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Simplest Neural Network for
Classification — Logistic Regression

. oo . Loss/cross-entropy:
 Binary Classification _(ylog(0) + (1-y)log(1- 0))
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Simplest Neural Network for
Classification — Logistic Regression

* Multi Classification Loss/cross-entropy: -Zyilogoz-

O: output f(x)

y: target (O or 1)
g: softmax

a: activation

activation =wy +wix; + wax, + ..., waixy
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Perceptron

Learning to map input to output (label) and is guided by output.

Training

SX)=wy+wpx; twaes .., wexy Error: (o - y)?
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Simplest Neural Network for
Regression — Linear Regression

Error: (0-y)?

Y: target
O: output

Activation function: identity
function
a: activation

Output =wy +wix; T wixs + ..., waxy
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TensorFlow Demo of One-Node
Network

Data Sets: MNIST digit recognition data or Iris
flower classification data

Google’s TensorFlow installation:
nttps://www.tensorflow.org/

nstall it on mac:
nttps://www.tensorflow.org/install/install ma

C

Activate tensorflow: Ssource
~/tensorflow/bin/activate



https://www.tensorflow.org/
https://www.tensorflow.org/install/install_mac

import tensorflow as tf

Model parameters

tf.Variable([.3], dtype=tf.float32)
tf.Variable([-.3], dtype=tf.float32)
Model input and output

Tensor

FlOW = tf.placeholder(tf.float32)
linear_model = W *x x + b

M Od e I y = tf.placeholder(tf.float32)

# loss
fOr loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
. # optimizer
LI nea r optimizer = tf.train.GradientDescentOptimizer(0.061)
train = optimizer.minimize(loss)

Regres # training data
x_train = [1, 2, 3, 4]

SIOn I y_train = [0, -1, -2, -3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x: x_train, y: y_train})

#
W
b
#
X

# evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
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import tensorflow as tf

I # NumPy is often used to load, manipulate and preprocess data.
e n SO r import numpy as np

# Declare list of features. We only have one numeric feature. There are many

FIOW # other types of columns that are more complicated and useful.
feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]

l-. # An estimator is the front end to invoke training (fitting) and evaluation
In ea r # (inference). There are many predefined types like linear regression,
# linear classification, and many neural network classifiers and regressors.
# The following code provides an estimator that does linear regression.
IVI O d e | estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
# TensorFlow provides many helper methods to read and set up data sets.
I I # Here we use two data sets: one for training and one for evaluation

# We have to tell the function how many batches
# of data (num_epochs) we want and how big each batch should be.
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([@., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.81, -4.1, -7, 0.])
input_fn = tf.estimator.inputs.numpy_input_fn(
"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
“x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)

# We can invoke 1000 training steps by invoking the method and passing the
# training data set.
estimator.train(input_fn=input_fn, steps=1000)

# Here we evaluate how well our model did.

train_metrics = estimator.evaluate(input_fn=train_input_fn)

eval_metrics = estimator.evaluate(input_fn=eval_input_fn)

print(" train metrics: %r"% train_metrics) CS8725 - Supervised Learning
print("eval metrics: %r"% eval_metrics)



Logistic Regression for Hand Writing
Classification

S0/

Each image is 28 pixels by 28 pixels. We can interpret this as a big array of numbers:

- - EEEE- -
A EEEEEEN

We can flatten this array into a vector of 28x28 = 784 numbers. It doesn't matter how we flatten the array, as long as
we're consistent between images. From this perspective, the MNIST images are just a bunch of points in a 784-
dimensional vector space, with a very rich structure (warning: computationally intensive visualizations).



If we write that out as equations, we get:

_ n
Y2
Y3
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+by| —>
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Wiixy + Wisxe + Wigxs + by

= softmax (Wa 121 + Waoxo + Wazxs + b
Waixy + Waaxe + Waszxsz + b3

We can "vectorize" this procedure, turning it into a matrix multiplication and vector addition. This is helpful for
computational efficiency. (It's also a useful way to think.)

_ n
Y2
Y3

More compactly, we can just write:

= softmax

y = softmax(Wax + b)
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from __future__ import absolute_import
from _ future__ import division

from __ future__ import print_function

import argparse

import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

FLAGS = None

def main(_):

# Import data

mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

# Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

b = tf.variable(tf.zeros([10]))

y = tf.matmul(x, W) + b

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

# The raw formulatiepof c5Q55RLPRYming
#



#  tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
it reduction_indices=[1]))
b

# can be numerically unstable.
b
# So here we use tf.nn.softmax_cross_entropy with_logits on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy with_logits(labels=y , logits=y))

train_step = tf.train.GradientDescentOptimizer(@.5).minimize(cross_entropy)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(160)
sess.run(train_step, feed dict={x: batch_xs, y_: batch_ys})

# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,

y_: mnist.test.labels}))

if __name__ == '__main__":

parser = argparse.ArgumentParser()

parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data’,
help="Directory for storing input data')

FLAGS, unparsed = parser'pap%ﬁ%ﬁﬂﬂygﬁﬁEéésgedLearmng
tf.app.run(main=main, argv=[sys.argv[@]] + unparsed)



Neural Network
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Two-Layer Neural Network

y. Output

Y1 Yk

Activation function: f (linear,sigmoid, softmax)

Activation of unit a,; M

ij

,’q?\ :

X0 X1 X;

7, M

Activation function: g (linear, tanh, sigmoid)

d
Z Wik
=0

Activation of unit a;:
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j=0 i=0
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Adjust Weights by Training

* How to adjust weights?
* Adjust weights using known examples
(training data) (x;,x,,x3,....Xg,t).

* Try to adjust weights so that the difference
between the output of the neural network y and
t (target) becomes smaller and smaller.

* Goal 1s to minimize Error (difference) as we
did for one layer neural network



Adjust Weights using Gradient

Descent
Known: . . Minima
Data: (x;x,x;,...,x,) targett. Hot
Unknown weights w:
Wi, Wio,.o...
Randomly initialize weights
Repeat
for each example, compute output y calculate error E = (y-t)? W
compute the derivative of £ over w: dw= Z_E
w

_ %
Whew — prev Ui dw

Until error doesn’ t decrease or max num of iterations (epochs)

Note: 7 1s learning rate or step size.



Stochastic Gradient Descent

Known: . Minima

Error
Data: (x;x,x;,...,x,) targett.

Unknown weights w:

Randomly initialize weights
Repeat

Randomize the order of examples, divide into batches A
for each example in a batch, compute output y and error E = (y-t)?
compute the derivative of E over w: dw= 0°E
Add the derivatives of a batch together ~ "
Whew — Wprev — " *dw
Until error doesn’ t decrease or max num of iterations (epochs)
Note: 7 1s learning rate or step size.



Neural Network Learning: Two
Processes

* Forward propagation: present an example
(data) into neural network. Compute activation
into units and output from units.

* Backward propagation: propagate error back
from output layer to the input layer and
compute derivatives (or gradients).



Forward Propagation
Output 1)’k

Activation function: f (linear,sigmoid, softmax)

V1 Yk Ve

Activation of unit a: Z

1
%
Activation function: g (linear, tanh, sigmoid)

Wz,
wgh< >
D EP NN
Activation of unit a;:

d
=1

|

Time complexity?

Wjixi

l
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Forward Propagation
Output 1)’k

Activation function: f (linear,sigmoid, softmax)

Yk Ve

Activation of unit a: Z

1

Wig<_> \
YA
L Z,
‘ ‘ Activation function: g (ltinear, tanh, sigmoid)
Activation of unit a;: J
Wii ' Z Wik,
i=l

W2,

Wit | Wi

X; xd

Time complexity?
O(dM + MC) = O(W)
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Backward Propagation  :-ro.-o
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Backward Propagation  :-ro.-o

OE OE oy, "
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Time complexity?
If no back-propagation, time O(CM+Md) = O(W)
complexity is: (MdCHCM)er2s - supervised Learning



Example E-Lipry
*
Y
flinear function O = OF 8E ay — ( Y- t)
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OFE

g is sigmoid: ——— — 5Zj
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TensorFlow Demo of Simple Neural
Networks

e Data Sets: Iris flower classification data

* Google’s TensorFlow installation:
https://www.tensorflow.org/

From left to right, Iris setosa (by Radomil, CC BY-SA 3.0), Iris versicolor (by Dlanglois, CC BY-SA 3.0), and Iris virginica
(by Frank Mayfield, CC BY-SA 2.0). CS8725 - Supervised Learning


https://www.tensorflow.org/

Sepal Length Sepal Width Petal Length Petal Width Species

49 3.0 1.4 0.2 0
47 3.2 1.3 0.2 0
7.0 3.2 47 1.4 1
6.4 3.2 45 1.5 1
6.9 3.1 49 1.5 1
6.5 3.0 52 2.0 2
6.2 3.4 54 23 2
59 3.0 5.1 1.8 2

For this tutorial, the Iris data has been randomized and split into two separate CSVs:

e Atraining set of 120 samples (iris_training.csv)

e Atest set of 30 samples (iris_test.csv).

