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ABSTRACT 

Despite significant advancement of computational methods in 

protein structure prediction during the last decade, these 

techniques often cannot achieve allowable prediction accuracy 

to be applied in solving biological problems. Bringing these 

low-resolution predicted models to high-resolution structures 

close to their native state, called the protein structure refinement 

problem, however, has proven to be extremely challenging and a 

largely unsolved problem in the field of protein structure 

prediction. Here, we propose a new approach to protein structure 

refinement by iterative fragment exchange, called REFINEpro. 

The protocol first identifies the less conserved local regions in 

the initial model by consensus approach using ensemble of 

models produced for the same protein target. We call these 

regions problematic regions (PRs). The qualities of the PRs are 

then iteratively improved by exchanging better-modeled 

fragments corresponding to these PRs from structures in the 

ensemble. This method has been tested on benchmark datasets 

comprising of decoys generated through both template-based 

and ab-initio protein structure prediction methods and exhibits 

promising improvement over the initial models in both global 

and local model quality measures, indicating a new avenue to 

solve the protein structure refinement problem. REFINEpro web 

server is freely available at 

http://sysbio.rnet.missouri.edu/REFINEpro/. 

Categories and Subject Descriptors 

I.6.5 [Modeling methodologies]: Computational modeling of 

protein structure, improving quality of modeling. 

General Terms 

Design 

Keywords 

protein structure refinement, protein structure prediction, 

iterative improvement, unreliable local regions, fragment 

exchange, consensus quality assessment. 

 

1. INTRODUCTION 
The advancement of template based modeling (TBM) 
techniques and the expansion of protein sequence and structure 
spaces have certainly improved the average qualities of protein 
models over the previous decades. However, the contemporary 
computational protein structure prediction methods still lacks 
the consistent accuracy needed to be successfully applied to 
address biological problems. Refinement of these predicted 
models in order to enhance the qualities thereby bringing them 
closer to the native state is, therefore, an integral part of protein 
structure prediction pipelines. 
Efforts to solve the protein structure refinement problem have 
usually been rooted in two schools of thoughts. One is physics 
based methods which is governed by the thermodynamic 
hypothesis proposed by Anfinsen that the native structure of a 
protein corresponds to the global minimum of its free energy 
[1]. Consequently, a force-field is first developed to calculate 
the potential energy of the initial protein model. Then the 
potential energy is minimized through conformation changes 
with the goal to find the free-energy minimum in the protein 
energy landscape using traditional molecular mechanics (MM) 
potentials like AMBER99 [2, 3], OPLS-AA [4], etc. A number 
of noteworthy studies have been performed in this direction [5, 
6]. However, there are two major bottlenecks of these methods: 
(1) limited accuracy of physics based empirical force fields and 
(2) “multiple-minima problem” arising from the presence of 
many local minima in protein’s multidimensional energy 
landscape [7]. The other school of thoughts is “knowledge-
based” methods that utilize the statistical potentials derived from 
the analysis of recurrent patterns in experimentally derived 
protein structures and sequences [8]. Molecular Dynamics (MD) 
simulation is widely used in this kind of protocols (Fan and 
Mark, 2004; Lee, et al., 2001) to move every atom of a protein. 
Apart for some isolated cases, however, no systematic structural 
improvement has been attained [9]. 
Some promising progress has been made in the recent past by 
combining the two school of thoughts, that is, by using 
composite physics and knowledge-based potentials [10-12] to 
solve protein structure refinement problem. Although 
encouraging, these techniques highlight a key issue in protein 
structure refinement – that is, majority of these methods follow a 
conservative local sampling strategy around the starting 
structures producing improvement only in local qualities of the 
models rather than substantially improving the backbone 
positioning. Development of a method capable of performing 
global refinement aiming to resolve differences in the overall 
fold of the protein model is, therefore, a crucial  step forward for 
solving protein structure refinement  problem and more 
generally, towards the improvement of computational protein 
structure prediction. 
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We previously developed a refinement procedure, called 
3Drefine [13] by optimizing the hydrogen bonding network and 
atomic level energy minimization using a composite physics and 
knowledge-based force field. We now extend the approach by 
partitioning the structure refinement process into two stages: (1) 
global refinement with the goal of improving the overall fold of 
the starting model and (2) local refinement which aims at 
correction of local errors like irregular hydrogen bonding, steric 
clashes, unphysical bond length, unrealistic bond angles, torsion 
angles and side-chain χ angles. These two stages demands 
different approaches and in accordance with the previous studies 
[14, 15], we decided to perform them sequentially. The first 
stage is accomplished by iterative fragment exchange based on 
an ensemble and we use our previous method 3Drefine to 
perform the refinement of the general physicality of the models. 
The new method, named REFINEpro, has been tested on diverse 
and independent benchmark datasets and has demonstrated 
significant potential in simultaneous improvement of the overall 
fold and resolving the local errors, thereby improving both the 
global and local qualities of the starting models. 

