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ABSTRACT 
Motivation: Transmembrane -barrel (TMB) proteins are embedded 
in the outer membranes of mitochondria, Gram-negative bacteria, 
and chloroplasts. These proteins perform critical functions, including 
active ion-transport and passive nutrient intake. Therefore there is a 
need for accurate prediction of secondary and tertiary structure of 
TMB proteins. Traditional homology modeling methods, however, 
fail on most TMB proteins since very few non-homologous TMB 
structures have been determined. Yet, because TMB structures 
conform to specific construction rules that restrict the conformational 
space drastically, it should be possible for methods that do not de-
pend on target-template homology to be applied successfully.  
Results: We develop a suite (TMBpro) of specialized predictors for 
predicting secondary structure (TMBpro-SS), β-contacts (TMBpro-
CON), and tertiary structure (TMBpro-3D) of transmembrane -barrel 
proteins. We compare our results to the recent state-of-the-art pre-
dictors transFold and PRED-TMBB using their respective bench-
mark datasets, and leave-one-out-cross-validation. Using the trans-
Fold dataset TMBpro predicts secondary structure with per-residue 
accuracy (Q2) of 77.8%, a correlation coefficient of .54, and TMBpro 
predicts β-contacts with precision of .65 and recall of .67. Using the 
PRED-TMBB dataset TMBpro predicts secondary structure with Q2 

of 88.3% and a correlation coefficient of .75. All of these perform-
ance results exceed previously published results by 4% or more. 
Working with the PRED-TMBB dataset, TMBpro predicts the tertiary 
structure of transmembrane segments with RMSD less than 6.0 Å 
for 9 of 14 proteins. For 6 of 14 predictions, the RMSD is less than 
5.0 Å, with a GDT_TS score greater than 60.0. 
Availability: http://www.igb.uci.edu/servers/psss.html 
Contact: pfbaldi@ics.uci.edu 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION 
Transmembrane β-barrel (TMB) proteins are an important class of 
proteins embedded in the outer membrane of Gram-negative bacte-
ria, mitochondria, and chloroplasts (Wallin and Heijne, 1998; 
Schulz, 2000; Tamm et al., 2004). It is estimated that genomic 
databases currently contain thousands of TMB proteins (Wimley, 
2002, 2003), and ongoing large-scale sequencing efforts promise 
to produce many more (Yooseph et al. 2007). These proteins carry 
out diverse biochemical functions including active ion transport, 
passive nutrient intake, and defense against attack proteins 
(Schulz, 2000; Koebnik et al., 2000). Thus, elucidating the struc-

ture and function of TMB proteins has immediate medical rele-
vance, as bacteria membrane proteins are potential targets of an-
timicrobial drugs and vaccines (Jackups and Liang, 2005). Crystal-
lizing transmembrane (TM) proteins is especially challenging; 
thus, predicting the structure of TMB proteins from sequence is an 
interesting and important task (Casadio et al., 2003; Oberai et al., 
2006). 

Currently, several methods try to discriminate TMB proteins 
from globular and TM β-helical proteins, or to predict their 1-
dimensional (1D) secondary structure features (i.e., the positions 
of TM β-strands and the types of loops) (Paul and Rosenbusch, 
1985; Welte et al., 1991; Gromiha et al., 1997; Diederichs et al., 
1998; Jacoboni et al., 2001; Martelli et al., 2002; Zhai and Saier, 
2002; Liu et al., 2003; Bagos et al., 2004a, 2004b; Bigelow et al., 
2004; Gromiha et al., 2004; Natt et al., 2004; Bagos et al., 2005; 
Fariselli et al., 2005; Gromiha and Suwa, 2005; Gromiha et al., 
2005; Garrow et al., 2005; Park et al., 2005; Bigelow and Rost, 
2006; Waldispühl et al., 2006b). 

The 1D structure predictions are very useful for constructing a 
coarse topology of TMB structure (Tamm et al., 2001). However, 
they do not provide enough information to construct a low-
resolution tertiary structure for a TMB protein (Jackups and Liang, 
2005). In addition, traditional homology modeling of TMB pro-
teins is hindered by the lack of sequence similarity between the 
small number of TMB proteins with known structures and the 
thousands of TMB proteins without known structures (Schulz, 
2000; Jacoboni et al., 2001). 

TMB proteins adopt a common β-barrel fold and obey specific 
construction rules, as outlined in (Schulz, 2000). For instance, 
known TMB proteins consist of an even number of membrane 
spanning β-strands with an anti-parallel β-meander topology. Two 
recently published methods take advantage of these construction 
rules to predict the inter-strand β-residue pairings of TMB proteins 
(Jackups and Liang, 2005; Waldispühl et al., 2006a). These β-
contact predictions provide strong constraints for building tertiary 
structure models of TMB proteins as in the reconstruction of 
globular protein structures using contact constraints (Skolnick et 
al., 1997). 

Since there are fewer than 20 non-redundant (Waldispühl et al., 
2006a) TMB proteins with known structures in the Protein Data 
Bank (PDB) (Berman et al., 2000) and membrane protein data-
bases (Ikeda et al., 2003; Lomize et al., 2006), it is challenging to 
develop robust knowledge-based methods to predict inter-strand 
pairings in TMB proteins. To overcome the small dataset problem 
the method transFOLD (Waldispühl et al., 2006a) uses pair-wise 
inter-strand residue statistical potentials derived from globular 
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proteins to predict the inter-strand residue pairings of TMB pro-
teins with moderate accuracy. 