CS8725 - Supervised Learning



from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import urllib

import numpy as np
import tensorflow as tf

# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"

IRIS_TEST = "iris_test.csv"
IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

def main():
# If the training and test sets aren't stored locally, download them.
if not os.path.exists(IRIS_TRAINING):
raw = urllib.urlopen(IRIS_TRAINING_URL).read()
with open(IRIS_TRAINING, "w") as f:
f.write(raw)

if not os.path.exists(IRIS_TEST):
raw = urllib.urlopen(IRIS_TEST_URL).read()
with open(IRIS_TEST, "w") as f:
f.write(raw)

# Load datasets.

training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=IRIS_TRAINING,
target_dtype=np.int,
features_dtype=np.float32)

test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=IRIS_TEST,
target_dtype=np.int, CS8725 - Supervised Learning
features_dtype=np.float32)



# Specify that all features have real-value data
feature_columns = [tf.feature_column.numeric_column("x", shape=[4])]

# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir="/tmp/iris_model")
# Define the training inputs
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)

# Train model.
classifier.train(input_fn=train_input_fn, steps=2000)

# Define the test inputs

test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(test_set.data)},
y=np.array(test_set.target),
num_epochs=1,
shuffle=False)

# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]

print("\nTest Accuracy: {@:f}\n".format(accuracy_score))

# Classify two new flower samples.
new_samples = np.array(
[[6.4, 3.2, 4.5, 1.5],
[5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": new_samples},
num_epochs=1, CS8725 - Supervised Learning

shuffle=False)



predictions = list(classifier.predict(input_fn=predict_input_fn))
predicted_classes = [p["“classes"] for p in predictions]

print(

"New Samples, Class Predictions: {}\n"
.format(predicted_classes))

CS8725 - Supervised Learning



Keras

* Keras is an open-source neural-network library written in Python. It is
capable of running on top of TensorFlow, Microsoft Cognitive
Toolkit, Theano, or PlaidML.11l2l Designed to enable fast
experimentation with deep neural networks, it focuses on being user-
friendly, modular, and extensible. It was developed as part of the
research effort of project ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System),2l and its primary author and
maintainer is Francois Chollet, a Google engineer. Chollet also is the
author of the XCeption deep neural network model!4l.

* |In 2017, Google's TensorFlow team decided to support Keras in
TensorFlow's core library..2Chollet explained that Keras was conceived
to be an interface rather than a standalone machine
learning framework. It offers a higher-level, more intuitive set of
abstractions that make it easy to develop deep learning models
regardless of the computational backend used.lel Microsoft added
a CNTK backend to Keras as well, available as of CNTK v2.0.1218l



https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/PlaidML
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/CNTK
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/Keras

An Example with TensorFlow in
Keras for MNIST Classification

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test/ 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='"relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation="softmax")

)

model.compile(optimizer='adam’,
loss='sparse_categorical crossentropy’,
metrics=['accuracy'])

model fit(x_train, y_train, epochs=>5) https://www.tensorflow.org/overview/
model.evaluate(x_test, y test)



Vanishing
Gradient or
Explosion
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Neural Network’s Winter in 1990s

* A standard three-layer

M d
neural network is a y, :f(zwkj xg(Zwﬁxl.))
universal approximator /=0 =0
* Hard to train multi-layer
neural networks

* Get different models
from different training
(local minimal)



How to Construct Deep Networks?

G. Hinton

2000s



Learning by Composition? — A Face
Recognition Analogy

| Brain Learning




Breakthrough

Deep Learning: machine learning
algorithms based on learning
multiple levels of representation /
abstraction

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding



Machine Learning for Artificial
Intelligence

Four key ingredients for ML towards Al

Lots & lots of data
Very flexible models
Enough computing power

Technical improvement (ReLu function, ResNet,
semi-supervised learning)

Powerful priors that can defeat the curse of
dimensionality



Linear Activation Function

Linear Function

linear(x)
o
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Sigmoid Function

CS8725 - Supervised Learning



Hyperbolic Tangent Function (TanH)

—Sigmoid |
—Tanh

f(x)
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Rectified Linear Unit (ReLU)

sigmoid

. ReLU

R(z) =maz(0, z)

B |

CS8725 - Supervised Learning



Leaky RelLU

VAR

=0 y
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Bypassing the curse of
dimensionality

* We need to build compositionality into our ML
models just as human languages exploit
compositionality

* Exploiting compositionality gives an exponential
gain in representational power: (1) distributed
representations/embeddings (feature learning); (2)
deep architecture ( multi-levels of feature learning)

e Additional prior: compositionality is useful to
describe the world around us efficiently



Classical Symbolic Al vs
Learning Distributed Representations

Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Y pp—
Output units \ :

Hidden units R

e > & 'Aj"
Input person |
units

cat
dog

David Rumelhart
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Exponential advantage of distributed

[ ]
representations
Sub-partition 3
X ‘., Sub—partition 2
\ ’
X Cl=1 \ ('.T:u ;
C2=0 \C3=1 )
C3=0 \ .
v

regions
_defined

by learned

prototypes

DISTRIBUTED PARTITION \
\

LOCAL PARTITION

Learning a set of parametric features that are not
mutually exclusive can be exponentially more statistically
efficient than having nearest-neighbor-like or clustering-
Iike mOdEIS CS8725 - Supervised Learning



Each feature can be discovered without the need
for seeing the exponentially large number of
configurations of the other features

e Consider a network whose hidden units discover the following
features:

* Person wears glasses
* Person is female

* Person is a child

* Etc.

If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(n) examples



Exponential advantage of distributed
representations

Prop. 2 of Pascanu, Montufar & Bengio ICLR’2014: number of
pieces distinguished by 1-hidden-layer rectifier net with n units
and d inputs (i.e. O(nd) parameters) is

CS8725 - Supervised Learning



Deep Learhing:

Automating

~Feature ‘Discoverv

CS8725 - Supervised Learning

Output

3

Mapping
Output Output from
features
) ) 3
Mapping Mapping Most
Output from from complex
features features features
1 A A 3
Hand- Hand- Simplest
designed designed Features P
features
program features

)

)

A

Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning

learning




Exponential advantage of depth

Theoretical arguments:

—

Logic gates

2 layers of 4 Formal neurons = universal Qpproximo’ror
RBF unifs

RBMs & ou’ro encoders = universal approxima
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007, Bengio
& Delalleau 2011, Martens et al 2013, Pascanu

et al 2014, Montufar et al NIPS 2014)

Some functions compactly

represented with k layers may
require exponential size with 2 QO
layers 1 2 3 n

CS8725 - Supervised Learning




Why does it work? No Free Lunch

* It only works because we are making some
assumptions about the data generating
distribution

* Worse-case distributions still require exponential
data

* But the world has structure and we can get an
exponential gain by exploiting some of it



Exponential advantage of depth

Expressiveness of deep networks with piecewise linear activation
functions: exponential advantage for depth (Montufar et al,
NIPS 2014)

Number of pieces distinguished for a network with depth L and n,{

units per layer is at least
L—1 N, no no nL
(H LTOJ ) 2 ( j )

i=1 j=0

or, if hidden layers have width n and input has size n,

Q (o) 0 e

CS8725 - Supervised Learning



Construct Deep Networks

Backprop
(modular approach)




Typical Deep Multilayer Neural Net

C(X,Y,0
( T ) « Complex learning machines can be
built by assembling modules into
Squared Distance networks
1‘ o Linear Module
| w3, B3 Linear | . Out = W.In+B
1‘ « ReLU Module (Rectified Linear Unit)
| ReLU | . Out, = 0 if In,<0
1 « Out; = In; otherwise
| W2 B2 Linear | o Cost Module: Squared Distance
' 1 . C = ||In1 - In2]||?
| RelU | . Objective Function
F . L(©)=1/p 2 C(X*,YK,0)
| W1, B1 Linear | . © =(W1,B1,W2,B2,W3,B3)

!

(Input) Y (deSired Output) CS8725 - Supervised Learning



« All major deep learning frameworks use modules (inspired by SN/Lush, 1991)

. Torch7, Theano, TensorFlow....

C(X,Y,0)

i

| NegativeLogLikelihood |

4
|__LogSoftMax__|
2

lw2 B2Linear

L]
[ ReLU

4

Iw1,B1Linear

|

X Y
input Label

-- sizes

ninput = 28*28
nhiddenl = 1000
noutput = 10

-- e.g. for MNIST

-- network module

net = nn.Sequential()
net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
net:add(nn.Linear(nhidden, noutput))
net:add(nn.LogSoftMax()))

-- cost module
cost = nn.ClassNLLCriterion()

-- get a training sample
input = trainingset.data[k]
target = trainingset. labels[k]

-- run through the model
output = net:forward(input)
c = cost:forward(output, target)

CS8725 - Supervised Learning



Computing Gradients by Back-Propagation

C(X,Y,0)

i

A practical Application of Chain Rule

Cost

Whn Fn(Xn-1,Wn)
dC/dWn

4
dCzdXi s 5 Xi

Wi 2‘_&(';1 ,Wi)
dC/dwi

: 4
dC/dXi-15 & Xi-1
2

Zl F1(X0,W1)

]

X (input)

Backprop for the state gradients:
dC/dXi-1 = dC/dXi . dXi/dXi-1
dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1

Backprop for the weight gradients:
dC/dWi = dC/dXi . dXi/dWi
dC/dwi = dC/dXi . dFi(Xi-1,Wi)/dWi