 

2. MATERIALS AND METHODS 
 
The REFINEpro protocol is shown in Figure 1. Given a target 
protein structure and a model ensemble consisting of numerous 
structures generated for the same target, the method first 

identifies the problematic regions (PRs) in the initial model 
using a consensus method. An iterative refinement is then 
applied for each PR via generation of hybrid models by 
combining the initial model and the PR exchanged by structures 
from the ensemble followed by quality assessment to select the 
best hybrid model. Finally, atomic level energy minimization is 
performed on the best hybrid model using 3Drefine to optimize 
the hydrogen-bonding network and to improve the local qualities 
in order to produce the refined structure. The procedure is fully 
automated and the average running time for each refinement 
target is less than 4 hours at a 2.4 GHz CPU. The REFINEpro 
web server is freely available at 
http://sysbio.rnet.missouri.edu/REFINEpro/. 
 

2.1 Predicting PRs 
It is vital to identify appropriate regions of refinement in the 
initial model. In template based modeling, the regions build 
from reliable template information tend to be largely correct and 
any attempt to refine them may pose the risk of degrading the 
model quality. The key is, therefore, to detect the problematic 
regions (PRs) in the starting structure and then try to refine them 
while keeping the conformation of the reliable regions unaltered. 
In REFINEpro, consensus local quality assessment technique 
was adapted using a model ensemble approach. For 
identification of PRs, we used a quality measure, similar to one 
originally developed by Levitt and Gerstein [16] and later 
widely used in developing global structural similarity measures 
such as TM-score [17] or MaxSub [18] and for local quality 
assessment of protein models [19-21]. This is called S-score. 
In the first step, the models in the ensemble with missing 
residues were discarded and the valid structures were trimmed to 
exactly match the residues in the starting model. Then, each 
model in the ensemble were superposed into the initial model 
using TM-score program [17]. Once the superposed model pool 
was organized, we calculated the distance between Cα atoms 
after optimal structural superposition between the initial 
structure and each model in the ensemble. The distance was 
converted into the S-score using the equation: 
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where Si
j is the S-score of ith residue of the starting model with 

respect to the jth model in the ensemble, di
j is the calculated Cα 

distance between residue i of the starting model and the 

corresponding residue of the jth model in the ensemble and d0 is 

the distance threshold. The purpose of converting the distance 

into S-score is that there is no upper limit to the distance and it 

is, therefore, often dominated by outliers. We used d0 = 5Å as in 

LGscore [16]. For smoothing purpose and to avoid local 

fluctuations, we adopted a sliding window approach. The central 

residue and their sequence neighbors were selected in a window 

of fixed size of three residues and then the average S-score was 

calculated in the window to determine the correctness of the 

central residue. Therefore, the µi
j, the average S-score of ith 

residue with respect to the jth model in the ensemble is defined 

as: 
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Figure 1. Flow Chart of the REFINEpro protocol. 

The protocol indicates stages of the iterative refinement 

including identification of PRs in the initial model, generation 

of hybrid models, quality assessment to produce the improved 

model followed by correcting local errors using 3Drefine to 

produce refined model. 
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We then use the decision function pi
j to determine whether 

residue i in the starting model have more than 5Å deviation 

compared to model j in ensemble as below: 
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where pi
j assumes the value 1 if the ith residue in the initial 

model deviates more than 5Å (i.e. Si
win  < 0.5) with respect to jth 

model in the ensemble and 0 otherwise. The empirical likelihood 

of residue conservation in a model ensemble is defined using the 

equation: 
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where RCi is the probability of the ith residue in the initial model 

to have average fluctuation more than 5Å for all models in the 

ensemble and n is the number of valid models in ensemble. 