In this paper, we present a three-stage pipeline to predict the ter-
tiary structure of TMB proteins. First, we predict the two-class 
secondary structure with TMBpro-SS. Second, we predict β-
residue contacts using TMBpro-CON (Pollastri and Baldi, 2002; 
Baldi and Pollastri, 2003; Cheng et al., 2006a; Cheng and Baldi, 
2005). Finally, we use these feature predictions, TMB templates, 
and construction rules to predict tertiary structure TMBpro-3D. 

2 DATA 

2.1 Benchmark sets 
In this work we use two sets of TMB proteins described in the literature. 
The first is the dataset described in (Waldispühl et al., 2006a), which con-
sists of 14 redundancy-reduced TMB proteins. The authors divide this set 
into two main subsets: non-water-filled (NWF) and water-filled (WF). 
NWF consists of (PDB code) 1QJP, 1QJ8, 1THQ, 1P4T, 1I78, 1K24, 
1QD6. WF consists of 1A0S, 1AF6, 1PRN, 2OMF, 1E54, 1TLY, and 
2POR. In our work, we treat all 14 proteins as a single set. The secondary 
structure assignments used for this set come from the DSSP program 
(Kabsch and Sander, 1983), which we condense to two classes: strand (β) 
and non-strand (-). These single character designations are used throughout 
this work when dealing with two-class representation. Following the work 
described in (Waldispühl et al., 2006a), the group published a web-server 
for predicting features of TMB proteins called transFold (Waldispühl et 
al., 2006b). Throughout this work, we refer to this set as SetTransfold. We 
compare our secondary structure and β-contact prediction results to trans-
Fold using this set.  

The second set is described in (Bagos et al., 2004a) and also contains 
14 redundancy-reduced TMBs. Nine of them overlap with SetTransfold: 
1QJP, 1QJ8, 1I78, 1K24, 1A0S, 1PRN, 2OMF, 1E54, and 2POR. The five 
proteins that differ are: 1QD5, 2MPR, 1FEP, 2KMO, and 2FCP. Rather 
than using the DSSP assignments, the authors manually designated TM (β) 
and non-TM (-) segments for each protein in this set. This approach was 
motivated by the observation that many of the β-strands in TMB proteins 
extend significantly beyond the membrane, and the authors sought to focus 
on the TM regions. The authors have made their method available as the 
web server PRED-TMBB (Bagos et al., 2004b). For the remainder of this 
work we refer to this set as SetPRED-TMBB. We compare our results for 
secondary structure and topology prediction to PRED-TMBB using this set. 
We also use this set to evaluate our tertiary structure predictions. 

The two datasets are created and treated independently in this work in 
order to make fair comparisons to previous work. For all of the proteins in 
SetTransFold the secondary structure annotation comes from DSSP. For 
all of the proteins in SetPRED-TMBB the secondary structure, the annota-
tion comes from manual designation. For the nine proteins common to 
both datasets we keep both types of secondary structure annotation. For 
example, protein 1QJ8 is present in each dataset, but with different secon-
dary structure annotation (DSSP in SetTransFold and manual designation 
in SetPRED-TMBB). Results comparing our work to transFold are based 
only on SetTransFold annotations, and results comparing our work to 
PRED-TMBB are based solely on SetPRED-TMBB annotations. 

We compare our results using sets SetTransFold and SetPRED-TMBB 
to the published results of the respective methods. To compare our β-
contact predictions to those of transFold using the same predicted secon-
dary structure, we submitted the proteins of SetTransFold to the transFold 
server. The transFold server predicts the secondary structure into four 
classes: membrane facing strand residues (M), channel facing strand resi-
dues (C), loops inside the periplasm (i), and extra-cellular loops (o). 
TransFold also predicts β-residue contacts. These single character designa-
tions are used throughout this work and in the output of our server. The 
PRED-TMBB server predicts secondary structure into three classes: TM, 
periplasmic, and extra-cellular. For both datasets we expanded the two-

class representation to three-class by designating ‘β’ residues as either ‘M’ 
or ‘C’ based on visual inspection of the structures. These representations 
(M, C, -) were used to train a three-class predictor. 

2.2 Cross-validation 
Our predictors are trained and tested using leave-one-out cross-validation 
(LOOCV) on SetTransFold and SetPRED-TMBB independently. A single 
protein is held out of the set, a model is built using the other thirteen, and a 
prediction is made on the held out protein. This process is repeated for 
each protein in the set to obtain the evaluation statistics in the results sec-
tion. LOOCV provides the best estimate of the generalization accuracy of a 
predictor; however, with larger datasets LOOCV is not practical because of 
the training time involved in building a model for each member of the 
dataset. The same LOOCV procedure is applied to template usage in the 
tertiary structure prediction evaluation. The procedure is also commonly 
referred to as ‘Jackknife’. 

