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ABSTRACT The formation of disulphide bridges
between cysteines plays an important role in protein
folding, structure, function, and evolution. Here, we
develop new methods for predicting disulphide
bridges in proteins. We first build a large curated data
set of proteins containing disulphide bridges to ex-
tract relevant statistics. We then use kernel methods
to predict whether a given protein chain contains
intrachain disulphide bridges or not, and recursive
neural networks to predict the bonding probabilities
of each pair of cysteines in the chain. These probabili-
ties in turn lead to an accurate estimation of the total
number of disulphide bridges and to a weighted graph
matching problem that can be addressed efficiently to
infer the global disulphide bridge connectivity pat-
tern. This approach can be applied both in situations
where the bonded state of each cysteine is known, or
in ab initio mode where the state is unknown. Further-
more, it can easily cope with chains containing an
arbitrary number of disulphide bridges, overcoming
one of the major limitations of previous approaches. It
can classify individual cysteine residues as bonded or
nonbonded with 87% specificity and 89% sensitivity.
The estimate for the total number of bridges in each
chain is correct 71% of the times, and within one from
the true value over 94% of the times. The prediction of
the overall disulphide connectivity pattern is exact in
about 51% of the chains. In addition to using profiles
in the input to leverage evolutionary information,
including true (but not predicted) secondary struc-
ture and solvent accessibility information yields small
but noticeable improvements. Finally, once the sys-
tem is trained, predictions can be computed rapidly
on a proteomic or protein-engineering scale. The disul-
phide bridge prediction server (DIpro), software, and
datasets are available through www.igb.uci.edu/serv-
ers/pass.html. Proteins 2006;62:617–629.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION
Disulphide Connectivity

The formation of covalent links between cysteine (Cys)
residues by disulphide bridges is an important and
unique feature of protein folding and structure. Simula-

tions,1 experiments in protein engineering,2– 4 theoreti-
cal studies,5–7 and even evolutionary models8 stress the
importance and selective advantage of disulphide bridges
in stabilizing the native state of proteins. This stabiliz-
ing role of disulphide bridges derives from a reduction of
the number of configurational states, thus of the en-
tropic cost of folding a polypeptide chain into its native
state.21 Moreover, disulphide bridges not only contrib-
ute to the energetics of folding but, depending on their
number and location, they can also contribute to cata-
lytic activity.4 Thus, knowledge or prediction of disul-
phide bridges in a protein is important: it can provide
essential insights into its structure, function, and evolu-
tion, as well as valuable long-ranged structural con-
straints9 that can be incorporated into a protein struc-
ture prediction pipeline. However, it is precisely because
disulphide bridges link linearly distant portions of a
protein that their prediction has remained a consider-
able challenge. To address this challenge, here we
develop and test new methods that significantly improve
the prediction of disulphide bridges.

Overview of Disulphide Connectivity Prediction

Only in recent years has the problem of predicting
disulphide bridges in a systematic manner received sus-
tained attention.10–13 The prediction of disulphide bridges
can in fact be subdivided into four related prediction
subproblems (Fig. 1). First, only a minority of protein
chains contain disulphide bridges. Thus, it is desirable to
be able to classify protein chains into those containing
disulphide bridges and those that are entirely devoid of
disulphide bridges (chain classification). Second, even in a
chain that contains disulphide bridges, not all the cys-
teines may be bonded. Thus, the second problem is the
classifications of cysteine residues into bonded and non-
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bonded (residue classification). Third, given a pair of
cysteines, one can ask whether they are linked or not by
a disulphide bridge (bridge classification). And fourth,
the most important and challenging problem is to deter-
mine all the pairs of cysteines that are bonded to each
other by a disulphide bridge (connectivity prediction).
Although these problems can be tackled separately, it is
clear that they are not independent and that “mixed”
solutions can also be considered. Furthermore, tackling
them sequentially and independently of each other may
not be always optimal. For example, deciding in isola-
tion whether a given cysteine is bonded or not may fail to
take into consideration information about the bonding
state of other cysteines in the same sequence and the
obvious global constraint that the total number of
intrachain disulphide-bonded cysteines must be even.
Finally, it is worth noting that interchain disulphide
bridges associated with quaternary structure do occur
also. However, they are considerably less frequent and
very few such examples can be found in the Protein Data
Bank (PDB).14 Thus, in the current state of affairs, and
consistently with all existing literature, it is not unrea-
sonable to focus exclusively on intrachain disulphide
bridges. Here, we address all four problems, with a
particular emphasis on the most challenging problem of
predicting intrachain disulphide connectivity, directly
or in combination with the second and third problems.

None of the approaches published so far in the litera-
ture address all four problems. Published approaches to
disulphide connectivity prediction use stochastic global
optimization,10 combinatorial optimization,12 and ma-
chine learning techniques.11,13 The early work in
Fariselli and Casadio10 provides a first, fairly comprehen-
sive treatment of disulphide connectivity prediction by
reducing it to a matching problem in a complete weighted
graph, where the vertices represent oxidized cysteines.
Edge weights correspond to interaction strengths or
contact potentials between the corresponding pairs of
cysteines. The weights are learned using a simulated
annealing approach. A candidate set of bridges is then
derived by finding the maximum weight perfect match-

ing.* The prediction of which cysteines are oxidized
(residue classification) is not addressed in this work. In
a subsequent improvement,11 neural network predic-
tions are used for labeling edges with contact potentials,
increasing the predictive power and reducing training
time. This method achieves good results in the simplest
cases of chains containing only two or three bridges.