Higher RCi values indicates more fluctuation and therefore, 

more likely to be problematic. The rationale behind this step is: 

reliable residues tend to be conserved across the model 

ensemble, but the problematic residues prone to have higher 

diversity in terms of backbone Cα positioning. The threshold of 

RCi (hereafter called the residue conservation index) was chosen 

to be 0.5. This means if majority of structures in the ensemble 

have average fluctuation of more than 5Å compared to initial 

model (i.e. RCi > 0.5), we consider the residue as problematic. 

Any region in the initial model having more than five 

consecutive problematic residues was considered as PR. 

2.2 Generating hybrid models and quality 

assessment 
Once the PRs in the initial model are identified, we attempt to 
refine each PR by exchanging better modeled fragments from 
the ensemble for the corresponding PR while keeping the 
reliable regions fixed. Our hypothesis is: if a better modeled 
fragment for a PR exists in the ensemble, then exchanging the 
conformation for that PR from the better quality fragment 
without any changes to the rest of the structure should improve 
the overall fold for the PR. We adopted a hybrid model 
generation approach to assemble the better modeled fragments 
with the starting structure. First, the reliable regions were kept 
fixed in the initial model and the coordinates of the PR were 
replaced from each model in ensemble. Then, we used this 
model as a template for Modeller to generate hybrid model. The 
automodel protocol of Modeller 9v8 [22] was used to do 
template-based modeling with default parameter settings. We 
performed this operation for all the models in the ensemble to 
generate same number of hybrid models as the number of valid 
models in the ensemble with the PR replaced. 
 
The next step is to perform quality assessment of the generated 
hybrid models to select structures having enhanced overall 
qualities compared to the initial model. To this end, six 
complementary single-model quality evaluation methods were 
applied to rank each hybrid model in the ensemble: (1) RWplus 
[23] which is a side-chain orientation dependent atomic 
statistical potential, (2) Distance-scaled, Finite Ideal-gas 
REference (DFIRE) [24, 25] that is based on the orientation 
angles involved in dipole-dipole interactions, (3) Discrete 
Optimized Protein Energy (DOPE) [26] which is an atomic 
distance-dependent statistical potential derived from a pool of 

known protein structures by applying probability theory, (4) 
FRST [27] that is based on weighted combination of  four 
complementary knowledge-based potentials: (i) the RAPDF 
potential [28], (ii) solvation potential, (iii) hydrogen bond 
potential and (iv) torsion angle potential, (5) TAP [29] which 
measures the local sequence to structure fitness of the protein 
model depending on the torsion angle propensities, and (6)  
ModelEvaluator [30] that is a machine learning approach based  
 
on features derived from secondary structure, relative solvent 
accessibility, contact map, and beta sheet structure. 
It is worth mentioning here that along with the hybrid models, 

we also used the starting structure during ranking. This was 

performed with the vision that in case there is no fragment 

present in the ensemble which can improve the quality of the 

PR, then the initial model should remain unaltered. 

2.3 Consensus ranking of hybrid models 
After ranking each of the hybrid models using six above 

mentioned model quality assessment methods, the obvious 

subsequent phase is to select the top ranked model and designate  

that as the improved model for the PR. But, because of the 

complementary nature of the evaluation methods, the ranking is 

often inconsistent across different protocols. One way to 

overcome this obstacle is to apply cumulative or average 

ranking in order to identify the top ranked model. However, if 

average rank (or cumulative rank) is applied to derive the 

consensus ranking, we see many ties between different hybrid 

models which make it difficult to identify the best model. Thus, 

arriving at the optimal consensus ranking for all the hybrid 

models in order to select the best model is a non-trivial problem. 

Our goal here is to find an optimal ranking which would be as 

close as possible to all individual ranking schemes 

simultaneously. This problem, therefore, can be viewed as an 

optimization problem.  