Y (deSirEd Output) CS8725 - Supervised Learning



Running Backprop

« Torch7 example -- network module
net = nn.Sequential()
« Gradtheta contains the gradient net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
C(XJYJ)) net:add(nn.Linear(nhidden, noutput))
net:add(nn.LogSoftMax()))

: 1A_ . -- cost module
NegativelogLikelihood | cost = nn.ClassNLLCriterion()

-- gather the parameters in a vector
ﬂgSc;ﬂMax theta, gradtheta = net:getParameters()
w2 B2Linear -- get a training sample

0 ‘f input = trainingset.data[k]
| RelLU target = trainingset.labels[k]
L
: -- run through the model
'hN1'B1L"1ear output = net:forward(input)
]‘ c = cost:forward(output, target)

X Y -- run backprop
. gradtheta:zero()
input Label gradoutput = cost:backward(output, target)

CS8725 - Supervised Learning net:backward(input, gradoutput)



Modular Classes

Linear . Y=WX : do/dX=W'.dc/dy : dC/dW =dc/dY . dY/dx

RelLU y = ReLU(x) ; if (x<0) dC/dx =0 else dC/dx = dC/dy

Duplicate e Y1 =X,Y¥Y2=X ; dC/dX =dC/dY1 + dC/dY2

Add e Y=X1+X2 ; dC/dX1=dC/dY ; dC/dX2 =dC/dY
Max o Yy =max(x1,x2); if (x1>x2) dC/dx1 = dC/dy else dC/dx1=0
LogSoftMax | « Yi = Xi - log [Zj exp(Xj)] ; -----

CS8725 - Supervised Learning



Modular Classes

Many more basic module classes

Cost functions:
« Squared error
« Hinge loss
« Ranking loss

Non-linearities and operators
« RelLU, “leaky” RelLU, abs,....
« Tanh, logistic
. Just about any simple function (log, exp, add, mul,....)

Specialized modules
 Multiple convolutions (1D, 2D, 3D)
 Pooling/subsampling: max, average, Lp, log(sum(exp())), maxout
« Long Short-Term Memory, attention, 3-way multiplicative interactions.
« Switches

. Normalizations: batch norm, contrast norm, feature norm...

. inception (replace linear filter with non-linear filter in convolutional neural network)
CS8725 - Supervised Learning



Hinge loss

From Wikipedia, the free encyclopedia

In machine learning, the hinge loss is a loss function used for training classifiers.
The hinge loss is used for "maximum-margin" classification, most notably for support
vector machines (SVMs).['! For an intended output # = +1 and a classifier score ¥,
the hinge loss of the prediction y is defined as

£(y) = max(0,1 —t-y)

Note that y should be the "raw" output of the classifier's decision function, not the
predicted class label. For instance, in linear SVMs, y = w - X + b, where (w, b)
are the parameters of the hyperplane and x is the point to classify.

It can be seen that when ¢ and y have the same sign (meaning y predicts the right
class) and |y| > 1, the hinge loss £(y) = 0, but when they have opposite sign,
£(y) increases linearly with y (one-sided error).

CS8725 - Supervised Learning
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Plot of hinge loss (blue, measured =
vertically) vs. zero-one loss (measured
vertically; misclassification, green:

y <0) for t =1 and variable y
(measured horizontally). Note that the
hinge loss penalizes predictions y < 1,
corresponding to the notion of a margin
in a support vector machine.
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Any architecture works

# Any connection graph is permissible
» Directed acyclic graphs (DAG)
» Networks with loops must be
“unfolded in time”.

# Any module is permissible

» As long as it is continuous and

differentiable almost everywhere with
respect to the parameters, and with

respect to non-terminal inputs.

# Most frameworks provide automatic
differentiation

» Theano, Torch7+autograd,...

» Programs are turned into
computation DAGs and automatically
differentiated.

CS8725 - Supervised Learning



Backprop in Pratice

# Use RelLU non-linearities

# Use cross-entropy loss for classification

# Use Stochastic Gradient Descent on minibatches

& Shuffle the training samples (< very important)

# Normalize the input variables (zero mean, unit variance)
# Schedule to decrease the learning rate

# Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

# Use "dropout” for reqularization
# Lots more in [LeCun et al. “Efficient Backprop” 1998]

# Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miiller (Springer)

# More recent: Deep Learning (MIT Press book in preparation)

CS8725 - Supervised Learning



F ree D ee p Deep Learning

° e Table of Contents
Le a r n I n g B O O k e Acknowledgements
e Notation
e 1 Introduction
2 0 1 6 e Part I: Applied Math and Machine Learning Basics
o 2 Linear Algebra

[e)
[e]
(o)

3 Probability and Information Theory
4 Numerical Computation
5 Machine Learning Basics

e Part II: Modern Practical Deep Networks

lan Goodfellow and Yoshua Bengio and Aaron
Courville

O 0O 0O 0O 0O 0O o

6 Deep Feedforward Networks

7 Regularization for Deep Learning

8 Optimization for Training Deep Models

9 Convolutional Networks

10 Sequence Modeling: Recurrent and Recursive Nets
11 Practical Methodology

12 Applications

e Part III: Deep Learning Research

O 0O 0O 0O O 0O 0O O©

13 Linear Factor Models

14 Autoencoders

15 Representation Learning

16 Structured Probabilistic Models for Deep Learning
17 Monte Carlo Methods

18 Confronting the Partition Function

19 Approximate Inference

20 Deep Generative Models

e Bibliography

e Index

URL: http://www.deeplearningbook.org

CS8725 - Supervised Learning


http://www.deeplearningbook.org/

Convolutional
Networks




Deep Learning = Training Multistage
Machines

# Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature Trainable

Extractor Classifier
# Mainstream Pattern Recognition 9until recently)

Feature Mid-Level R Trainable

Extractor Features Classifier

Low-Level
Features

Mid-Level
Features

N High-Level

Features

Trainable
Classifier

—
——r




Overall Architecture: multiple stages of
Normalization = Filter Bank - Non-Linearity

- Pooling
Norm _.Fllter N Non- A featl'lre I Norm _.Fllter N Non- teatFre L Classifier
Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Normalization: variation on whitening (optional)

— Subtractive: average removal, high pass filtering

— Divisive: local contrast normalization, variance normalization
# Filter Bank: dimension expansion, projection on overcomplete basis

# Non-Linearity: sparsification, saturation, lateral inhibition....

— Rectification (ReLU), tanh, ....

# Pooling: aggregation over space or feature type

— Max, log prob.

CS8725 - Supervised Learning
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Convolutional Architecture
////7Q§F:§?£fofjifr Filter Bank +non-linearity
P Ty DL,
r 7 5 I J-gzz;ylzq

Filter Bank +non-linearity
<7

";
E Pooling

\\\\\ T /:::;/////////* Filter Bank +non-linearity

™
4 |||li'|-
C58715 - Supervised Learning u

& LeNet1 [LeCun et al. NIPS 1989



Multiple Convolutions

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wO([:,:,0] wl([:,:,0] ol[:,:,0]
0O 0 o0 o =3 o -1 -1 =0 A
Bl 2 17 © 0 -1 -1 4 11
0 0 2 0 -1 0O 1 6 2 2
0 1 1 0 wl[:,:,1] ol[:,:.,1]
0 0 1 > 0 -1 -1 -3 -5 -2
0 0 1 2 1 1 0 -8 -1 O
o o0 o o0 -1 1 -1 -7 -10 -3
xl:,=2,1] —ILTEFY)

0 0 0 0 o N

o 1 1 o0 e

g o 2 e N

0 o . : Bias bl (Ix1Ix1)

0 1 8 2 bl =, :,0]

0O 0 1 o0 0

0 0 0 0

x[:,:,2] toggle movement

O O o o0

. 2 12 1

0o 0 1 0

0 2 1 0

0 0 0 1

S 2 0 |2

o o0 o o0

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/
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Convolutional Networks (vintage
1990)

# filters — tanh — average-tanh — filters — tanh — average-tanh — filters — tanh

[

g
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il

v

uﬂhHEEHﬂ!==mﬂuﬂE
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1D (Temporal) convolutional net

# 1D (Temporal) ConvNet, aka Timed-Delay Neural Nets
# Groups of units are replicated at each time step.
# Replicas have identical (shared) weights.