The method in Vullo and Frasconi13 attempts to solve
the connectivity prediction problem using a different ma-
chine learning approach by modeling candidate connectiv-
ity patterns as undirected graphs (see Fig. 1, bottom). A
recursive neural network architecture15 is trained to score
candidate graphs by their similarity with respect to the
correct graph. The vertices of the graphs are labeled by
fixed-size vectors corresponding to multiple alignment
profiles in a local window around each cysteine. During
prediction, the score computed by the network is used to
exhaustively search the space of candidate graphs. This
method yields slight improvements over Fariselli and
colleagues11 when tested on the same dataset. Unfortu-
nately, for computational reasons, the applicability of this
method remains limited because it too can only deal with
sequences containing a small number of bridges, in prac-
tice up to five.

A different approach to predicting disulphide bridge
connectivity is reported in Klepeis and Floudas,12 where
finding disulphide bridges is part of a more general
protocol aimed at predicting the topology of �-sheets in
proteins. The approach assumes hydrophobic rather than
hydrogen interactions as the main driving force of �-sheet
formation. Residue-to-residue contacts (including Cys–
Cys bridges) are predicted by solving a series of integer
linear programming problems in which customized hydro-
phobic contact energies must be maximized. Model con-
straints define allowable sheets and disulphide connectiv-
ity configurations. The most interesting aspect of this
approach is its ability to predict cysteine–cysteine con-
tacts, without assuming prior knowledge of the bonding
state of the cysteines. This method, however, cannot be

* A perfect matching of a graph (V, E) is a subset E� � E such that
each vertex � � V is met by only one edge in E�.

Fig. 1. Structure (top) and disulphide bridge connectivity pattern (bottom) of intestinal toxin 1, PDB code
1IMT. There are five disulphide bridges shown as thick lines.
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compared with the other approaches because the authors
report validation results only two relatively short se-
quences with few bonds (2 and 3). In contrast, Fariselli and
Casadio10 and Vullo and Frasconi13 assess their methods
on a broad spectrum of sequences.

The simpler problem of predicting whether a given
cysteine is bonded or not has also been addressed using a
variety of machine learning methods including neural
networks (NNs), hidden Markov models (HMMS), and
support vector machines (SVMs).16–20 For example, SVMs
and kernels methods are used in Ceroni and colleague20 to
predict in two stages whether a given protein contains
oxidized cysteines—in fact, whether all, none, or a mixture
of its cysteines are oxidized—and subsequently to predict
the oxidation state of each cysteine. The best accuracies
reported in the literature are around 85%.

We present an integrated, modular approach to address
all four problems. We leverage evolutionary information in
the form of profiles and curated training sets in combina-
tion with kernel methods to address the chain classifica-
tion problem. We use two-dimensional graphical models
and recursive neural networks to predict the bonding
probability of each pair of cysteines, leveraging in addition
secondary structure and relative solvent accessibility infor-
mation. These predictions can be derived for all the
cysteines in a given chain, or only for the subset of
disulphide-bonded cysteines, when pre-existing informa-
tion about residue classification is available. Finally, we
use graph matching methods to infer the disulphide bridge
connectivity of each protein chain, which in turn yields a
solution for both the bridge and residue classification
problems, even in the case where the bonding state of
individual cysteines is not known. Thus, the approach
works for both situations where the bonded state of each
cysteine is known or unknown and, after training, pro-
duces predictions that are rapid enough for genome-scale
projects.

METHODS
Data Preparation

In order to assess our methods, we used two existing
data sets (SP 39 and SP41, courtesy of Dr. A. Vullo) to
compare our results with previously published results. We
also curated a third, larger, data set (SPX), to take
advantage of recent growth in the PDB.14

Previous data sets (SP39 and SP41)

SP39 is the set described and used in Fariselli and
colleagues11 and Vullo and Frasconi13 compiled from the
Swiss-Prot database21 release no. 39 (October 2000). SP41
is the updated version, compiled with the same filtering
procedures as SP39, using the Swiss-Prot version 41.19
(August 2003). Specifically, only chains whose structure is
deposited in the PDB are retained. Protein chains with
disulphide bonds assigned tentatively or inferred by simi-
larity are filtered out yielding a data set comprising 966
chains, containing at least one, and up to 24, disulphide
bridges. Because our method is not limited by the number
of disulphide bonds, the entire set of chains is retained.

This set contains a subset of 712 sequences containing at
least two disulphide bridges (K � 2)—the case K � 1 being
trivial when the cysteine bonding state is known. By
comparison, SP39 contains 446 chains only, with no chain
having more than five bridges. Thus, SP41 contains 266
additional sequences, and 112 of these have more than 10
oxidized cysteines.