2.3 Template construction 
Our tertiary prediction evaluation is performed using SetPRED-TMBB. We 
created template files by extracting the backbone (N, Cα, C) coordinates 
from the monomeric PDB files.  The curated (β, -) designations are used to 
label each residue position in the template. The set contains 2 proteins with 
8 strands, 2 with 10 strands, 1 with 12 strands (1QD5), 4 with 16 strands, 2 
with 18 strands, and 3 with 22 strands. The strand count of the predicted 
secondary structure is used to select templates for modeling. If the strand 
count of 1QD5 is correctly predicted, no templates would be available for 
modeling because of the LOOCV procedure. To account for this, we built a 
template from one additional 12 stranded protein: 1TLY. Also, if a 14 
stranded protein is predicted, no templates would be available; therefore, 
we built templates from two 14 stranded TMBs: 1T16 and 2F1C. The 
manually curated designations were not available for these three proteins, 
so we used the TM segment ranges published in the Orientation of Proteins 
in Membranes (OPM) database (Lomize et al., 2006). The template set 
contains no 20 stranded proteins because none are present in the PDB. 

3 METHODS 

3.1 Secondary structure prediction 
3.1.1 Neural-network implementation The TMB secondary structure 
predictor uses specialized neural network architecture called a 1-
Dimensional Recursive Neural Network (1D-RNN). This network architec-
ture has been used for prediction of secondary structure, SSpro (Pollastri et 
al., 2002), domain boundaries, DOMpro (Cheng et al., 2006b), and disor-
dered regions, DISpro (Cheng et al. 2005). As in the prior applications, the 
input at each position to the neural network is the profile of the sequences 
in the NR database aligned to the target sequence using PSI-BLAST (Alt-
schul et al., 1997). It has been the experience of the authors that there is 
little chance of over-fitting the models because of the weight sharing in-
volved in the 1D-RNN architecture. This feature of the architecture makes 
it appropriate for the small datasets used in this work. 

3.1.2 Two-class prediction (β, -) For two-class prediction the 1D-RNN 
is trained on the two-class 1D representation: (β) and (-). When making a 
prediction, the output from the model is the predicted probability of class 
membership to each class. The initial predicted secondary structure, Sinitial, 
consists of the class with higher predicted probability at each position. The 
first row in Figure 1 contains an example of Sinitial for the TMB protein 
1P4T. Since the secondary structure of TMB proteins adhere to consistent 
construction rules, we perform post-processing on the predicted probabili-
ties to revise the secondary structure prediction. The lengths of β-segments 
and the different types of loop segments are constrained by minimum and 
maximum values; however, the length of N and C-terminal (-) segments 
are left unconstrained. Table S1 in the Supplementary Materials contains a 
summary of the specific values used for the different segment types for 
each dataset. In the example in Figure 1, the initial secondary structure  
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Fig. 1. Predicted secondary structure for protein 1P4T. LOOCV prediction made using SetTransfold. Initial Pred 2 (Sinitial) is the initial two-class prediction 
by the neural network. Pred 2 (Smax) is the two-class prediction after post-processing. Pred 4 is the four class prediction with loop types inferred from Pred 2 
(Smax) and membrane/channel pattern predicted by the three-class predictor. Annotation is the 1D sequence according to the DSSP designations for strand 
boundaries and our assignment of ‘M’, ’C’, ’i’, ’o’, and ‘.’ based on visual inspection. 

prediction Sinitial for protein 1P4T violates multiple constraints. To describe 
the post-processing strategy formally we use the additional notations: N is 
the number of residues in a sequence, S is any two-class secondary struc-
ture that does not violate any of the model constraints, Si is the secondary 
structure at position i, O is the matrix of predicted probabilities output from 
the 1D-RNN, Oi,β and Oi,non-β are the predicted probabilities that Si is ‘β’ or 
‘-‘, respectively. The post-processing objective function is the sum of pre-
dicted probabilities for each position of S as defined in Equation 1. 

∑
=

=
N

i
Si i

OSsum
1

,)(  (1) 

Given sum(S) as the objective function, we need to find an S which maxi-
mizes sum(S), which we denote Smax. If Sinitial does not violate any of the 
constraints, then no search is necessary as sum(Smax)≤ sum(Sinitial). To find 
an Smax we developed a dynamic-programming (DP) solution that incorpo-
rates the parameters of the TMB construction rules. The search guarantees 
to find an Smax, but the solution may not be unique. Since, we have no 
objective way to discriminate between two equal scoring predictions this 
issue is ignored, and the single optimal path returned from the DP search is 
used as the final Smax. 

We use the number of β-strands in Smax as the prediction of strand count. 
During the search for Smax the DP method saves the value of sum(S) for 
each value of potential strand count. If the number of strands ‘θ’ is pro-
vided as an additional constraint, the notation Smax,θ indicates an optimal S 
with θ strands. This information can be useful for assessing the confidence 
in the predicted secondary structure and corresponding strand count. Table 
S2 in the Supplementary Materials contains a summary of the Smax,θ   results 
for the proteins in SetPRED-TMBB. For 1QJ8 the gap between Smax,8 
(130.4) and the next highest sum Smax,10 (115.2) is 11.7%, whereas for 
1A0S the gap between Smax,16 (340.9) and the next highest sum Smax,18 
(340.1) is only 0.2%. The larger the gap, the more confident the predictor 
is in its strand count. For assessing our system, this information is not 
useful, as the predictor will use the single best Smax; however, this informa-
tion could be valuable to a user who may decide to build tertiary models 
from multiple strand counts. 