1

)

X, t qmpzyﬂ J '
Xt _



1D CNN for Protein Fold Classification

CS8725 - Supervised Learning



Deep 1D-Convoluation Neural
Network

INPUT Conv Layerl Conv Layer2 Conv Layerl0  Pooling Layer Flatten Layer Dense layer ~ Output
Lx45 10x(LX2) 10x(Lx2) " 10x(Lx2) 10x(30x2) (1x600) (1x500)  (1x1195)
i ijjjj%l El
I
V] []
1D |
2] 15 j%j%%ﬁ/lj 79 | b
n e [ 2O | b
_ . Meall L-.J.-— |:| > O . b.7
% — e -j::lln.. .-..:.T E : . b-6
5] ' _ it ey i -._-1'_2..,. .I.:.:.:; \ |:| o _ b.40
D BE S L e f{me{=f2an 4 4| 2
D | FH p—_r o 5 ol 0 02 04 0.6 08
H H MO

Convo.lutions Convolutions Convolutions 30-max pooling  Flatten Fully-Connected gy ftmax
10 filters 10 filters 10 filters Dropout
2 filter sizes 2 filter sizes 2 filter sizes

Rectified Linear Unit (ReLU): f(x) = max(0, x)
Output layer: 1,195 nodes with sigmoid function

CS8725 - Supervised Learning Hou et al., 2017
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Number of Domains

50+

=
o
o

Training Data

The number of proteins covered by length of domains in SCOP 1.75
Distribution of sequence lengths of protein domains in SCOP 1.75 database

4702/16712
(28.14%)

16,712 protein domains

12034/16712
(72.01%)

14783/16712
(88.46%)

16479/16712

(98.61%) 16689/16712 16712/16712

(99.86%) (100.00%)

v

700 800 900 1000 1100 1200 1300 1400 1500
Domain Length



Batch Training Using Binning and Padding
according to Sequence Length

———Bin-500 —#—Bin-200 Bin-50 =¢=Bin-30 =¥=Bin-10

0 100 200 300 400 500 600 700 800 900 1000

CS8725 - Supervised Learning Hou et al., 2017
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Training accuracy
(Epoch 0, Acc: 0.406)
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Accuracy on Validation Datasets of

Num of Set1(Sim |Set2(Sim |Set3(Sim |Set4(Sim |Average
Predictions | < 95%) < 70%) < 40%) < 25%)

Top 1 80.4% 78.2% 75.8% 67.0% 75.3%
Top 5 93.7% 92.4% 90.0% 87.6% 91.0%

Accuracy on Independent Dataset of
SCOP 2.06 (4,418 proteins, Sim <= 40%)

Method _______|Top1 _________|Top5

DeepSF 77% 92%
MajorityAssignment 4% 16%

CS8725 - Supervised Learning



Simple ConvNet for MNIST [LeCun

1 Layer 1

input _

1@32x32 6@28x28
5x5
convolution

1998]

[ 5 Layer 3 [ aver 4 Layer 5
ayer R@10x10 > 100@1x1
6(@14x14 12@5x5
Layer 6: 10
10
— %
o — — 5x5
2x2 o5 | 2x2 convolution
pooling/ convolution pooling/
subsampling subsampling
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Convolution Example without Padding

1x1 1x0 1x1 0 0
0x0 1x1 1x0 1 0 4
oxl 0x0 1x1 1 1
0(0|1(1(0
0(1|1(0(0
Convolved
Image

Feature



Sliding Window ConvNet + Weighted
FSM (Fixed Post-Proc)

[Matan, Burges, LeCun, Denker NIPS 1991] [LeCun, Bottou, Bengio, Haffner, Proc IEEE 1998]
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Why Multiple Layers? The World is Compositional

# Hierarchy of representations with increasing level of abstraction
# Each stage is a kind of trainable feature transform
# Image recognition: Pixel = edge — texton = motif = part = object

# Text: Character = word = word group — clause = sentence — story
# Speech: Sample = spectral band = sound — ... = phone = phoneme — word

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier




ConviNets are somewhat inspired by
the Visual Cortex

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ...

WHERE? (Motion,

Spatial Relationships)  WHAT? (Form, Color)
[Parietal stream] [Inferotemporal stream] C o Motor command
| e ategorical judgments, 140-1 —
PP | @ G <} AIT, decision making ,40- 20.ms Simple visual forms
‘MIMM ok <d CIT 120 edges, corners
— IMST/ PMC
MSTd] ~ CE
< 11O : 1 )
e - 1 JPIT
| 100-130 ms PEC
’ A stream
MT ,: d’_‘r <‘ ° I m 'm ic-dem

BD c1rwam
‘blob-doming

L T A ¢
e ” 1D stream
S {irterb 0o-don
Thick
stripe
Inter- : L
High level object

descriptions,

Vi1 4Bl 8”4 4A
4Cal —> 4AChb faces, objects
Retina, W g ~———> To spinal cord
LGN il X
el < Tofinger muscle <« __——160-220 ms
P 180-260 ms
1 Orientation —# Direction JH4, Pattern (claid) /!_: Purs 1 1
e e i e & [picture from Simon Thorpe]
frequency /ﬂ Nan-Cartesian
"X (highilow); <@ Wavelength &) N atlon G 11 & V E
.t Tempeoral » Sub iv ‘ . [ a al’lt an Ssen]
Ax fresusncy  &s conal Datiora 2" (&) Faces CS8725 - Supervised Learning
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What are ConvNets Good For

# Signals that comes to you in the form of (multidimensional) arrays.
# Signals that have strong local correlations

# Signals where features can appear anywhere

# Signals in which objects are invariant to translations and distortions.

# 1D ConvNets: sequential signals, text

— Text Classification

— Musical Genre Recognition

— Acoustic Modeling for Speech Recognition
— Time-Series Prediction

# 2D ConvNets: images, time-frequency representations (speech and audio)
— Object detection, localization, recognition

# 3D ConvNets: video, volumetric images, tomography images
— Video recognition / understanding
— Biomedical image analysis
— Hyperspectral image analysis (58725 - Supervised Learning



CNN - Translation Invariance

 The 2-d planes of nodes (or their outputs) at subsequent layers in a
CNN are called feature maps

e To deal with translation invariance, each node in a feature map has
the same weights (based on the feature it is looking for), and each
node connects to a different overlapping receptive field of the
previous layer

* Thus each feature map searches the full previous layer to see if,
where, and how often its feature occurs (precise position less critical)

— The output will be high at each node in the map corresponding to a
receptive field where the feature occurs

— Later layers could concern themselves with higher order combinations of
features and rough relative positions

— Each calculation of a node’s net value, 2xw+b in the feature map, is called
a convolution, based on the similarity to standard convolutions

Input layer (S1) 4 feature maps

1 (CI) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

1
| +1
| OQ}DO S Q

layer m

layer m-|
convolution layer l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLPI




CNN Structure

Each node (e.g. convolution) is calculated for each receptive field in the
previous layer

— During training the corresponding weights are always tied to be the same
(ala BPTT)

— Thus a relatively small number of unique weight parameters to learn,
although they are replicated many times in the feature map

— Each node output in CNN is f(Zxw + b) (ReLU, tanh etc.)
— Multiple feature maps in each layer
— Each feature map should learn a different translation invariant feature

— Since after first layer, there are always multiple feature maps to connect to
the next layer, it is a pre-made human decision as to which previous maps
the current convolution map receives inputs from, could connect to all or a
subset

Convolution layer causes total number of features to increase

Inpuc layer (S1) 4 feature maps

1 (C1) 4 feature maps (52) 6 feature maps {C2) 6 feature maps
| .

convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP ]




Sub-Sampling (Pooling)

e Convolution and sub-sampling layers are interleaved

e Sub-sampling (Pooling) allows number of features to be diminished,
and to pool information

— Pooling replaces the network output at a certain point with a summary
statistic of nearby outputs

— Max-Pooling common (Just as long as the feature is there, take the max,
as exact position is not that critical), also averaging, etc.

— Pooling smooths the data and reduces spatial resolution and thus
naturally decreases importance of exactly where a feature was found, just
keeping the rough location — translation invariance

— 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.

— Convolution usually increases number of feature maps, pooling keeps
same number of reduced maps (one-to-one correspondence of
convolution map to pooled map) as the previous layer

Inpuc layer (S1) 4 feature maps

1 (C1) 4 feature maps (52) 6 feature maps {C2) 6 feature maps
| .

convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP ]




Pooling Example (Summing or
Ial\{eraging)

Convolved Pooled
feature feature

CS8725 - Supervised Learning



Pooling (cont.)

e Common layers are convolution, non-linearity, then pool
(repeat)

® Note that pooling always decreases map volumes (unless
pool stride = 1, highly overlapped), making real deep nets
more difficult. Pooling is sometimes used only after
multiple convolved layers and sometimes not at all.
® At later layers pooling can make network invariant to more than just translation —
Large

learned invariances
in pooling unit in pooling unit,
Large
response
in detector

response

in detector,

unit 1 unit 3

b




CNN Training

* Trained with BP but with weight tying in each feature map
— Randomized initial weights through entire network

— Just average the weight updates over the tied weights in feature map
layers

e Convolution layer

— Each feature map has one weight matrix for each input and one bias

— Thus a feature map with a 5x5 receptive field (filter) would have a total of
26 weights, which are the same coming into each node of the feature map
— If a convolution layer had 10 feature maps, then only a total of 260 unique
weights to be trained in that layer (much less than an arbitrary deep net
layer without sharing)
e Sub-Sampling (Pooling) Layer

— All elements of receptive field max’d, averaged, summed, etc. Result
multiplied by one trainable weight and a bias added, then passed through
non-linear function (detector, e.g. RelLU) for each pooling node

— If a layer had 10 pooling feature maps, then 20 unique weights to be
trained




CNN Hyperparameters

Structure itself, number of layers, size of filters,
number of feature maps in convolution layers,
connectivity between layers, activation functions, final
supervised layers, Pooling parameters, etc.