The objective function takes the following form in its abstract 

representation: 
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where δ is a proposed ordered list of length k = |Li| with m 

number of individual ordering, wi  is the importance weight 

associated with list Li, d is a distance function described below 

and Li is the ith ordered list. The aim would be to find δ* which 

would minimize the total distance between δ* and Li’s. This is 

denoted as: 
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We adopted a weighted rank aggregation method to derive the 

optimal solution using a R implementation [31]. Cross-Entropy 

Monte Carlo algorithm (CE) [32, 33] was applied using the 

Kendall’s Tau distance for partially ordered lists [34]. The 

Kendall’s Tau distance counts the number of pair-wise 

disagreements between different lists, and normalizes by the 

maximum possible disagreements. When the Kendall’s Tau 

distance is 0, the two lists are exactly the same, and when it is 1, 

they are in reverse order. Two random lists have, on average, a 

distance of 0.5. The CE algorithm involves 200,000 maximum 

iterations or until convergence with a convergence indicator of 

20 meaning that if the smallest value of the objective function 

does not change during 20 consecutive iterations during the 

optimization process, the algorithm is assumed to be converged 

to its optimal solution. We used the same weight (wi  =1) for all 



the six different ranking schemes. The optimal solution derived 

by CE algorithm is finally chosen as the consensus ranking of 

the hybrid models. We term this “optimal ranking”. To the best 

of our knowledge, weighted rank aggregation has not been used 

before in consensus model quality assessment. Moreover, the 

application of rank aggregation in the field of protein structure 

refinement is new. 

2.4 Improving overall fold in the initial 

model through iterative fragment exchange 
With the optimal ranking at hand, the models ranked above the 
starting structure were extracted to construct what we call 
“superior model set”. Then, a maximum of top three models 
were chosen from the superior model set as templates to feed 
into automodel class of Modeller 9v8 [22] to derive the 
“improved model” for the PR using multiple template 
alignment. It has to be noted here that selecting the number of 
models to be fed into Modeller depend on the structures present 
in the superior model set. For instance, if only two hybrid 
models are ranked above the starting structure after optimal 
ranking, then the superior model set consists of two models and 
we use only them as templates. In case the superior model set is 
empty, suggesting no hybrid model is ranked above the starting 
structure, the improved model is same as the initial structure. 

When the starting structure consists of multiple PRs, we 
employed iterative refinement strategy to gradually improve the 
initial model with each PR getting improved in a single iteration. 
The PRs were sorted based on their length and longer PRs 
getting higher priority than shorter PRs. After each iteration, the 
improved model corresponding to a PR becomes the starting 
model for the next round of iteration aiming to improve the next 
PR. This process continues until all the PRs in the initial model 
are consumed. 

2.5 Improving general physicality to 

produce the refined structure 
When all the PRs in the initial model are iteratively refined and 

the final improved model is generated, the overall fold of the 

starting structure is supposedly improved. We now aim to 

improve the local errors and general physical reasonableness of 

the final improved model like reducing any unfavorable steric 

clashes or staggered χ angles. This was achieved by applying 

atomic level energy minimization using our previously 

developed refinement procedure, 3Drefine. Our previous study 

shows that 3Drefine has been reliable in consistent improvement 

of the local qualities of protein models [13]. Also, because of the 

fast running time of 3Drefine, it does not pose any 

computational overhead to the REFINEpro pipeline. The energy 

minimized model is the refined model. 

2.6 Metrics used for evaluation 
From the flowchart of REFINEpro (Figure 1), it is clear that we 

need two-fold evaluation method for our refinement pipeline. 

First, we are interested to see how accurately REFINEpro 

predicts the PRs in the starting models and second, how 

consistently our method can improve the global and local 

qualities of the initial structures to bring it closer to native state. 

2.6.1 Assessment criteria for PR prediction 
In order to identify the true problematic residues in the initial 
model, we superposed the initial model on the native structure 
using TM-score and calculated the distance between Cα atoms 
after optimal structural superposition. The distance is converted 
to the S-score using Eq. (1). Once again, we used a sliding 

window of 3 residues around the central residue to avoid local 
fluctuation and then calculated the average S-score in that 
window to determine the correctness of the central residue using 
Eq. (2). 

We use receiver operating characteristic (ROC) curve to 
evaluate the overall prediction accuracy of problematic residues. 
ROC curve is a plot of the sensitivity versus (1 - specificity) for 
a binary classifier as its decision boundary is moved. Sensitivity 
measures the capability of predicting positive samples 
(problematic residues in our case) correctly and specificity 
determines if any non-problematic residues are incorrectly 
predicted as problematic residues. 
Since problematic residues prediction becomes a binary 
classification problem when the residue conservation index is set 
at 0.5, we measure its performance by using the following 
widely used criteria functions: 
 

           
  

     
                                        

  

     
 

 

                
  

     
                                

     

            
 

 
where true positive (TP) is the number of true problematic 

residues that are predicted correctly, true negative (TN) is the 

number of true non-problematic residues that are predicted 

correctly, false positive (FP) is the number of true non-

problematic residues that are predicted to be problematic and 

false negative (FN) is the number of true problematic residues 

that are predicted to be non-problematic. 