3.1.3 Three-class prediction (M, C, -) To predict the membrane/channel 
pattern within the β segments we trained a separate neural network to pre-
dict three classes: M, C, and other (-). The architecture for the three-class 
predictor is the same 1D-RNN architecture used for the two-class predictor. 
The output of the network is the probability of class membership in each of 
the three classes. For each β segment predicted in the final two-class pre-
diction Smax, the membrane-channel (M/C) pattern is predicted by choosing 
the pattern with the higher predicted probability sum. For the example 

protein, 1P4T, in Figure 1, the first β segment is predicted to be from posi-
tion 6 to 18. Equation 2 shows the calculation for the sum of predicted 
probabilities for each pattern. 

CMMC

MCCM

OOOOCMsum
OOOOMCsum

,18,17,7,6

,18,17,7,6

..._

..._
++++=

++++=  (2) 

In this case sum_MC > sum_CM so the pattern beginning with ‘M’ is 
forced over the β segment. From the three-class prediction, the (-) seg-
ments are assigned as periplasmic (i) or extra-cellular (o) according to the 
pattern observed in all TMB proteins. See Figure 1 for the final four-class 
prediction of the example protein 1P4T in comparison to the annotations. 

3.2 β-contact prediction 
Between two paired β-strands, only every other pair of aligned residues is 
hydrogen bonded. Residue pairs that are aligned, but not hydrogen bonded 
to one another, are still considered β-contacts. The DSSP program is used 
to automatically identify β-contacts in known protein structures. DSSP 
classifies β-contacts based on inter-residue atomic distances and angles. 
TMBpro-CON is trained on true β-contacts using a 2 Dimensional Recur-
sive Neural Network (2D-RNN) (Cheng and Baldi, 2005). TMBpro-CON 
predicts β-contacts in TMB proteins by first predicting the probability of 
pairing between all pairs of predicted β-strand residues. For each pair of 
strands the pseudo-energy (i.e. the sum of the individual predicted pairing 
probabilities) of all possible strand-strand alignments is calculated. Then 
TMBpro-CON utilizes the following rules to restrict the search for accept-
able pairings: consecutive strands must pair in anti-parallel fashion; the 
terminal strands must pair in anti-parallel fashion; the shear number must 
be between 0 and +4 with respect to the strand count; membrane facing 
residues must pair with other membrane facing residues; and core facing 
residues must pair with other core facing residues. A dynamic program-
ming method is used to find a set of contact predictions that maximizes the 
global pseudo-energy while conforming to the construction rules. 

3.3 Tertiary structure prediction 
TMBpro-3D combines de novo and template based methods to predict 
tertiary structure, using a search energy composed of predicted structural 
feature, physical interaction, and statistical terms. The conformational 
search is performed using simulated annealing with a move set that utilizes 
whole protein templates and fragment assembly.  

3.3.1 Search energy  The search energy used in the conformational search 
is a linear combination of the following terms: 

• Ebeta_pairs - favors hydrogen bonding between predicted β-contacts. 

SS Source Predicted or Assigned Secondary Structure of Protein 1P4T 

Initial Pred 
2(Sinitial) 

-----EEEEEEEEEEE-E--------EEEEEEEEEEEEEEEEEEEEEEEE-E-----EEEEEEEEEEEEEEE-------E--EEEEEEEEEEEE-----EEEEEEEE-EEEEEEEEEE-E-EEEEEEEEEEE------EEEEEEEEEEEEEEEE-

Pred 2 (S
max

) -----EEEEEEEEEEEEE--------EEEEEEEEEEE--EEEEEEEEEEE-------EEEEEEEEEEEEEEE-------EEEEEEEEEEEEEEE-----EEEEEEEEEEEEEEEEEEE---EEEEEEEEEEE------EEEEEEEEEEEEEEEE-

Pred 4 .....MCMCMCMCMCMCMooooooooMCMCMCMCMCMiiMCMCMCMCMCMoooooooMCMCMCMCMCMCMCMiiiiiiiMCMCMCMCMCMCMCMoooooMCMCMCMCMCMCMCMCMCMiiiMCMCMCMCMCMooooooMCMCMCMCMCMCMCMC.

Annotation ...MCMCMCMCMCMCMCMooooMCMCMCMCMCMCMCMiiMCMCMCMCMCMCooooooooMCMCMCMCMCMCMiiiiiMCMCMCMCMCMCMCMCMooooCMCMCMCMCMCMCMCMCMCMMiiMCMCMCMCMCMCMMCooCMMCMCMCMCMCMCMC.
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• Emc_pattern - favors predicted M/C pattern using template residue 
membrane-channel values.    

• Eglobular_pairwise - rewards favorable side-chain interactions between 
predicted non-β positions (Zhang et al., 2003). 

• Echain_break - favors close termini proximity at artificial chain break 
sites.  

• Ecentroid_repulsion - penalizes clashes between side-chain centers of 
mass. 

• Evdw_repulsion - penalizes steric clashes between all explicitly modeled 
atoms using Van der Waals radii. 

The details of each individual and the corresponding weights are provided 
in the Supplementary Materials. 
 