Drop-out often used in final fully connected layers for
overfit avoidance — less critical in convolution/pooling
layers which already regularize due to weight sharing

Stride — if don’t have to test every location for the
feature (i.e. stride = 1), could sample more coarsely

— Another option for down-sampling
As is, the feature map would always decrease in volume

which is not always desirable - Zero-padding avoids this
and lets us maintain up to the same volume

— Would shrink fast for large kernel/filter sizes and would limit
the depth (number of layers) in the network

— Also allows the different filter sizes to fit arbitrary map
widths



ILSVRC Image net Large Scale Vision
Recognition Competition

RGB: 224 x 224 x 3 = 150,528 raw real valued features

» Annual competition of image classification at large scale
« 1.2Mimages in 1K categories
 (lassification: make 5 guesses about the image label

EntleBucher Appenzeller



Example CNNs Structures ILSVRC
winners

Revolution of Depth

AlexNet, 8 layers | 11x11 conv, 96, /4, pool/2 |

(ILSVRC 2012) \ 4
| 5x5 conv, 256, pool/2

<«

| 3x3 conv, 384 |

| 3x3 conv, 384 |

| 3x3 conv, 256, pool/2 |

| fc, 4096 |

\ 4

fc, 1000

Kaiming He, Xiangyu Zhang, Shao

Note Pooling considered part of the
layer

96 convolution kernels, then 256,
then 384

Stride of 4 for first convolution kernel,
1 for the rest

Pooling layers with 3x3 receptive
fields and stride of 2 throughout
Finishes with fully connected (fc) MLP
with 2 hidden layers and 1000 output
nodes for classes

CS8725 - Supervised Learning



Example CNNs Structures ILSVRC winners

Revolution of Depth

(™

&
[ 1111 conv, 96, /4, pool2_| | 3x3 conv, 64 | =3
AlexNet, 8 layers VGG, 19 layers 7 GoogleNet, 22 layers ssme
I 5x5 conv, 256, pool/2 I [ 3x3conv, 64, pool/2 | B B
(ILSVRC 2012) (ILSVRC 2014) ¥ (ILSVRC 2014) =
x3 conv, 384 | [ 3x3 conv, 128 | G
\ RRE =
[ 3x3 conv, 384 | [ 3x3 conv, 128, pool/2 | =] Q
v == S
[ 3x3 conv, 256, pool/2 | | 3x3 conv, 256 | = 0 ER R R
v v ) B S
| fc, 4096 | [ 3x3 conv, 256 | =
v
| fc, 4096 | | 3x3 conv, 256 | " 3 gg
v &
| fc, 1000 | [ 3x3 conv, 256, pool/2 | RSB
\ 4 EEE Q
[ 3x3 conv, 512 | = "
\/ R R LR B
[ 3x3cony,512 | = 2 = S
v R
| 3x3 co;v, 512 | B B 2 B
| 3x3 conv, 512, pool/2 | ﬂaﬂﬁﬂ
\ 4 =
[ 3x3 conv, 512 | o K8 At 2
v B
[ 3x3 conv, 512 | =
v AR
[ 3x3cony,512 | REE
; .
[ 3x3 conv, 512, pool/2 | i
y =]
| fc, $J96 | =
| fc, 4096 | ;
v
| fc, 1000 | =

CS8725 - Supervised Learning Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Increasing Depth

Revolution of Depth 282
‘ 152 layers ] '

‘ 22 layers ’ ‘ 19 Iayers

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

CS8725 - Supervised Learning o . . . p . . _—
Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR



Go Deep with Residual
Network

| weight layer I
l relu
| weight layer l

F(x)

X
identity

F(x) +x
Figure 2. Residual learning: a building block.

He et aI., 2015 CS8725 - Supervised Learning

34-layer plain

image

34-layer residual

image

7x7 conv, 64, /2

| 7x7conv,64,/2 |

pool, /2 pool, /2

3x3 conv, 64 3x3 conv, B4 I
Y v

3x3 conv, 64 3x3 conv, 64
L 2

3x3 conv, 64 3x3 conv, B4 I
2 2

3x3 conv, 64 3x3 conv, 64
¥

3x3 conv, 64 3x3 conv, 64

3x3 conv, 64 3x3 conv, 64
vy e

33 conv, 128, /2

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
¥

3x3 conv, 128 3x3 conv, 128
v ¥

3x3 conv, 128 3x3 conv, 128

3x3 conv, 128 3x3 conv, 128

3x3 conv, 128 3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256, /2|

3x3 conv, 256
3x3 conv, 256 3x3conv, 256 |
v
33 conv, 256 33 cony, 256
L J
333 conv, 256 3x3conv, 256 |
2
33 conv, 256 33 conv, 256
3x3 conv, 256 33 conv, 256 |
33 cony, 256 33 conv, 256
3 conv, 256 3dcony, 256 |
2
33 conv, 256 33 cony, 256
3x3 conv, 256 B conv, 256 |
¥ ¥
33 cony, 256 3 conv, 256
Y Cteresa.
33 conv, 512, /2 3x3conv, 512,/2 |
¥ ¥
3x3 conv, 512 Bdconv, 512 |

3x3 conv, 512 33conv, 512 |
3x3 conv, 512 I3conv, 512 |
3x3 conv, 512 |

' ]

3x3 conv, 512
\

avg pool

avg pool

fc 1000

[ fc 1000 ]

A &
3x3 conv, 512

¥
3x3 conv, 512



ResNet-18

—ResNet-34 34-layer
200 10 20 30 40 50 200 10 20 30 40 50
iter. (le4) iter. (1ed)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.
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CNN Summary

High accuracy for image applications — Breaking all records and
doing it using just using just raw pixel features!

Special purpose net — good for images or problems with strong
grid-like or sequential local spatial/temporal correlation

Once trained on one problem (e.g. vision) could use same net
(often tuned) for a new similar problem — general creator of vision
features (Transfer learning)

Unlike traditional nets, handles variable sized inputs

— Same filters and weights, just convolve across different sized image
and dynamically scale size of pooling regions (not # of nodes), to
normalize

— Different sized images, different length speech segments, etc.
Lots of hand crafting and CV tuning to find the right recipe of
receptive fields, layer interconnections, etc.

— Lots more Hyperparameters than standard nets, and even than
other deep networks, since the structures of CNNs are more
handcrafted

— CNNs getting wider and deeper with speed-up techniques (e.g. GPU,
RelU, etc.) and lots of current research, excitement, and success



Demo of DCNN

loss adam_opti.. | @ccuracy
[
with TensorFlow N
fc2 Placehal...
dropout
fct
poéﬂZ

Build a DCNN to classify digital images
on MNIST dataset conv2

pool1
convl

reshape

Plagehol...



Key code

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=6.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

TensorFlow also gives us a lot of flexibility in convolution and pooling operations. How do we handle the boundaries?
What is our stride size? In this example, we're always going to choose the vanilla version. Our convolutions uses a stride
of one and are zero padded so that the output is the same size as the input. Our pooling is plain old max pooling over 2x2

blocks. To keep our code cleaner, let's also abstract those operations into functions.

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME")

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding="SAME")

CS8725 - Supervised Learning



First Convolutional Layer

We can now implement our first layer. It will consist of convolution, followed by max pooling. The convolution will
compute 32 features for each 5x5 patch. Its weight tensor will have a shape of [5, 5, 1, 32] . The first two
dimensions are the patch size, the next is the number of input channels, and the last is the number of output channels.
We will also have a bias vector with a component for each output channel.

weight_variable([5, 5, 1, 32])
bias_variable([32])

W_convil
b_conv1

To apply the layer, we first reshape x to a 4d tensor, with the second and third dimensions corresponding to image width

and height, and the final dimension corresponding to the number of color channels.

x_image = tf.reshape(x, [-1, 28, 28, 1])

We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool. The

max_pool_2x2 method will reduce the image size to 14x14.

tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
max_pool_2x2(h_conv1)

h_conv1
h_pool1

CS8725 - Supervised Learning



Second Convolutional Layer

In order to build a deep network, we stack several layers of this type. The second layer will have 64 features for each 5x5
patch.

W_conv2 = weight_variable([5, 5, 32, 64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pooll1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

Densely Connected Layer

Now that the image size has been reduced to 7x7, we add a fully-connected layer with 1024 neurons to allow processing
on the entire image. We reshape the tensor from the pooling layer into a batch of vectors, multiply by a weight matrix,

add a bias, and apply a ReLU.

-
_h
9]
=
]

weight_variable([7 * 7 * 64, 1024])
bias_variable([1024])

o
-+
O
—
I

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7%64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

CS8725 - Supervised Learning



Dropout

To reduce overfitting, we will apply dropout before the readout layer. We create a placeholder for the probability that a
neuron's output is kept during dropout. This allows us to turn dropout on during training, and turn it off during testing.
TensorFlow's tf.nn.dropout op automatically handles scaling neuron outputs in addition to masking them, so dropout

just works without any additional scaling.1

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

Readout Layer

Finally, we add a layer, just like for the one layer softmax regression above.

weight_variable([1024, 10])
bias_variable([10])

W_fc2
b_fc2

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

CS8725 - Supervised Learning



Train and Evaluate

cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000) :
batch = mnist.train.next_batch(50)
if 1 % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[@], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[@], y_: batch[1], keep_prob: 0.5})

print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

The final test set accuracy after running this code should be approximately 99.2%.
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Dilated Convolution



Deep Belief Network — Learning
Representation of Data First



Vanishing
Gradient

CS8725 - Supervised Learning



Why Deep Learning? — A Face
Recognition Analogy

| Brain Learning




Learning Representation First

Diagonal
Line

/]
S
ol

-
SRS
ala . A WA

A AV
K%

Y
RS
oY

NN 4
AL
oxoxo

CS8725 - Supervised Learning http://theanalyticsstore.com/deep-learning/



COOGLE TIRES BRAINS THAT
HELPED SUPERCHARCE
MACHINE LEARNING

A Deep
Learning
Success

& ”
\ -

work at Google. Photo: U of T CS8725 - Supervised Learning



Energy Based Models

p(x) — probability of our data; data is represented by
feature vector x. 2(2)

pla) = —

7 — Z e~ E(x)

Attach an energy function (ie, E(x)) to score a
configuration (ie, each possible input x).

and

We want desirable data to have low energy. Thus, tweak
the parameters of E(x) accordingly.

