - Supervised Learning

RNN Tricks

• Clipping gradients (avoid exploding gradients)
• Momentum
• Initialization (start in right ballpark avoids

exploding/vanishing)
• LSTM self-loops (avoid vanishing gradient)

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

CS8725 - Supervised Learning

Gated Recurrent Units and Long- and
Short-Term Memory (LSTM)

CS8725 - Supervised Learning

RNN Tricks

CS8725 - Supervised Learning

1D: Secondary Structure Prediction

Coil

MWLKKFGINLLIGQSVOR

CCCCHHHHHCCCSSSSSS

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005

Neural Networks

Strand

Helix

Bidirectional Recurrent Neural Network
for Protein Secondary Structure Prediction

CS8725 - Supervised Learning
Pollastri, Baldi, 2002
Cheng et al., 2006

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Saddle Point

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Piecewise Linear Nonlinearity

CS8725 - Supervised Learning

Stochastic Neurons as Regularizer:
Improving neural networks by prevenHng co-adaptaHon

of feature detectors (Hinton et al 2012, arXiv)

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Early Stopping

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

CS8725 - Supervised Learning

Deep AutoEncoder

CS8725 - Supervised Learning

Generative Adversarial Network
(GAN)

CS8725 - Supervised Learning

Deep Reinforcement Learning

CS8725 - Supervised Learning

Stochastic Optimization Algorithms

CS8725 - Supervised Learning