3.3.2 Template usage   The strand count (θ) of the predicted secondary 
structure is used to screen for potential templates. Each template with a 
strand count matching θ is used to generate an ensemble of models. All 
models are then ranking according to their energy, and the model with the 
best search energy is the final tertiary prediction. To allow flexible align-
ment of each predicted β-segment to its corresponding template segment, 
TMBpro creates artificial chain breaks at the center of each non-β region, 
dividing the model into θ loosely coupled sub-models. The sub-models are 
allowed to move independently, but their interactions are captured through 
the global energy function. 

Four arrays of variables (M, T, U, H) are used to manage template utiliza-
tion during the conformational search (see Figures 2 and S2). The model M 
is an array containing the xyz coordinates of the backbone atoms (N, Cα, 
C), indexed by the residue number i. The template T is a similar array built 
for the template protein. The template usage U is an array of binary vari-
ables indicating whether or not T is used to model M at each residue posi-
tion. Ui=1 indicates that T is used to model Mi, while Ui=0 means Mi is mod-
eled by fragment replacement using the fragment library (Simons et al., 
1997). The alignment shifts H is an array of length θ, where each position is 
the integer shift between model and template segment relative to center-
center alignment. Initially the centers of all model and template segments 
are aligned, corresponding to Hi  = 0 for i=1,…,θ. From these center-center 
alignments, U is set to 1 at each predicted β position that aligns to a β-
residue in the template, and the rest of U is set to 0 (Figures 2 and S2). 
During the search phase the values of H and U are modified to explore the 
use of T.  

3.3.3 Move types   The following move types are used in the simulated 
annealing protocol to search the conformational space: 

• Shift Single Segment by k: Hi = Hi + k  
i = segment index; k ∈Z and -max ≤ k ≤ max; 
max = (length of segment i)/2; 

• Shift m Consecutive Segments by k: Hj = Hj+k, for j=i,…,i+m-1  
i = starting segment index; m ∈Z and  2 ≤ m ≤ θ; 
k ∈Z and -max ≤ k ≤ max;  
max = (length of shortest among m segments)/2; 

• Adjust Single Segment Template Usage by k: Ul = δ for l=b,…,b+k-1 
b = index of boundary residue (Ub ≠ Ub+1); 
δ =  0 (contraction) or δ =  1 (extension); 
k ∈Z and -max ≤ k ≤ max; 
max = number of residues to next boundary; 

• Replace with Fragment: use fragment to model Mi,…,Mi+k 
i = index of first residue to replace; 
k ∈Z and 1 ≤ k ≤ 9; 
This move is applied only to regions where the template is not 
used (Ui,…,Ui+k=0).  

3.3.4 Conformational search   The space of possible conformations is 
searched using simulated annealing with a linear cooling schedule and the 
move-set described above. The search is performed in two distinct phases.  

Fig. 2. Hypothetical template usage example for the first two TM segments. 
M and T represent the model and template respectively. U controls where the 
template is used: ‘↑’ indicates the position is modeled from T (Ui = 1), 
whereas ‘f’ means the position is modeled by fragment modeling (Ui = 0). 
The wavy vertical lines mark the chain breaks. The center residue of each 
segment is boxed to help illustrate the shifts. Initially the centers of seg-
ments are aligned (all Hi = 0). In the final model, the 1st segment is shifted 1 
position to the left (H1 = -1) and the 2nd segment is shifted 3 positions to the 
right (H2 = 3). 
 

Phase 1 focuses on modeling the TM-segments, while phase 2 focuses on 
modeling the loops. In phase 1 all move types are used and the weights for 
Eglobular_pairwise, Echain_break, Ecentroid_repulsion, and Evdw_repulsion are set to 0 to allow 
the search to quickly find a conformation that satisfies the predicted strand 
constraints (low Ebeta_pairs and Emc_pattern). At the end of phase 1 the values of 
H are locked, so that the model-template alignments are no longer allowed 
to change. This reduces the move set in phase 2 to only Adjusting Single 
Segment Template Usage and Replace with Fragment. In addition, all 
energy terms are used in phase 2. The search is run with different random 
seeds to generate an ensemble of predicted models, equally utilizing the 
available templates. The model with the lowest final search energy is re-
turned as the tertiary structure prediction. 

4 RESULTS 
To assess our secondary structure prediction we compare it to the 
published results of transFold (Waldispühl et al., 2006a) and 
PRED-TMBB (Bagos et al., 2004a) methods. To assess our β-
contact prediction we compare it to the published results of trans-
Fold, and to the server output in order to make a comparison using 
the same predicted secondary structure as input. To the best of our 
knowledge, TMBpro-3D is the first publicly available method to 
predict the structure of TMB proteins without relying on sequence-
sequence, sequence-profile, or profile-profile alignments for tem-
plate usage; thus, we do not compare out tertiary prediction results 
to previous work. 

4.1 Secondary structure prediction results 

As described previously, we developed a two-class (β,-) secondary 
structure predictor specialized for TMB proteins. Using the two-
class predictions we predict the three-class (M, C, -) and infer four-
class predictions (M, C, i, o). We developed two separate secon-
dary structure predictors using the non-redundant datasets  
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Table 1. TMBpro-SS compared to transFold 

Method Q2 MCC SOV Q3 Qβ
% obs Qβ

% pred 

transFold 69.9 .380 -- 58.5 94.9 85.2 

TMBpro-SS 77.8 .538 .800 71.5 97.2 88.2 

For this comparison TMBpro-SS is evaluated using LOOCV on the SetTransfold 
dataset. Comparison metrics are: Q2: two-class per-residue accuracy, MCC: Mathews 
correlation coefficient, SOV: segment overlap measure, Q3: three-class per-residue 
accuracy Qβ

%obs: per-segment recall (sensitivity), Qβ
%pred: per-segment precision. 