Restricted Boltzann Machines (RBM)



EBMs with Hidden Units

To increase power of EBMs, add hidden

variables. o

Z.Plh Z.\Z

h

By using the notation,

F(z) = —logy e B@M
Free energy I
i

We can rewrite p(x) in a form similar to the
standard EBM,

P(a) = <" with 2 = Yot loglPt) =-F(x)-log(2)

Restricted Boltzmann Machines (RBM)



Tweakin’ Parameters

Now we need to adjust the model so it reflects
our data, do ML

e Likelihood fn

L(0) = 1L, p(zi; )

* Avg. Log-likelihood fn

1
0(0) = nlob ip(x;:0)) nZloh p(x;; 0

:;Zlog = Z — log(Z))




Tweakin’ Parameters

Ta ke the derivative

10Z

:—Z —0F $I -—Z _Fli f)F

CS8725 - Supervised Learning
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Tweakin’ Parameters

e Take the derivative
1 —OF (x;) 8100‘ 1 —O0F (x;) iO_Z
; Z 09, ) a Z( 00, " Zaej)

:—Z_anZ—Q— Z_F 0F:1:
1 (—aF(x,f)) N Zp(i)aF(gz)

n - 0(9] 0(9]
1 (—(?F(x,)
l This is an expectation over all
] possible configurations of input
Can think of as an expectation X.

over dataset.

(58725 - Supervised Leﬁﬁgricted Boltzann Machines (RBM)



Transition to RBM

Looks like training a EBM is, in general, a
tall task. But after much

D+ =@

Jump to an end result...
Restricted Boltzmann Machines (RBM)



RBMs

 Represented by a bipartite
graph, with symmetric,
weighted connections

* One layer has visible nodes

and the other hidden (ie,
latent) variables.

* Notes are often binary,
stochastic units (ie, assume 0
or 1 based on probability)




Unsupervised Restricted Boltzmann

Machine (RBM)

A model for a distribution over
two layers of binary nodes

* Probability is defined via an
“energy”

(v, h) szlz Z(’th Zhjz Wi j
puiy= € 2= N e
A v h

e—E(--z_.v,h..)

h

hidden layer

CS8725 - Supervised Learning
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What’s gained by “Restricted”

1) Conditional probabilities factor nicely
P(h|v) = 11; P(h;|v) and P(v|h) = I1; P(v;| h)
2) Using binary units, we also can get

P(vj = 1|h) = o(bj + W;h)
P(h; = 1|v)

o(c; + Wjv)

So we can get a sample of the visible or hidden
nodes easily...

Restricted Boltzann Machines (RBM)



Training a RBM — Maximum Likelihood

e—E(-'z..r,h..)

Z%Zlog(zh:eE(“i’h))—logZ p("’)_; Z
I R ek 9D ML
ped () [ 28]

“ T (Gg) [

—0F —0F
— E _E
[ 00, Lo [ 00 Loc

>
~—




Gibbs Sampl

— =
Gibbs Step

Can sample from p(v,h) by repeatedly
sampling from v and h using the eqgns. for
p(v|h) and p(h]|v).

As t Soo, (V) h{t) converge to samples of
p(v,h).

But... hard to know when equilibrium has been
reach, can be computationaly expensive

©

ng

Restricted Boltzann Machines (RBM)



Training a RBM - Contrastive
Divergence based on Gibbs Sampling

Instead of attempting to sample from joint
distribution p(v,h) (i.e. pee), sample from pi(v,h).

o _OE
AO; x E —E
B T 00,

c i 1 po i 1 poo
—0F —0F
A0 o B { 00 Lo - { 00; Ll

rningI)-Iinton, Neural Computation(2002)
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Learning Rule

Recall energy function

E(v,h) Z b;jv;— Z thj—z vihjw;

J 1,

Calculating derlvatlves v
OFE (v, h) OE(v,h)
= V; h A =Y

(910.1;7' J Obi

) OFE (v, h) ;

.Y

dc;

So,
Aw; j o< €(< vihj >7 — < wvihj >
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A quick way to learn an RBM

O Start with a training vector on the
visible units.

<Vvih;> <Vvih> Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1
data reconstruction Update the hidden units again.

. 0 1
Aw;;, = & ( <vl-hj> —<vl-hj> )

This is not following the gradient of the log likelihood. But it works well. It is
approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /4; at time 0 and
at time 1.

Hidden
Layer O @‘ O p§0> — O'(Z V; W; 5 —+ C])
>

1

0
< vipj >data

/
Visible Q)’ O
t=0

Layer

Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /4; at time 0 and
at time 1.

Hidden
Layer O Q O p§0) — O'(Z V; Wi j —+ C])
/

0
< vipj >data

/ ,,
Visible Q)’ O @ O

) = o (> hjwij + bi)
j

Layer
t=1

Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /4; at time 0 and
at time 1.

Hidden
Layer O /QD\ O Q@ O p§'0) = U(Z viw;j + ¢;j)
/ /

1

0
< Uipj >data < p}p; >recon

/ / p) = o(>  hjwij +b;)
Visible J
Gj@ ®© P = (Y plwij + ;)

Layer

t=0 t=1

o: sigmoid function

— 0 1,1
AwiJ T <v'.pj > - <pi pj > Hinton, Neural Computation(2002)



Challenges with RBMs

A number of choices to be made

— Types of nodes, learning weight, initial values,
batch sizes, etc.

— Care should be taken to avoid over-fitting

A RBM “manual” is available on line...
http://www.cs.utoronto.ca/~hinton/absps/suideTR.pdf

Software package: Pylearn2:
http://deeplearning.net/software/pylearn2/

On both GPU and CPU


http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf
http://deeplearning.net/software/pylearn2/

GPU Implementation

Calculations need for
training and classification e
made use of CUDAMat and : “’(_’ <L
GPUs .

Train with over one million
parameters in about an hour

CS8725 - Supervised Learning



Why ??27?

Okay, we can model p(x).

>

But how to...

1. Find p(label|x). We want a
classifier!

2. Improve the model for p(x).

CS8725 - Supervised Learning



Deep Belief Nets

RBMs are typically used
in stack 43 W,

— Train them up one layer

at a time
2+ w,

— Hidden units become

visible units to the next

layer up +3

If your goal is a data ]

discriminator, you train a
classifier on the top level
representation of your
input.



Training a Deep Network

1.

Weights are learned
layer by layer via
unsupervised learning.

Final layer is learned as a
supervised neural
network.

All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006



Why stack them up? Why does this
work?

This is a good question, with a long complicated
answetr.

Basically, doing so can improve a lower
variation bound on the probability of training
data under the model.

Hinton, Osindero, & The, 2006



How to generate from the model

 To generate data:
o Get an equilibrium sample

h3
from the top-level RBM by
I W3

performing alternating
Gibbs sampling for a long

time.
o Perform a top-down pass to h2
get states for all the other
layers. I 1 /2
So the lower level bottom-up hl
connections are not part of
the generative model. They I 1 I/V1

are just used for inference.

data

Slide modified from Hinton, 2007
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28x28

Deep Autoencoders - T
* They always looked like a really 1000 neurons
nice way to do non-linear wr T

dimensionality reduction: 500 neurons

— But it is very difficult to w T
optimize deep 3 i
autoencoders using 250 neurons
backpropagation. w,]l

* We now have a much better 30 | < ll::(ietasr
way ’Fo optlrnlze them: W, I

— First train a stack of 4

RBM'’s 250 neurons
w

— Then “unroll” them. 3 T

— Then fine-tune with 500 neurons
backprop. W, T

1000 neurons

W

Hinton & Salakhutdinov, 2006; slide form Hinton

UCL tutorial 28x28




Some Applications

We will look at two ﬂ

applications done by Hinton’s Q i

Lab
* A model for digit recognition

e Cluster/search documents

CS8725 - Supervised Learning



Applications: A model of digit recognition

e Classify digits (0 —9)

* |Inputis a 28x28 image from MNIST (training

60k, test 10k examples)

Q—2M e Nd o
O~NMmAWva oo~
Q~NMTLY N+ o
ON~NM TN &
D—NoT e N
QRN O RHND oD
O~ %8 Nk o
ONN©OWNVS [~ )~
O~ T o Ny o
ONm P RhS oy
VD—NM a9~
D-NMYT YO
VD—chm>x Yo Nog o
QN M T NS Ny