In order to avoid biases during the assessment proce-
dure and to perform k-fold cross validation, SP41 is
partitioned into 10 different subsets, with the constraint
that sequence similarity between two different subsets be
less than or equal to 30%. This is comparable to the criteria
adopted in Vullo and Frasconi13 and Fariselli and Casa-
dio,10 where SP39 was split into four subsets. Sequence
similarity is derived by a procedure analogous to the one
adopted for building the PDB nonredundant selection of
chains22 by running an all-against-all rigorous Smith–
Waterman local pairwise alignment,23 using the BLO-
SUM65 scoring matrix with gap penalty 12 and gap
extension 4. Pairs of chains with a negative distance,24 or
with and alignment length shorter than 30 residues, are
considered unrelated. To address the chain classification
problem, we augment the 966 positive sequences in SP41
with a set of 506 negative sequences, containing no
disulphide bridged, taken form PDB Select.25.

New dataset (SPX)

We downloaded all the proteins from the PDB on May
17, 2004. Some (26.8%) of these proteins contain at least
one disulphide bridge (6827 out of 25,465). Among these
6827 proteins, 89% (6058) contain disulphide bridges that
are exclusively intrachain and these are retained for
further processing.10,13,16 These proteins containing exclu-
sively intrachain disulfide bonds yield a total of 10,793
chains, after removal of short sequences containing less
than 12 amino acids. Among these 10,793 chains, 96%
(10,378) have at least one intrachain disulfide bond. The
disulfide bond information is extracted from the PDB files
by analyzing SSBOND records.26 To reduce overrepresen-
tation of particular protein families, we use UniqueProt,27

a protein redundancy reduction tool based on the HSSP28

distance, to choose 1018 representative chains by setting
the HSSP cut-off distance to 10. The HSSP distance is a
similarity measure which takes into account sequence
length. An HSSP distance of 10 between two sequences of
length 250 is roughly equivalent to 30% sequence identity.
To leverage and assess the role of secondary structure and
solvent accessibility information during prediction, we use
DSSP29 to annotate secondary structure and solvent acces-
sibility for all selected protein chains. These sequences
contain 5983 cysteines in total, 85% (5082) of which are
involved in disulphide bridges. These sequences are ran-
domly split into 10 subsets of roughly the same size.
During each 10-fold cross-validation experiment, 9 subsets
are used for training and the remaining subset is used for
validation. Final results are averaged across the 10 cross-
validation experiments. To address the chain classification
problem, we augment a subset of 897 positive sequences
selected with an even lower HSSP cutoff distance of 5
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(roughly below 20% similarity) with a set of 1650 negative
sequences, containing no disulphide bridges, extracted
from PDB and redundancy-reduced using UniqueProt
with a stringent HSSP cutoff distance of 0 (no similarity).

Kernel Methods for Chain Classification

Kernels methods30–32 are an important class of flexible
machine learning methods that have proven useful for
several problems in bioinformatics.20, 33–37 The basic idea
behind these methods is to try to retain the elegance and
simplicity of linear methods when dealing with nonlinear
data, by embedding the original data into a feature space,
equipped with a dot product, where linear methods can be
applied to perform classification, regression, and other
computational tasks (Fig 2). The embedding is performed
implicitly by defining the inner product between each pair
of points in the embedding feature space through the
kernel function. Thus, if � denotes the embedding, the
kernel function can be viewed as a measure of similarity
between input points, or a metric in feature space, defined
by

K�x, x�� � ���x�, ��x��� .

In a classification problem with training examples {(x1,
y1), . . . ,(xn, yn)}, where x denotes input points and y
denotes binary classification variables (� 1), it can be
shown that given a point xn	1, the linear decision surface
is completely determined by the Gram matrix K (xi, xj) of
inner products between the feature vectors and has the
form:

f�xn	1� � sign��
i�1

n


iyi���xn	1�,��xi�� � b�
� sign��

i�1

n


iyiK�xn	1,xi� � b� (1)

with 
i � 0. In practice, a kernel approach really depends
on two independent modules: (1) a module for computing
the kernel and the Gram matrix; and (2) a module for
computing the optimal manifold (usually a hyperplane in
classification problems) in feature space, typically using
techniques from quadratic convex optimization. Because
relatively standard packages exist to cover the second
module, for conciseness we focus on the description of the

kernels and refer the readers to Schölkopf and Smola32 for
additional details about kernel methods and the origin and
solution of Equation 1. We use six different kernels
(Spectrum, Mismatch, Profile, Smith–Waterman, Local
Alignment, and Fisher) to classify protein chains, accord-
ing to whether they contain at least one disulphide bridge
or not.

Spectrum kernel

Spectrum kernels for sequences are derived by construct-
ing, for each sequence x, the feature vector �k(x) counting
the occurrences of all possible substrings of length k.38

Similarity between spectral vectors can be computed by
simple scalar product, or further processed using Gaussian
exponentials or other positive convex functions.32

Mismatch kernel

Mismatch kernels39 are a variation of spectrum kernels
which allows inexact matching of substrings. Specifically,
mismatch kernels count co-occurrences of substrings of
length k, allowing up to m � k mismatches, between the
two input sequences. Like spectrum kernels, mismatch
kernels can be computed efficiently by using trie data
structures (suffix trees).