2.6.2 Model quality evaluation measures 
We assess the quality of the models from two perspectives: (1) 

similarity to the native structures and (2) physical reasonableness 

of the models. Cα Root Mean Square Deviation (RMSD) [35] is 

used to evaluate global positioning of Cα atoms purpose where a 

lower RMSD value indicates that the protein model is close to its 

native state. However, RMSD is very sensitive to small structural 

errors. Even if the coordinates of only a few atoms undergo large 

atomic changes, RMSD becomes high making it difficult to 

assess the overall correctness of the structure. Global quality 

measures like GDT-HA [36] or TM-score [17] overcomes this 

difficulty to a large extent. TM-score counts all the residues and 

tends to be more sensitive to the global topology, whereas GDT-

HA count the residue pairs with distances in (0.5Å, 1Å, 2Å and 

4Å), and tend to be more sensitive in capturing the errors in local 

fragments. Both GDT-HA and TM-score lie in [0, 1] with a 

higher value indicating better similarity to the native structures. 

GDT-HA score has been a widely used scoring function to 

measure the global positing of Cα atoms in CASP experiments 

[37-39]. In order to evaluate the physical reasonableness and the 

local errors, we use MolProbity [40] – a single and composite 

score to measure local model quality. MolProbity score is a log-

weighted combination of the rotamer outliers, torsion-angle 

outliers, and steric clashes that have values outside the region of 

experimentally derived standard protein structures. The 

MolProbity score denotes the expected resolution of the protein 

model with respect to standard experimental structures and 

therefore, lower MolProbity score indicates more physically 

realistic model. 

 

2.7 Data Sets used for assessment 
To benchmark the performance of REFINEpro, we collected a 

test set containing 163 targets: (1) 107 targets from 9th edition of 



Figure 2. ROC curves for prediction of PRs. 

107 CASP9 Targets (red) and I-TASSER Decoy Set (blue). The 

numbers beside each legend represent the values of Area Under 

the Curve (AUC). 

Critical Assessment of Techniques for Protein Structure 

Prediction (CASP9) structure prediction category and (2) 56 

targets from I-TASSER decoy set. 

2.7.1 107 CASP9 targets 
This dataset consists of 107 CASP9 TS targets taken from 

http://predictioncenter.org/download_area/CASP9/.  We used the 

first models submitted to CASP9 TS category by our structure 

prediction method, MULTICOM-CONSTRUCT [41] as the 

initial model for each of these targets. The complete archive of 

submitted models by all servers had been used as the ensemble. 

The CASP9 dataset in most interesting in terms of practical 

applications: (1) it contains the best models submitted by the best 

research groups around the world and therefore represents the 

state-of-the-art in the field of protein structure prediction; (2) the 

high diversity of targets both in terms of length and complexity 

reduces bias in testing our protocol and (3) because of the 

popularity of TBM methods amongst the CASP predictors, 

REFINEpro can be evaluated in its ability to refine models 

produced by TBM techniques. 

2.7.2 I-TASSER decoy set 
Models in this dataset contain 56 non-homologous small proteins 

with lengths from 47 to 118 residues. I-TASSER ab-initio 

modeling [42] were used to generate the backbone structure and 

12,500 - 32,000 conformations were selected from the trajectories 

of 3 lowest-temperature replicas of the simulations. Then, 

iterative structure clustering [43] followed by energy 

minimization was performed on the selected decoys using 

GROMACS 4.0 simulation package [44] with OPLS-AA force 

field [45] for improving local qualities while keeping the 

topologies unchanged. The decoy set is available at 

http://zhanglab.ccmb.med.umich.edu/decoys. For each target, the 

best structure (having lowest RMSD to native) was used as the 

initial model while the rest of the decoy set serves as model 

ensemble during REFINEpro run. 

 

3. RESULTS AND DISCUSSION 
We begin by evaluating the performance of REFINEpro to 

detect the PRs in the initial model for all our datasets. Then, the 

overall improvement in global and local qualities of the initial 

models generated by MULTICOM-CONSTRUCT [41] for 107 

CASP9 targets are presented. Finally, we judge how significant 

the refinement is when the initial models and the ensembles are 

generated I-TASSER ab-initio simulation. 