Applications: A model of digit recognition

This is work from Hinton
et al., 2006

2000 top-level neurons

The top two layers form an

associative memory whose
energy landscape models the

low dimensional manifolds of

- 10 label
the digits. —) 500 neurons

The energy valleys have names neurons I

The model learns to generate

combinations of labels and images. 500 neurons
To perform recognition we start with a "‘ l
neutral state of the label units and do an
up-pass from the image followed by a few 28 X 28
iterations of the top-level associative pixel
memory. :

image

Matlab/Octave code available at
http://www.cs.utoronto.ca/zhinten/isedleaglige modified from Hinton, 2007




Model in action

Hinton has provided an excellent way to view the model in

action...
[o[1]2]3]4]
(o 7]s]5]

ENSINERNNNSE
[ [P [ [on [ e o [

o 0N [y £ W[~ o
= [@N[NA [ [ [~o
SOENENEEEN
o o[+ Ol o [N o

} ‘ [ [M [ INCREASE SPEED [ DETAILED VIEW
e 0 000000000000__]

http://www.cs.toronto.edu/~hinton/digits.html
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More Digits

Samples generated by letting the associative memory
run with one label clamped. There are 1000 iterations of
alternating Gibbs sampling between samples.

o o0 ¢ 0o 0 0 0 0 9
/2NN L R T A A A
2 2 2 A 22 1 22 )
7y 21 333 2
Y 4 ¢ ¢ 4 A 4 4 4 |
S s 5§ 55 5 L 5 5 5
G & 6 4§ € b £t L 6 ¢
7 7 701 7 7 7T 7717
F & 6 © 8 % ¥ § £ ¢
9 2 5 9 7T % 9 9 9

I

CS8725 - SuperviseSlljdaewffﬁom inton, 2007



Even More Digits

Examples of correctly recognized handwritten digits
that the neural network had never seen before

ol il N\ (/A2
de2dQ 2 A5 7
3¢ 79494046 >509
el 772\ 71289%79
b8 78 L9497

CS8725 - SuperviseSlljda&ffﬁom Hinton, 2007



Extensions

Do classification.

One way (probably no NI or SVM
the best), train I
generative model with - 7000 top-level neuroms
labeled/unlabeled data T 3

500 neurons

Then train a NN on
T 1

higher dimensional
500 neurons

representation. < T3

28 x 28 pixel
image




Applications: Classifying text documents

A document can be characterized by the
frequency of words that appear (ie, word

counts for some dictionary become feature
vector)

e Goals...

1. Group/cluster similar documents
2. Find similar documents



How to compress the count vector

2000 reconstructed counts

T Multi-layer auto-encoder

500 neurons * Train a model to reproduce
its input vector as its output

=)

* This setup forces as much
information as possible be

250 neurons

| compressed and passed thru
10 the 10 numbers in the
T central bottleneck.
250 neurons  These 10 numbers are then
T a good way to compare
documents.

500 neurons

=)

2000 word counts Slide modified from Hinton, 2007




How to compress the count vector

2000 reconstructed counts

1

500 neurons

T

250 neurons

1

Or ‘2’ for easy

Multi-layer auto-encoder

Train a model to reproduce
its input vector as its output

This setup forces as much
information as possible be
compressed and passed thru
the-18 2 numbers in the

visualization

250 neurons

1

500 neurons

T

2000 word_cou nts

CS8725 - Sup

central bottleneck.

These 38 2 numbers are
then a good way to compare
documents.

Slide modified from Hinton, 2007

prvised Learning




Residue-Residue Contact Prediction

1D Sequence
i J
SDDEVYQYIVSQVKQYGIEPAELLSRKYGDKAKYHLSQRW

Objective:

Predict if two residues (i, j) are in
contact (spatially close), i.e.
distance(i, j) < 8 Angstrom

3D Structure

Eickholt & Cheng, 2012



A Binary Classification Problem

i J
SDDEVYhYIVSQVKQYG'EPCSAELLSRKYGDKAKYHLShRW

N,

Residue info, secondary structure, solvent accessibility, ...

|

Probability that V and Y are in contact?

Cheng & Baldi, 2007; Tegge et al., 2009; Eickholt & Cheng, 2012



Input Features
i J
ALTLHY')RYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQRCQN

3 numbers 2 numbers

Exposed

20 numbers for residue profile

ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDV
ALTLYYDRYTTSRRLEPIPQLKCVGGTAGCDSYTPKVIQCQONRGWDGYDVQWECKTDLDV
ALTLHHDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLYSDRYTTSRRLDPIPQLKCVGGTAGCEAYTPRVIQCQONKGWDGYDVQWECKTDLDI
ALTLYSDRYTTSRRLDPIPQLKCVGGTAGCDAYTPKVVQCQONKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLEPIPQLKCVGGTAGCDAYTPKVIQCQONKGWDGYDVQWECKTDLDV
ALTLHYNRYTTSRRLDPVPQLKCIGGTAGCNSYTPKVIQCQONKGWDGYDVQWECKTDLDI
ALTLHRDRFTTARRTAPIPQLQCLGGSAGCPAHIPEIVQCRNKGWDGFDVQWECKAELDT
VLTLHRGRYTTARRTAAVPQLQCIGGSAGCS~-DIPEVVQCYNRGWDGYDVQWQCKADLEN
TITLYADRYTNARRSAPVPQLKCIGGNAGCHAMVPQVVQCHNRGWDGLDVQWECRVDMDN
AITLYADRYTNARRSAPVPQLKCIGGSAGCHTMVPQVVQCHNRGWDGFDVQWECKVDMDN
VLTLYRGRYTTARRSSPVPQLQCIGGSAGCGSFTPEVVQCYNRGSDGIDAQWECKADMDN

VLTLYKGKYTTARRSSAVPQLQCVGGSAGCGSFIPEVVQCKNKGWDGVDAQWECKTDMDN H e I ix 1 0 0 Ex pose d 1 0

VLTLYRGLYTTARRSSPVPQLQCVGGSAGCHAFVPEVVQCQONKGWDGMDIQWECRTDMDN

TLTLYRGRYTTARRSSPVPQLRCVGGSAGCQAFVPEVVQCONRGWDGVDVQWECKTDMDN Stra n d 0 1 0 B u ri e d 0 1
ALTLYKNRYTTARRASPVPQLQCVGGSAGCQAFVPEVVQCQNKGWDGVDVQWECRTDMDN

VLTLYKGRYTTARRSSPVLQLQCAGGTAGCGSFVPEVVQCYNRGSDGIDTQWECKADMDN .

AITLHKGKMTTGRRVSPTFQLKCVGG-SAKGAFTPKVVQCANQGFDGSDVQWRCDADLPH C Ol I 0 0 1

AITLNKGKMTTGRRVAPTLQLKCVGG-SAKGAFTPKVVQCSNQGFDGSDVQWRCDADLPH
AITLHKGKMTTGRRVAPALQLKCVGG-SAKGQF SPKVVQCANQGFDGSDVQWRCDADLPH

Buried

25 * 18 = 400 features for a pair (i, j)



[0,1]

Deep
Belief
~350 nodes
Network
Architecture ~500 nodes
~500 nodes

~400 input nodes




Training a Deep Network

[0,1]

1239 Proteins for Training
Residue Pairs; Millions of
Residue Pairs
TYC101001001010070 107
b 01001100101000 1010
1(101010703007010100°

i 1 .'I "_V,,']C]’U?d!ﬁéﬁftcun| ,
1001y 0010101010019121¢
| 310100700107007010:




GPU Implementation

Parallelize training of deep

LSDEKIINVDF

KPSEERVREIT

J

learning network with GPUs
and CUDAMat

Train DNs with over 1M
parameters in about an
hour

Eickholt & Cheng, 2012



Boosted Ensembles for Contact Prediction

- TopL
Top L/S

5 10 15 20 25 30

Final output of ensemble |
is the weighted sum of
individual DN outputs.

Eickholt and Cheng, Bioinformatics (2012)



Results on Test Data Set (196
Proteins) and CASP

Metric Acc. L/S | Acc.L/5
(one
shift)

Short Range 0.51 0.79

(6 <= li-j| <12)

Medium 0.38 0.65

Range

(12 <= |i-j| <24)

Long Range 0.34 0.55

(li=j| >= 24)

Economist

2017



Deep Recurrent Neural Network



Temporal and Spatial Series Problem

®@ QO 0O

Hidden ‘
Layer

N
é) O O Cg O O
Time 1 2 3 4 5 6 7

CS8725 - Supervised Learn ing



Recurrent Neural Network

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = Fe(St—l,CUt)

S St+1
unfold | | |
X Lt41

— Gt(xh Lt—1y Lt—29 .5 L2y 331)



Recurrent Neural Network

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.