Profile kernel

Profile kernels39 are another variation on mismatch
kernels which use a position-dependent mutation neighbor-
hood for inexact matching of subsequences of length k. The
local neighborhood is defined using probabilistic profiles,
such as those produced by the PSI-BLAST algorithm, by
aligning the sequences to the NR database. A given
substring is in the local neighborhood if its negative log
probability, according to the profile, is smaller than some
threshold �. Once the profiles have been derived, profile
kernels can also be computed efficiently using a trie data
structure. In the simulations, for each sequence in the
SP41 or SPX dataset, profiles are derived using two
iterations of PSI-BLAST40 against the NR database with
default parameter settings. Software for computing spec-
trum, mismatch, and profile kernels is available from
http://www1.cs.columbia.edu/compbio/string-kernels/.

Smith–Waterman kernel

The SW kernel is an empirical kernel technique,32 which
uses the E-values of a Smith–Waterman alignment score

Fig. 2. Kernel methods for classification. (Left) Training patterns (white and black disks) which are not
linearly separable in the original input space. (Middle) Linear separability is achieved in feature space via the
mapping �. (Right) The hyperplane in feature space defines a complex decision surface in input space.
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as a measure of similarity and maps each sequence into a
feature vector consisting of its SW scores with all the input
training sequences.

Local alignment kernel

The local alignment kernel is a variation on the SW
kernel constructed to ensure positivity conditions (Mercer
kernel conditions32) using dynamic programming. It is
described in detail in Saigo and colleagues.41

Fisher kernel

Fisher kernels are derived from probabilistic generative
models of the data. Here, we train a protein HMM42 on the
positive examples using the SAM software package avail-
able at http://www.cse.ucsc.edu/research/compbio/ sam.
html (with local alignment option “SW 2” and Dirichlet
prior option “recode3.20comp”). The feature vector (Fisher
score) is obtained from the derivatives of the likelihood of a
sequence with respect to the HMM parameters (see
Jaakkola and colleagues33 for details). It is obtained using
the “get_fisher_scores” function of SAM with the “fisher-
_feature_match” option which ensures that only matching
states are considered for scoring. The Fisher scores are
then fed into a Gaussian kernel.

Kernel combinations

Basic algebraic operations such as addition, multiplica-
tion, and exponentiation preserve the positive properties
of a kernel matrix and provide a mechanism for combining
information from different kernels. We experimented with
convex linear combinations of kernels, in particular with
simple additivity where a new kernel matrix K(x, y) �

K1(x, y) 	 K2(x, y) is constructed using two normalized
kernel matrices K1 and K2 with the corresponding feature
vector defined by �(x) � [�1(x), �2(x)]. These kernel
combinations did not seem to lead to significant improve-
ments and therefore are not discussed in detail.

Recursive Neural Networks to Predict Cysteine
Pairing Probabilities

To predict disulphide connectivity patterns, we use the
2D DAG-RNN (Directed Acyclic Graph-Recursive Neural
Network) approach described in Baldi and Pollastri,43

whereby a suitable Bayesian network is recast, for compu-
tational effectiveness, in terms of recursive neural net-
works. Local conditional probability tables in the underly-
ing Bayesian network are replaced by deterministic
relationships between a variable and its parent node
variables. These functions are parameterized by neural
networks using appropriate weight sharing, as described
below. Here the underlying DAG for disulphide connectiv-
ity has six two-dimensional-layers: input, output, and four
hidden layers [Fig. 3(a)]. Vertical connections, within an (i,
j) column, run from input to hidden and output layers, and
from hidden layers to output [Fig. 3(b)]. In each one of the
four hidden planes, square lattice connections are oriented
towards one of the four cardinal corners. Detailed motiva-
tion for these architectures can be found in Baldi and
Pollastri43 and a mathematical analysis of their relation-
ships to Bayesian networks in Baldi and Rosen-2vi.44 The
essential point is that they combine the flexibility of
graphical models with the deterministic propagation and
learning speed of artificial neural networks. Unlike tradi-
tional neural networks with fixed-size input, these architec-

Fig. 3. (a) General layout of a DAG for processing two-dimensional objects such as disulphide contacts,
with nodes regularly arranged in one input plane, one output plane, and four hidden planes. In each plane,
nodes are arranged on a square lattice. The hidden planes contain directed edges associated with the square
lattices. All the edges of the square lattice in each hidden plane are oriented towards one of the four possible
cardinal corners: NE, NW, SW, SE. Additional directed edges run vertically within a vertical column from the
input plane to each hidden plane, and from each hidden plane to the output plane. (b) Connections within a
vertical column (i, j) of the DAG. Iij represents the input, Oij the output, and N Eij represents the hidden variable
in the North–East hidden plane. Similarly for the other hidden variables.
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tures can process inputs of variable structure and length,
and allow lateral propagation of contextual information
over considerable length scales.