SetTransfold and SetPRED-TMBB to make comparisons with the 
related methods. 

4.1.1 Secondary structure evaluation metrics To assess secon-
dary structure prediction performance we use the following per-
residue metrics: the two-class accuracy (Q2), three-class (M, C, -) 
accuracy (Q3), Mathews Correlation Coefficient (MCC) (Baldi et 
al., 2000), and Segment Overlap Measure (SOV) (Zemla et al., 
1999).We include the SOV measure for completeness, but no SOV 
results were provided in the studies we compare to. In addition to 
these common measures, we use additional measures from previ-
ous work for the sake of comparison. For comparison to transFold 
we also include the per-segment recall (sensitivity) Qβ

%obs and 
precision Qβ

%pred, with correct prediction defined as an observed β-
strand intersecting exactly one predicted β-strand, and vice versa 
(Waldispuhl et al., 2006a). The per-segment measures for com-
parison to PRED-TMBB include the number of true positives (TP), 
the number of false negatives (FN), and the number of false posi-
tives (FP). In addition, we include the number of correctly pre-
dicted topologies (TOP), that is when all strands and loops have 
been predicted correctly according to (Bagos et al., 2004a). 

4.1.2 Results using SetTransfold   Table 1 contains a summary of 
TMBpro-SS secondary structure prediction results compared to 
transFold. We use LOOCV on SetTransfold to assess our method 
and compare it to transFold. TMBpro-SS outperforms transFold 
significantly using the Q2 (77.84% to 69.91%) and MCC (.538 to 
.380) measures. TMBpro-SS performs slightly better than trans-
Fold, according to the per-segment measures Qβ

%obs and Qβ
%pred. 

4.1.3 Results using SetPRED-TMBB Table 2 contains a sum-
mary of TMBpro-SS secondary structure prediction results com-
pared to PRED-TMBB. We use the same LOOCV (Jackknife) pro-
cedure as the authors of the PRED-TMBB method, on the same set 
of proteins, to make the comparison as objective as possible. Of 
the 214 annotated β-strands PRED-TMBB correctly predicts 203, 
while TMBpro-SS correctly predicts 204. PRED-TMBB makes 13 
false positive predictions (FP), while TMBpro-SS only makes 6. 
Using the TOP measure of correct topology prediction PRED-
TMBB correctly predicts 8 topologies, while TMBpro-SS succeeds 
on 11. TMBpro-SS also outperforms PRED-TMBB according to 
the Q2 (88.3% to 84.2%) and MCC (.751 to .720) measures. When 
comparing TMBpro-SS to itself between datasets it has signifi-
cantly higher Q2, Q3, MCC and SOV when using SetPRED-TMBB 
(see Tables 1 and 2). It is unclear how much of this difference is 
due to the five proteins that differ between the sets, and how much 
is due to the different types of annotation of the training data. The 

Table 2. Secondary structure prediction compared to PRED-TMBB 

Method TP FP FN TOP Q2 Q3 MCC SOV 

PRED-TMBB 203 13 11 8 84.2 -- .720 -- 

TMBpro-SS 204 6 10 11 88.3 88.0 .751 91.3 

TMBpro-SS is evaluated using LOOCV on the SetPRED-TMBB dataset and com-
pared to PRED-TMBB. Per-segment measures are; TP: true positives, FP: false 
positives, FN: false negatives. Topology measure; TOP: correct topology. Per-
residue measures; Q2: two-class accuracy, Q3: three-class accuracy, MCC: Mathews 
correlation coefficient and SOV: segment overlap measure. 

Table 3. β-contact prediction results. 

Dataset / Method Precision 
δ=0 

Recall 
δ=0 

Precision  
δ=2 

Recall  
δ=2 

SetTransfold     

   transFold – published -- -- .350 .450 

   transFold – server results .084 .105 .434 .512 

   TMBpro-CON (transFold ) .110 .128 .445 .532 

   TMBpro-CON (TMBpro-SS) .206 .215 .648 .671 

   TMBpro-CON (DSSP) .478 .520 .960 .960 

SetPRED-TMBB     

   TMBpro-CON (TMBpro-SS) .414 .407 .851 .819 

   TMBpro-CON (annotation) .484 .529 .967 .996 

Summary of β-contact prediction results. The secondary structure method used by 
TMBpro-CON is in parentheses. For δ=0 only exact pairs are counted, for δ=2 pair-
ings within ± 2 are counted as correct. True β-contacts are determined by the DSSP 
program. 

Q2, Q3, MCC and SOV results for individual proteins are displayed 
with the detailed tertiary prediction results in Table 4. 