Increase the expressive power of RNN
with more depth

 |CLR 2014, How to construct deep recurrent neural networks

Y Y+

y

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

+ skip connections for
CS8725 - Supervised Learning creating shorter paths



Long-term dependencies

e The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store
information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L = L(ST(ST—l(- . 8t—|—1(3t7 . ))))
oL OL aST aSt_|_1 Storing bits

8315 8ST 3ST—1 T 8875 robustly requires

sing. values<1

* Problems:

. . ' Gradient
* sing. values of Jacobians > 1 = gradients explode clipping

* orsing. values <1 = gradients shrink & vanish  (yochreiter 1991)

* or random = variance grows exponentially

25 - Supervised Learning



RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

* Clipping gradients (avoid exploding gradients)
* Momentum

* Initialization (start in right ballpark avoids
exploding/vanishing)

e LSTM self-loops (avoid vanishing gradient)



Gated Recurrent Units and Long- and
Short-Term Memory (LSTM)

output

Create a path where
gradients can flow for
longer with self-loop

Corresponds to an
eigenvalue of Jacobian
slightly less than 1

LSTM is heavily used
(Hochreiter & Schmidhuber

1997)

GRU light-weight version
(Cho et al 2014)




RNN Tricks

e Delays and multiple time scales, Elhihi & Bengio NIPS 1996

Q Ot—1 Ot Qt+1
W1 W‘g ? W ‘ W‘S
S k) ' b
mpO—
, unfold
:I; y? r y?
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1D: Secondary Structure Prediction

MWLKKFGINLLIGQSVOR

l

Neural Networks

l

CCCCHHHHHCCC

Strand

Cheng, Randall, Sweredoski, Baldi. Nucleic Acid Research, 2005



Bidirectional Recurrent Neural Network
for Protein Secondary Structure Prediction

+1

copy

Bt+l
t-th amino acid Pollastri, Baldi, 2002

CS8725 - Supervised Learning Cheng et a| 2006
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The Convergenceyof Gradient Descent

BE\ gradient of

() W—MN T objective function

k(!)

E(w) E(w)
A A
#Batch Gradient
#There is an optimal learning \\
rate nd 0 ®
#Equal to inverse 2 derivative . .
n<mn opt N = Nopt
E E

-1
_[oE
Topt = a—mz -—

CS8725 - Supervised Learning T] > T] opt T] > 2 T] opt
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Let's’'Look at a single linear unit

#Single unit, 2 inputs

#Quadratic loss WO

TEW) = 1/p 2, (Y - WeX)?

W1 W2
#Dataset: classification: Y=-1 for blue, +1 for red.
L . e X1 X2

#Hessian is covariance matrix of input vectors

"H=1/p 2 X X.T |
#To avoid ill conditgnir%: normalize the inputs T -

»Zero mean R

»Unit variance for all variable .

CS8725 - Supervised Learning K




#Batch Gradient, small learning rate

Learning
rate:

n=15

Hessian
largest
eigenvalue:

A_=0.84

max

Maximum
admissible
Learning
rate:

Nmae= 2-38

Weight space

Log MSE (dB)

:L

NN Learning

rate:

n=25

Hessian
largest
eigenvalue:

A _=0.84

max

Maximum
admissible
Learning
rate:

Nma= 2-38

epochs

CS8725 - Supervised Learning

Batch Gradient, large learning rate

Weight space

1 0.8 -0.6 -0.4 -0.2 O 0.2 0.4 0.6 0.8 1

fog MSE (dB)

epochs



#Batch Gradient, small learning rate

Learning
rate:

n=15

Hessian
largest
eigenvalue:

A_=0.84

max

Maximum
admissible
Learning
rate:

Nmas 2-38

epochs

Learning
rate:

n=0.2

(equivalent
to a batch
learning rate
of 20)

Hessian
largest
eigenvalue:

A_=0.84

max

Maximum
admissible
Learning
rate

(for batch):

Nmae= 2-38

CS8725 - Supervised Learning

#Stochastic Gradient: Much Faster
#But fluctuates near the minimum

Weight space

L
o
&
N
i
4
&
N
.
.
L
.
"
(=]
.
- //
” /

-

Log MSE (dB)

epochs
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Mulfiléyer Nets'Have Non-Convex Objectjve Functions

#1-1-1 network
pY = W1*W2*X

# trained to compute the identity function with quadratic loss W2
»Single sample X=1, Y=1 L(W) = (1-W1*W2)"2

# Solution: W2 = 1/W2 hyperbola.

Weight space

o D - ® B S

s sweniseatom@UION goqdie noint Solution

S
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Deep Nets with ReLUs and Max Pooling

#Stack of linear transforms interspersed with Max operators
#Point-wise RelLUs:

&)

W31,22

©@ @0

R W22.14
#Max Pooling O O O @ O
»“switches” from one layer to the next W14.3

#lnput-output function
»Sum over active paths
» Product of all weights along the path O O 9 O
»Solutions are hyperbolas 73

#0bjective function is full of saddle points
CS8725 - Supervised Learning



A M:jbk Has Been Debunied: Local
Minima in Neural Nets

> C.ovwexi.&v is wot needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

* (Choromanska, Henaff, Mathieu, Ben Arous & LeCun,
AISTATS'2015): The Loss Surface of Multilayer Nets

CS8725 - Supervised Learning



Saddle Poinks

Most local minima are close to the
bottom (global minimum error)

Local minima dominate in low-D, but-*{
saddle points dominate in high-D

= O

Training error (%)
= = N NN W
U O ;i O Ui

(@)

o YD mam—s .

. L]
& es oulne

oo oe

.00

0.05

0.10 0.15 0.20 0.25
Index of critical point
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Wolfram Global Problem




Saddle Point

In mathematics, a saddle point or minimax point is a point
on the surface of the graph of a function where the slopes
(derivatives) of orthogonal function components defining
the surface become zero (a stationary point) but are not a
local extremum on both axes.

CS8725 - Supervised Learning




Saddle Points During Training

e QOscillating between two behaviors:
* Slowly approaching a saddle point
* Escaping it

100 ' ' ' 10°

— Training error (MSE)
90} e—e Norm of the gradients

80 |

70

fury
Qo
~

Norm of the gradients

6o} PRl
| | i

50 r] BT b g '

Training error (MSE)
-
—

a0} N,

A
[
o

™

30

20}

10 L CSR725 - Quppr\/icpr‘l Learning. L 00
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Piecewise Linear Nonlinearity

Jarreth, Kavukcuoglu, Ranzato & LeCun ICCV 2009: absolute value
rectification works better than tanh in lower layers of convnet

45

v

4.0

35

Nair & Hinton ICML 2010: Duplicating sigmoid units with same .
weights but different bias in an RBM approximates a rectified *
linear unit (ReLU)

15

10k

Glorot, Bordes and Bengio AISTATS 2011: Using a rectifier non- |

softplus

f(x)=log(1+exp(

3
Q
=
=
—

linearity (ReLU) instead of tanh of softplus allows for the first time
to train very deep supervised networks without the need for
unsupervised pre-training; was biologically motivated

Krizhevsky, Sutskever & Hinton NIPS 2012: :
rectifiers one of the crucial ingredientsin [y
ImageNet breakthrough

mite container ship

motor scooter

Neuroscience motivations
Leaky integrate-and-fire model

Io

mite container ship

motor scooter

lifeboat
amphibian
fireboat

drilling platform

black widow

. ockroach
vised LeSP M Nigee
starfish
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go-kart
moped
bumper car
golfcart

pard

jaguar
cheetah
snow leopard
Egyptian cat




Stochastic Neurons as Regularizer:
Improving neural networks by prevenHng co-adaptaHon
of feature detectors (Hinton et al 2012, arXiv)

Dropouts trick: during training multiply neuron output by random
bit (p=0.5), during test by 0.5

Used in deep supervised networks
Similar to denoising auto-encoder, but corrupting every layer

Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
* Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.95—>.79% err)
* TIMIT phoneme classification (22.72>19.7% err)

CS8725 - Supervised Learning



pout Regularizer: Super-Efficient

Dro
Bagging




Baktch Normalization

(loffe & Szegedy ICML 2015)

e Standardize activations (before nonlinearity) across minibatch
e Backprop through this operation
e Regularizes & helps to train

szkv }’\( — Xk — Xk
1=1 k

\or + €
=%Z:: Xk — 1)

BN (xy) = ViXk + B
= ¢(BN(Wx))
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Early Stopping

Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

Keep track of parameters with best validation error and report
them at the end

If error does not improve enough (with some patience), stop.

CS8725 - Supervised Learning



Random Sampling of vaerpammel:e.rs

(Bergstra & Bengio 2012)

e Common approach: manual + grid search
* Grid search over hyperparameters: simple & wasteful
e [Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
* Each training trial is iid
* IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

e e

(| o o

0 S

@)
. ° ©° ° s ° 0
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Important parameter Important parameter

Unimportant parameter
O
O
O
Unimportant parameter




Sequ.ehl:i.al. Model-Based Optimi.z.atiov\
of Hyper-Parameters

30

25F
20f

(Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al

arXiv 2012; Snoek et al NIPS 2012)
Iterate

Estimate P(valid. err | hyper-params config x, D)

choose optimistic x, e.g. max, P(valid. err < current min. err | x)

train with config x, observe valid. err. v, D < D U {(x,v)}

o 0 data

— GP mean||

'2 CS8725 - Su:pervised Learning

o v.1v
0.08f
1 0.06f
0.04f
1 0.02F
1 0.00




Distributed Training

e Minibatches

e Large minibatches + 2"9 order & natural gradient methods

e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)
* Data parallelism vs model parallelism

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e EASGD (zhang et al NIPs 2015) works well in practice
e Efficiently exploiting more than a few GPUs remains a challenge
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Deep AutoEncoder



Generative Adversarial Network
(GAN)



Deep Reinforcement Learning



Stochastic Optimization Algorithms