In a disulphide contact map prediction, the (i, j) output
represents the probability of whether the ith and jth
cysteines in the sequence are linked by a disulphide bridge
or not. This prediction depends directly on the (i, j) input
and the four-hidden units in the same column, associated
with omnidirectional contextual propagation in the hidden
planes. Hence, using weight sharing across different col-
umns, the model can be summarized by five distinct neural
networks in the form

�
Oij � No�Iij,Hi,j

NW,Hi,j
NE,Hi,j

SW,Hi,j
SE�

Hi,j
NE � NNE�Ii,j,Hi�1,j

NE ,Hi,j�1
NE �

Hi,j
NW � NNW�Ii,j,Hi	1,j

NW ,Hi,j�1
NW �

Hi,j
SW � NSW�Ii,j,Hi	1,j

SW ,Hi,j	1
SW �

Hi,j
SE � NSE�Ii,j,Hi�1,j

SE ,Hi,j	1
SE �

(2)

where N denotes NN parameterization. In the simula-
tions, these five NNs have a single hidden layer containing
9 hidden units. The number of output units in each of the
four NNs associated with the four cardinal corners is also
9. Weights are initialized randomly using a uniform
distribution over the [� 0.1,0.1] interval. Because of the
acyclic nature of the underlying graph, learning can
proceed by gradient descent (backpropagation). We use a
stochastic form of gradient in the sense that training
examples are used online and in randomized order after
each training epoch. The learning rate is set to 0.008.

The input information is based on the sequence itself or
rather the corresponding profile derived by multiple align-
ment methods to leverage evolutionary information, possi-
bly augmented by secondary structure and solvent accessi-
bility information derived from the PDB files with DSSP
and/or the SCRATCH suite of predictors available at
www.igb.uci.edu/servers/ psss.html and described in Pol-
lastri and colleagues,46 Baldi and Pollastri,43 and Cheng
and colleagues.46 For a sequence of length N and contain-
ing M cysteines, the output layer contains M  M units.
The input and hidden layer can scale like N  N if the full
sequence is used, or like M  M if only fixed-size windows
around each cysteine are used, as in the experiments
reported here. It is also possible to use one-dimensional
DAG-RNN to locally encode the input, as described in
Baldi and Pollastri.43

It is essential to remark that the same DAG-RNN
approach can be trained and applied in two different
modes. In the first mode, we can assume that the bonded
state of the individual cysteines is known, for example
through the use of a specialized predictor for residue
classification. Then if the sequence contains M cysteines,
2K (2K � M) of which are intrachain disulphide bonded,
the prediction of the connectivity can focus on the 2K
bonded cysteines exclusively and ignore the remaining
M � 2K cysteines that are not bonded. In the second mode,
we can try to solve both prediction problems— residue and
bridge classification—at the same time by focusing on all
cysteines in a given sequence. In both cases, the output is
an array of pairwise probabilities from which the overall

disulphide connectivity graph must be inferred. In the first
case, the total number of bonds or edges in the connectivity
graph is known (K). In the second case, the total number of
edges must be inferred. In the Results section, we show
that sum of all probabilities across the output array can be
used to effectively estimate the number of disulphide
contacts.

Input Specifications

The results reported here are obtained using local
windows of size 5 around each cysteine, as in Vullo and
Frasconi.13 To improve prediction by exploiting evolution-
ary information and conserved sequence patterns encoded
in homologous protein sequences, we derive position-
specific profiles (also called Position Specific Scoring Ma-
trix) from multiple sequence alignments by aligning all
proteins against the NR database using PSI-BLAST48

according to the same protocol for creating profiles de-
scribed in Pollastri and colleagues.45 Gaps are treated as if
“-” corresponded to one additional amino acid. Thus, the
position-specific profile for each position in a sequence is a
real vector of length 21, representing the probability of the
20 amino acids plus gap. For a window of five amino acids
centered around two cysteines, the profile-component of
the input consists of 210 (21  5  2) numbers. One extra
input encodes the linear sequence separation between the
two cysteines. To study how secondary structure (SS) and
solvent accessibility (SA) information affect prediction
accuracy, we also add SS and SA information to the input
in all four possible combinations.

Graph Matching to Derive Connectivity from
Pairing Probabilities

In the case where the bonded state of the cysteines is
known, one has a graph with 2K nodes, one for each
cysteine. The weight associated with each edge is the
probability that the corresponding bridge exists, as com-
puted by the predictor. The problem is then to find a
connectivity pattern with K edges, where each cysteine is
paired uniquely with another cysteine. This can be solved
using Edmond’s maximum weight matching algorithm,47

which has O(V4) time complexity on a graph with V edges,
or rather the faster O(V3) implementation derived by
Gabow,48, with linear O(V) � O(K) space complexity
beyond the storage of the graph. Note that because the
number of bonded cysteines in general is not very large, it
is also possible in many cases to use an exhaustive search
of all possible combinations. Indeed, the number of pos-
sible combinations is 1  3  5  . . .  (2K � 1), which in
the case of 10 cysteines with five disulphide bridges result
in only 945 possible connectivity patterns.

The case where the bonded state of the cysteines is not
known is slightly more involved and the Gabow algorithm
cannot be applied directly because the graph has M nodes
but only a subset of 2K � M nodes may participate in the
final maximum weighted matching. However, we can still
use Gabow’s algorithm as follows: Assume first that we can
get a good estimate of the total number K of bonds. In
general, it is still not possible to try all (M2K) possible
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subsets and run Gabow’s algorithm on each one of them,
but one can use a good heuristic approximation. If M is
even (M � 2R) we apply Gabow algorithm to the 2R nodes
and then prune down the final result by removing, from
the final set of R edges, the R � K edges with lowest
probabilities. If M is odd, M � 2R 	 1 we apply the same
strategy as above 2R 	 1 times, each time removing one of
the cysteines. We then select the matching with K edges
that has the highest probability. In practice this procedure
gives very good results although it is not guaranteed to
find the global optimum and, furthermore, it relies on a
good estimate of the total number K of bonds. In the results
section, we show that the total number K of bonds can be
estimated from the sum of all the probabilities produced by
the predictor using a simple regression approach. Al-
though this may seem surprising, we have observed simi-
lar effects in contact map prediction, where the sum of the
probabilities along a diagonal band is closely related to the
total number of contacts in that band.