3.1 Accuracy of PR prediction 
In Figure 2, the ROC curves are shown for each of the two 
datasets we used with the corresponding area under the curves 
(AUC). The values of the criteria functions are presented in 
Table 1 at residue conservation index threshold of 0.5. It can be 
observed that, the dataset of 107 CASP9 targets yields better 
performance while prediction accuracy is less significant in I-
TASSER decoy set. This is mainly because in I-TASSER decoy 
set, the initial models and the ensembles are generated by the 
same prediction pipeline, and thus, the conformations of the 
decoys are largely same, making it difficult to successfully apply 
consensus prediction. These results, therefore, demonstrate that 
our hypothesis of residue conservation works best when 
complementary structures are present in the ensemble. 
 

Table 1. Accuracy measures for the prediction of PRs at 

residue conservation index threshold of 0.5 

Dataset Precision Specificity Recall Accuracy 

107 CASP9 

Targets 
85.51 94.14 71.2 86.63 

I-TASSER 

Decoy Set 
41.02 86.22 64.7 83.43 

 

3.2 Performance on 107 CASP9 targets 
Due to the presence of potentially disordered regions in the 

native structures, often there are mismatches in the CASP9 

sequence with that of the experimental structures. After 

executing REFINEpro in blind mode, we identified the residues 

in the target sequences that did not have coordinates in the 

experimental structures by performing alignment between 

CASP9 sequence and the corresponding sequences for the native 

structures using ClustalW [46]. These residues were removed 

from both the initial and refined models during refinement 

assessment. 

Figures 3A and 3B show the scatter plot of GDT-HA, TM-score 
RMSD and MolProbity score difference before and after 
refinement against the initial TM-scores. Out of total 107 
targets, REFINEpro refinement resulted in improving the model 
qualities for 95, 91, 78 and 80 cases with respect to RMSD, TM-
score, GDT-HA and MolProbity scores respectively. Overall, 
5.1% and 4.9% improvement in cumulative TM-score and 
cumulative GDT-HA score respectively has been observed 
while the average RMSD and average MolProbity improvement 
is 12.7% and 5.8% respectively. These results clearly 
demonstrate the promising ability of REFINEpro to improve the 
overall fold of the starting models together with enhancement in 
the general physicality of the models in a large benchmark set 
comprised of different lengths and target complexities. 

http://predictioncenter.org/download_area/CASP9/
http://zhanglab.ccmb.med.umich.edu/decoys


Figure 3.  Changes in structural qualities using REFINEpro 

on 107 CASP9 targets.  

(A) Scatter plot of changes in and TM-score and GDT-HA. A 

positive change indicates the quality of the model has been 

improved by refinement. 

(B) Scatter plot of changes in RMSD and MolProbity score. A 

negative change indicates the quality of the model been 

improved by refinement. 

 

Figure 4. Example of REFINEpro refinement for CASP9 

target T0559. 

(A) Structural superposition of initial model (grey) on native 

structure (green). The values under the model indicate GDT-

HA, TM-score, RMSD and MolProbity score respectively 

before refinement.  

(B) Structural superposition of refined model using REFINEpro 

(orange) on native structure (green). The values under the 

model indicate GDT-HA, TM-score, RMSD and MolProbity 

score respectively after refinement. The black circles highlight 

the regions with prominent structural improvements. 

A representative example of refinement is presented in Figure 4 

for target T0559. The initial model has an RMSD of 6.188 Å 

with a large deviation in the N-terminal helix region compared 

to the native structure. After refinement, the RMSD is 

drastically improved to 1.694 Å with 51.1%, 38.5% and 3.6% 

improvement in GDT-HA, TM-score and MolProbity score 

respectively. The definite improvement in the N-terminal region 

is obvious even by simple visual inspection. 