4.2 β-contact prediction results 

The input to TMBpro-CON is the amino acid sequence and a two-
class secondary structure. Using SetTransfold we performed β-
contact prediction with three different sets of two-class secondary 
structure: (1) predicted by transFold server, (2) predicted by 
TMBpro-SS and (3) DSSP designations. We compare our results 
using (1) to the β-contacts predicted by the transFold server. We 
compare our results using (2) to the transFold published results. 
Using SetPRED-TMBB we performed β-contact prediction with 
two sets of two-class secondary structure: predicted by TMBpro-
SS and hand curated annotations from (Bagos et al., 2004a). No 
comparison to other work is made using SetPRED-TMBB since 
PRED-TMBB does not predict β-contacts. 

4.2.1 β-contact evaluation metrics   For evaluation of β-contact 
prediction the authors of transFold introduce the concept of a 
compatible pair of residues to allow contact predictions that are 
nearly correct to be counted. Consider a pair (i,j) to be a true β- 
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Table 4. TMBpro-3D tertiary structure prediction results. 

TM count: number of transmembrane segments in secondary structure predicted by TMBpro-SS. If the prediction does not match the true number of segments, the true number is 
shown in parentheses. MCC: Mathews correlation coefficient. SOV: segment overlap measure (Zemla et al., 1999). Q2: two-class accuracy. Q3: three-class accuracy. β-recall δ=0: 
recall of exact hydrogen bonded β-residue pairs. GDT_TS: global distance test total score. RMSD: root-mean-squared deviation. The TM notation indicates the assessment was 
only performed on the portions of the protein annotated as transmembrane. The results in section ‘tertiary prediction results’ are generated using predicted secondary structure and 
β-contacts. The results in section ‘self-consistency results’ are generated using the manually curated secondary structure of SetPRED-TMBB and true β-contacts as determined by 
DSSP. The final column in the self-consistency section, RMSDTMSelfTemplate, shows results when TMBpro is allowed to use all available templates (including the self template), 
all other results are generated using LOOCV template selection. 

residue pairing. The contact pairs (i,j) and (m,n) are considered to 
be compatible if, for a given integer δ, (i,j) = (m ± δ, n ± δ). In their 
work they use a value of δ=2 for evaluation. For our assessment we 
use δ=2 and δ=0, where only exact pairing predictions are counted. 
The measures we use for assessment are precision and recall. The 
precision is calculated by (number of correct β-contact predictions 
/ total number of β-contact predictions) and recall by (number of 
correct β-contact predictions / total number of true β-contacts). 

4.2.2  Results using SetTransfold   A summary of β-contact pre-
diction results for both protein sets and all secondary structure sets 
is available in Table 3. Using the same secondary structure as input 
(the predicted secondary structure from the transFold server) 
TMBpro-CON performs slightly better than the transFold server 
by all measures. Using the predicted secondary structure from 
TMBpro-SS as input, TMBpro-CON performs significantly better 
than transFold server results and published results according to all 
measures. Using the DSSP assigned secondary structure as input 
TMBpro-CON predicts exact β-contacts with precision .478 and 
recall .520. These results demonstrate the upper bound in β-contact 

prediction accuracy of TMBpro-CON given improvements in sec-
ondary structure prediction only.  

4.2.3  Results using SetPRED-TMBB Taking the predicted sec-
ondary structure from TMBpro-SS trained on SetPRED-TMBB as 
input, TMBpro-CON predicts exact β-contacts with precision .414 
and recall .407. These values are significantly higher than the cor-
responding prediction using SetTransfold (see Table 3). This dif-
ference can be accounted for by the more accurate secondary struc-
ture predictions for SetPRED-TMBB. The β-contact recall results 
for the individual proteins are shown in the tertiary results Table 4. 

4.3 Tertiary structure prediction results 

Here we evaluate the tertiary structure predictions of TMBpro-3D 
for SetPRED-TMBB using secondary structure and β-contacts pre-
dicted by TMBpro. We chose SetPRED-TMBB rather than Set-
Transfold for tertiary prediction experiments because of the 
stronger secondary structure and β-contact prediction results. Only 
the model with the lowest search energy is evaluated.  

  secondary structure 

prediction results 
tertiary prediction results 

(predicted SS and β-contacts ) 
self-consistency results 
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1QJ8 148 8 .86 97.3 93.2 93.2 .64 52.0 5.5 69.9 3.6 58.8 5.2 76.5 2.3 0.0 