Alternatively, it is also possible to use a slightly
different greedy algorithm to derive the connectivity
pattern using the estimate of the total number of bonds.
First, we order the edges in decreasing order of probabili-
ties. Then we pick the edge with the highest probability,
followed by the edge with the next highest probability
that is not incident to the first edge, and so forth, until K
edges have been selected. Because this greedy procedure
is not guaranteed to find the global optimum, it is useful
to repeat it L times. In each run i � 1, . . . ,L, the first
edge selected is the ith most probable edge. This is based
on the observation that in practice the optimal solution
always contains one of the top L edges and, for L
reasonably large, the optimal connectivity pattern is
usually found. We have compared this method with
Gabow’s algorithm in the case where the bonding state
is known and observed that when L � 6, this greedy
heuristic yields results that are as good as those ob-
tained by Gabow’s algorithm which, in this case, is
guaranteed to find a global optimum. Thus the simula-
tion results we report are derived using the greedy
procedure with L � 6. The advantage of the greedy
algorithm is its low O(M2logM 	 LKM) time complexity.
This is because it takes O(M2 log M) steps to sort all the
pairing probabilities, and at most O(KM) steps to derive
a matching, starting from one of the L most promising
edges.

RESULTS
Statistical Analysis

Basic statistics extracted from the larger SPX dataset
are shown in Figures 4, 5, 6, and 7 and Table I. Figure 4
provides the distribution of sequence lengths. As the
number of disulphide bridges in a protein chain increases,
the number of possible disulphide connectivity patterns
increases exponentially. Thus, it is important to study the
distribution of the number of bridges per protein and
investigate how connectivity prediction deteriorates with
the number of bridges. Figure 5 shows that most se-
quences have less than five disulphide bridges, but there
are exceptions, and a fraction of the sequences contains
over 10 disulphide bridges. In SPX, the average number of
disulphide bridges per chain is 2.5, with a standard
deviation of 2.14. Figure 6 illustrates the distribution of
disulphide bridge densities measured by the number of
bridges divided by the sequence length. Figure 7 shows the
distribution of disulphide bridge lengths measured in
terms of the number of intervening amino acids. A very
significant fraction of bridges is long-ranged with lengths
above 30, far exceeding the scale of local secondary struc-
ture. This is the dual signature of the important stabiliz-
ing role of disulphide bridges and the challenge they pose
for prediction methods.

To analyze the relationship between disulphide bridges
and secondary structure and relative solvent accessibility,

Fig. 4. Distribution of sequence lengths in redundancy-reduced data-
set (SPX) of sequences containing disulphide bridges.

TABLE I. Statistics Relating Proportion of Bonded and Nonbonded Cysteines in the SPX Dataset to Secondary Structure
(SS) and Relative Solvent Accessibility

Bonding State Number Helix Strand Coil Exposed Buried

Nonbonded Cys 901 0.30 0.31 0.39 0.15 0.85
Bonded Cys 5082 0.19 0.32 0.49 0.21 0.79

SS Pairs HH HE HC EE EC CC

Bonded pairs 0.07 0.10 0.15 0.13 0.28 0.28
Random pairs 0.04 0.12 0.19 0.10 0.31 0.24

H, helix; E, strand; C, coil.
The first two rows correspond to percentages of individual cysteines and the last two rows to percentages of pairs of cysteines. Random values
correspond to the product of the individual frequencies.
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we compute the empirical distribution of secondary struc-
ture classes (Helix, Beta Strand, or Coil) and relative
solvent accessibility classes (Exposed or Buried with re-
spect to a 25% cutoff) for both bonded and non-bonded

cysteines (Table I). We observe several statistical relation-
ships between the oxidized state of cysteines and their
secondary structure and solvent accessibility. For ex-
ample, 30% of nonbonded cysteines are found in helices,
versus only 19% of bonded cysteines. About half of bonded
cysteines (49%) are found in coils, versus only 39% for
nonbonded cysteines. Most cysteines tend to be buried,
however, bonded cysteines have a slight tendency towards
solvent exposure, compared to nonbonded cysteines. The
last two rows of Table I show slight pairing biases. For
example, 13% of disulphide bridges are established be-
tween two beta strands (EE) versus 10% if the secondary
structure of the pairs were selected at random (0.32 
0.32). Taken together, these statistics suggest that second-
ary structure information, and to a lesser extent solvent
accessibility information, may be useful for predicting
disulphide bridges and worth incorporating in the inputs.