 

3.3 Performance on I-TASSER decoy set 
Similar to the CASP9 dataset, we performed the refinement on 
the I-TASSER decoy set, where initial models are generated by 
I-TASSER ab-initio simulation in a strict blind mode, that is, 
without the knowledge of the native structure. 
A consistent improvement is observed in qualities of the starting 
structures as measured by the GDT-HA, TM-score, and RMSD 
scores. There were 35, 37 and 31 cases when REFINEpro brings 
the starting models closer to the native ones. In Figure 5A and 
5B, we present the scatter plot of GDT-HA, TM-score and 
RMSD score difference before and after refinement against the 
initial TM-score for all the 56 targets. Although encouraging, 
the refinement for the I-TASSER decoy set is not as pronounced 
as the CASP9 dataset. This is primarily because the starting 
models in I-TASSER decoy set are already the best models 
selected from the ensemble with majority of the initial models 
have RMSD less than 3Å compared to the native structures, 
resulting in less PRs being identified by REFINEpro, thereby 
hindering the ability of REFINEpro for drastic improvement in 

the backbone positioning. These results, therefore, suggest that 
most prominent improvement in model qualities are observed in 
REFINEpro when the starting structure is further away from 
native state. 
A typical example of refinement from the I-TASSER decoy set 

has been shown in Figure 6A and 6B for the target 1cqkA. The 

starting structure is quite accurate with initial RMSD of 1.448Å. 

The refinement is distributed across the whole sequence with 

reorientation of several loops to beta-strands, thereby bringing 

the model closer to the native state. The RMSD of the refined 

model is improved to 1.299Å with a 5.72% increase in GDT-

HA, 2.38% increase in TM-score and 47.2% improvement in 

MolProbity score. 

 

4. CONCLUSION 



Figure 5.  Changes in structural qualities using REFINEpro 

on I-TASSER decoy set. 

(A) Scatter plot of changes in GDT-HA and TM-score. A 

positive change indicates the quality of the model has been 

improved by refinement. 

(B) Scatter plot of changes in RMSD score. A negative change 

indicates the quality of the model been improved by refinement. 

Figure 6.  Example of REFINEpro refinement for I-

TASSER target 1cqkA. 

(A) Structural superposition of initial model (orange) on native 

structure (green). The values under the model indicate GDT-

HA, TM-score, RMSD and MolProbity score respectively 

before refinement.  

(B) Structural superposition of refined model using REFINEpro 

(red) on native structure (green). The values under the model 

indicate GDT-HA, TM-score, RMSD and MolProbity score 

respectively after refinement. The black circles highlight the 

regions with prominent structural improvements. 

Development of a method capable of improving the overall fold 
in predicted protein models has been a major challenge in the 
protein structure refinement field. The existing state-of-the-art 
refinement algorithms often rely on “conservative” strategies to 
sample locally around the starting structures producing 
improvement only in the physicality of the models as opposed to 
improvement of the global positioning of the backbone atoms 
[47]. In this article, we presented a new conformation ensemble-
based iterative refinement method aimed at resolving this 
bottleneck. Coupled with our previous study on protein structure 
refinement [13] the method can often drastically improve the 
overall fold of the initial models through refinement of loop and 
terminal regions or rearrangements of disoriented secondary 
structure segments, accompanied by correction of local errors. 
By performing a large-scale benchmark study on 163 targets, we 
demonstrated that the protocol is capable of simultaneous 
improvement in global and local qualities of protein models 
generated by both TBM and ab-initio methods. More prominent 
results were achieved when the model ensemble for the target 
structure contains diverse and complementary alternative 
models. To our knowledge, a fully automated ensemble based 
approach has not been used before in refinement problem. We 
hope the promising aspects of our refinement protocol provide 
useful insights for advancement in the field of protein structure 
refinement, thereby enhancing the accuracy of contemporary 
computational protein structure prediction methods. 
Even though encouraging success has been obtained in the 

present study, there is still large room for improvement. The 

major challenges encountered were: (1) accurate prediction of 

PRs in the starting structures, (2) availability of diverse and 

complementary models in the ensemble and (3) quality 

assessment method aimed at selecting the “best” hybrid model. 

Future directions would be to extend our consensus-based 

method of PR prediction to more a robust and precise approach, 

preferably by applying machine learning techniques. Also, 

significant success of REFINEpro in CASP9 dataset compared 

to the I-TASSER decoy set demonstrates that it is essential to 

have structures in the ensemble with independent and various 

folds. We need to investigate in future on how to automatically 

generate a large pool of models with various folds in a practical 

and efficient manner. Finally, a better model quality assessment 

technique is desirable which can select the “best” alternative 



structure from the hybrid model pool, and consequently, the 

accuracy of our refinement method can be improved further. 
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