1QJP 171 8 .78 95.0 89.5 89.5 .65 57.3 4.3 68.3 3.0 54.2 4.9 63.7 2.8 0.0 

1K24 253 10 .59 86.7 80.2 80.2 .18 32.3 12.9 50.0 10.2 55.7 4.8 76.9 1.9 0.0 

1QD5 269 12 .68 95.2 84.4 79.6 .37 25.5 11.7 37.1 8.3 41.1 8.6 62.3 4.5 0.0 

1PRN 289 16 .81 91.9 90.3 89.6 .46 50.0 7.1 68.0 5.7 55.6 5.4 76.5 2.0 0.0 

1I78 297 10 .89 99.7 95.3 95.3 .66 35.9 14.8 66.1 4.0 41.2 14.5 79.3 1.7 0.0 

2POR 301 16 .57 70.6 78.7 77.1 .28 29.7 13.4 43.8 11.4 58.7 5.4 81.9 1.5 0.0 

1E54 332 16 .73 95.5 86.7 85.8 .48 49.3 7.7 70.9 4.4 55.5 7.1 79.5 2.7 0.0 

2OMF 340 16 .84 97.7 92.4 90.6 .31 41.8 8.6 66.3 4.9 54.5 5.9 81.8 1.8 0.0 

1A0S 413 16(18) .5 65.2 75.3 74.3 .17 21.9 16.8 33.5 14.1 66.9 5.1 89.8 1.7 0.0 

2MPR 427 16(18) .53 76.7 77.5 76.6 .41 29.4 13.7 40.2 12.3 67.9 7.7 92.3 1.8 0.0 

2FCP 723 22 .85 98.7 93.9 93.9 .39 25.9 15.5 48.8 6.0 41.5 13.9 74.9 3.5 0.0 

1FEP 724 22 .81 97.4 91.7 91.7 .54 38.7 11.0 60.2 4.4 48.0 10.0 78.7 2.7 0.0 

1KMO 741 22 .88 99.2 95.1 95.1 .34 31.1 9.1 53.3 5.3 54.6 8.7 78.9 2.1 0.0 
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4.3.1 Tertiary structure evaluation metrics   The two measures 
we use to evaluation tertiary predictions are root-mean-square 
deviation (RMSD) and global distance test total score (GDT_TS). 
The latter has been used as the primary numeric measure in recent 
critical assessment of methods of protein structure prediction 
(CASP) experiments (Zemla et al., 2001). The TM notation is used 
as a subscript to indicate that the measure is calculated on only the 
TM segments of the true structure compared to the model. 

4.3.2 Prediction results   The tertiary structure prediction results 
for each protein in SetPRED-TMBB are displayed in Table 4. The 
best prediction, in terms of the GDT_TS and RMSD on the whole 
structure is made on the protein with the second highest β-contact 
recall: 1QJP. The β-contact recall is .65, the GDT_TS is 57.3 and 
RMSD is 4.3 Å. The GDT_TSTM is 68.3 and RMSDTM is 3.0 Å. 
The next best whole structure predictions are for proteins 1QJ8 
(52.0, 5.5 Å), 1PRN (50.0, 7.1 Å), and 1E54 (49.3, 7.7 Å). The 
Supplementary Materials contains a superposition file 
(1QJ8_pred.pdb) and an image (Figure S1) showing the predicted 
structure for 1QJ8 aligned to the PDB structure. For several pro-
teins the GDT_TSTM results are strong. For proteins 1QJ8, 1QJP, 
1PRN, 1I78, 1E54, 2OMF and 1FEP the GDT_TSTM is greater 
than 60.0. These predictions correspond to correct topology predic-
tions and high β-contact recall when compared to the other predic-
tions. The significantly lower GDT_TS and higher RMSD scores 
on the whole structures reflect the difficulty of modeling long loop 
regions and core domains folded inside the larger proteins. 

The worst whole structure and TM segment predictions are 
made on proteins 1A0S and 2MPR, both of which have true strand 
counts of 18, but are modeled using 16-stranded templates because 
of incorrect secondary structure topology predictions. Additionally, 
the locations of multiple strands in the 2POR prediction are incor-
rect resulting in an incorrect topology according to the TOP meas-
ure. The worst whole structure and TM segment prediction for a 
protein with correct topology prediction was made on the 10-
stranded protein 1K24. The topology is correct using the TOP 
measure; however, the locations of the sixth and seventh strands 
are off by seven residues. Using a slightly stricter standard for 
topology assessment, this prediction would be considered an incor-
rect topology. From these results it is clear that the correct topol-
ogy is necessary to build a reasonable tertiary model. 

4.3.3 Self-consistency results   To evaluate the self-consistency 
of TMBpro we provided the curated secondary structure and true 
β-contacts as input to the program. The performance was assessed 
both allowing and disallowing the inclusion of the native template 
among the available templates, and the results are displayed in the 
rightmost section of Table 4. When the native template is included, 
TMBpro always recovers the true structure (see the last column in 
Table 4). When the native template is not included, the RMSDTM 
results range from 1.5 Å to 4.5 Å. For 12 of 14 predictions, the 
RMSDTM is less than 2.8 Å. The only two exceptions are proteins 
2FCP, with an RMSDTM of 3.5 Å, and 1QD5, with an RMSDTM of 
4.5 Å. At 723 residues 2FCP is one of the longest proteins in the 
set, so a slightly higher error is not surprising. 1QD5 is only 269 
residues, but contains an irregular bulge in the first strand that is 
not present in its only available template (1TLY).  

 

5 CONCLUSION 

TMB proteins have clear biological and medical relevance. Due to 
their importance and the difficulty of experimentally determining 
their structures, accurate tertiary structure prediction of TMB pro-
teins is an important task for the protein structure prediction com-
munity. Traditional homology modeling methods will perform well 
if the target protein is similar enough to a solved protein to create a 
quality alignment; however, for the vast majority of putative TMB 
proteins traditional homology modeling will fail. The construction 
rules TMB proteins follow provide a greatly reduced search space 
compared to the globular protein structure prediction problem. In 
this work we demonstrated a methodology for predicting secon-
dary structure, β-contacts, and tertiary structure of TMB proteins. 
The tertiary structure predictor does not rely on sequence similarity 
between target and template. The performance of TMBpro com-
pares favorably to other publicly available predictors. The TMBpro 
server, trained on all 14 proteins in SetPRED-TMBB, is publicly 
available at: http://www.igb.uci.edu/servers/psss.html. 
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