Protein Chain Classification

Results obtained on the problem of separating protein
chains containing disulphide bridges from those that do
not contain any bridges using kernel methods are shown in
Tables II and III for the SP41 and the SPX datasets,
respectively. Each kernel is assessed in terms of sensitiv-
ity, specificity, accuracy, and ROC score. The ROC score is
the normalized area under the curve relating true posi-
tives as a function of false positives. Each performance
metric is averaged across the 10 folds. Overall the results
are consistent across both datasets and confirm expected
trends. In general, the more complex and flexible kernels
(e.g., profile, mismatch, Fisher) tend to perform better
than the simpler kernels (spectrum of fixed length) and
combinations of spectrum (respectively mismatch) kernels
outperform individual spectrum (respectively mismatch)
kernels. On the SP41 dataset, for example, the profile
kernel achieves the best overall performance with accu-
racy of 85% and ROC score of 0.9. The superiority of more
complex kernels is less pronounced on the SPX datasets
and a few other differences are observed between the two
datasets, probably resulting from the fact that SP41 has
966 positive examples and 506 negative examples, and
SPX has 897 positive examples and 1650 negative ex-
amples, with much greater variability in the negative
examples. In general, the results are weaker on the SPX
datasets and higher sensitivity is observed on SP41 versus
higher specificity on SPX. On the SPX dataset, the profile
kernel is still among the best but is slightly outperformed
by the Fisher and combined-mismatch kernels. The com-
bined mismatch kernel, for example, achieves 75% accu-
racy and 0.75 ROC score.

Disulphide Bridge Classification and Connectivity
Prediction Assuming Knowledge of Bonded
Cysteines

To compare with previous methods, most of which
assume that the bonding state of each cysteine is known,
we first train and test two-dimensional DAG-RNN architec-
tures using the SP39 dataset under the same assumption.
Thus, the output pairing probabilities are predicted only

Figure 5. Distribution of the number of disulfide bridges per sequence
in SPX.

Fig. 6. Distribution of sequential density of disulfide bridges (number
of bridges divided by sequence length) in SPX.

Fig. 7. Distribution of disulphide bridge lengths ion SPX.
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for the cysteines known to participate in a disulphide
bridge. The precision percentages at the level of both
individual pairs and entire connectivity patterns are re-
ported in Table IV as a function of the number K of
disulphide bridges in the chain. In all but one case, the
results are better than those previously reported in the
literature.

11, 13
In some cases, the results are substantially

better. For example, for three disulphide bridges (K � 3),
the precision reaches 0.61 and 0.51 at the pair and pattern
levels respectively, whereas the best results reported in
the literature on the same dataset are 0.51 and 0.41. Note
that SP39 contains only sequences with five bridges or less
and thus only results for K � 5 are reported here. The
observed improvement in performance is likely to result
from the architectural differences between that approach
described in Vullo and Frasconi13 and the one introduced
here.

TABLE II. Protein Classification Results Using Kernel Methods on the SP41 Dataset

Kernel Sensitivity Specificity Accuracy Mean ROC

Spectrum (k � 2) 0.78 0.60 0.72 0.76
Spectrum (k � 3) 0.82 0.51 0.71 0.77
Spectrum (k � 4) 0.88 0.36 0.70 0.77
Spectrum (k � 5) 0.88 0.25 0.66 0.72
Spectrum (k � 2, 3, 4, 5) 0.85 0.69 0.80 0.85
Mismatch (k � 3; m � 1) 0.82 0.58 0.74 0.79
Mismatch (k � 4; m � 1) 0.86 0.58 0.76 0.83
Mismatch (k � 5; m � 1) 0.90 0.49 0.76 0.82
Mismatch (k � 6; m � 1) 0.93 0.08 0.64 0.76
Mismatch (k � 3, 4, 5, 6; m � 1) 0.86 0.74 0.82 0.87
Fisher kernel 0.75 0.87 0.79 0.88
SW kernel 0.83 0.81 0.82 0.88
LA kernel 0.89 0.76 0.84 0.87
Profile kernel (k � 6; � � 9.0) 0.87 0.82 0.85 0.90

Top two accuracy and mean ROC scores are in bold face. Spectrum (k � 2, 3, 4, 5) corresponds to the sum of
the four spectrum kernels from k � 2 to k � 5. Mismatch (k � 3, 4, 5, 6; m � 1) corresponds to the sum of
the four mismatch kernels from k � 3 to k � 6 while m � 1 is kept unchanged. For the LA and SW kernels,
alignments are derived using the BLOSUM 62 matrix with gap open and extension penalties of 12 and 2,
respectively. The scaling parameter � of the LA kernel is set to � � 0.5.

TABLE III. Protein Classification Results Using Kernel Methods on the SPX Dataset

Kernel Sensitivity Specificity Accuracy mean ROC

Spectrum (k � 2) 0.63 0.68 0.66 0.71
Spectrum (k � 3) 0.56 0.72 0.66 0.67
Spectrum (k � 4) 0.39 0.86 0.70 0.66
Spectrum (k � 5) 0.25 0.91 0.68 0.62
Spectrum (k � 2, 3, 4, 5) 0.54 0.83 0.73 0.74
Mismatch (k � 3; m � 1) 0.57 0.66 0.63 0.67
Mismatch (k � 4; m � 1) 0.57 0.77 0.70 0.71
Mismatch (k � 5; m � 1) 0.49 0.87 0.73 0.71
Mismatch (k � 6; m � 1) 0.25 0.94 0.70 0.66
Mismatch (k � 3, 4, 5, 6; m � 1) 0.56 0.83 0.74 0.75
Fisher kernel 0.55 0.82 0.72 0.76
SW kernel 0.46 0.80 0.68 0.66
LA kernel 0.45 0.88 0.73 0.72
Profile kernel (k � 6; � � 9.0) 0.49 0.86 0.73 0.71

Top two accuracy and mean ROC scores are in bold face. Spectrum k � 2,3,4,5) corresponds to the sum of
the four spectrum kernels from k � 2 to k � 5. Mismatch (k � 3, 4, 5, 6; m � 1) corresponds to the sum of
the four mismatch kernels from k � 3 to k � 6 while m � 1 is kept unchanged. For the LA and SW kernels,
alignments are derived using the BLOSUM 62 matrix with gap open and extension penalties of 12 and 2,
respectively. The scaling parameter � of the LA kernel is set to � � 0.5.

TABLE IV. Disulphide Connectivity Prediction with Two-
Dimensional DAG-RNN Assuming the Cysteine Bonding

State Is Known Derived on the SP39 Dataset for
Comparison PurPoses

K Pair Precision Pattern Precision

2 0.74*(0.73) 0.74*(0.73)
3 0.61*(0.51) 0.51*(0.41)
4 0.44*(0.37) 0.27*(0.24)
5 0.41*(0.30) 0.11(0.13)

2 . . . 5 0.56*(0.49) 0.49*(0.44)

Last row reports performance on all test chains. Asterisque indicates
level of precision exceeding best previously reported results given in
parentheses.13
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Disulphide Connectivity Prediction from Scratch

In this set of experiments, we do not assume any
knowledge regarding whether individual cysteines are
disulphide bonded or not and apply the two-dimensional
DAG-RNN approach to predict pairing probabilities for all
pairs of cysteines in each sequence. Thus, for each chain
we predict the number of disulphide bridges, and address
the residue and bridge classification problems, as well as
the global connectivity problem.

Prediction of cysteine bonding states (residue
classification)

Prediction of the bonding state of individual cysteines is
assessed in Table V using the larger SPX dataset. Specific-
ity and sensitivity of bonding state predictions are close to
87% and 89% in the absence of additional secondary
structure or relative solvent accessibility information,
with at best a small improvement when this information is
added.

Prediction of the number of disulphide bridges

Analysis of the prediction results shows that there is a
relationship between the sum S(p) of all the probabilities
in the graph (or the output layer of the 2D DAG-RNN) and
the total number of bonded cysteines. Using both SS and
SA as inputs, the correlation coefficient between 2K and
S(p) is 0.89, the correlation coefficient between 2K and M is
0.87, and the correlation coefficient between 2K and S(p)
log M is 0.94, where M is the total number of cysteines in
the sequence being considered. Thus, we estimate the total
number of bonded cysteines using this linear regression
approach and rounding off the result, making sure that the
total number of bonded cysteines is even and does not
exceed the total number of cysteines in the sequence.
Figure 8 represents the plot of predicted bond numbers
against true bond numbers on the SPX dataset. As shown
in the plot, the bond number prediction is rather accurate
for most K � 1 cases, with few exceptions for very large K
(K � 20). For K � 1, the method tends to overpredict the
number of bridges. Table VI reports the accuracy for
predicting the number of bridges. The total number of
disulphide bridges in 0.68 of chains is correctly predicted
with no additional inputs, with a standard error (mean
square root of residuals) of 1.06. With true SS and SA
input information the performance reaches 71% of correct
predictions, with a standard error of 1.04. In more than
94% of the cases, the predicted number of bridges is within
one from the correct value. With predicted SS and SA there
is no noticeable improvement (68% accuracy).

Prediction of disulphide bridges (bridge
classification)

Table VII reports the specificity and sensitivity for the
prediction of individual bridges. The sensitivity for chains
with one disulphide bridge is around 71%, while the
specificity is around 47%. Both specificity and sensitivity
for chains with two or three disulphide bridges using true
SA and SS information in the inputs fall in the range of
62% to 67%. The specificity and sensitivity for chains with
four disulphide bridges using true SA and SS information
are 55% and 50%, respectively.

When the number of disulphide bridges increases in
chains, the performance decreases in general. The overall
specificity and sensitivity using four different input
schemes are around 51% to 55%. The variation of the
performance for chains with many disulphide bridges (K �
6) is large because there are very few such examples in the
dataset. Thus, for proteins with a large number of disul-
phide bridges (K � 6), predictions must be used with
caution. The results also show that secondary structure
information improves prediction accuracy of disulphide
bridges by two percentage points on average. Solvent
accessibility alone does not help much, but when used in
combination with secondary structure the best results are
achieved in most cases. Predicted SS and SA do not seem
to help.

Table VIII reports the results of disulphide bridge
classification on the SP41 dataset. On this dataset, only

Fig. 8. Predicted bond number is plotted against the true bond number
using both profiles, SS, and SA as inputs. With a total 1018 protein chains
in the SPX dataset, the number of disulphide bridges of 71% of these
sequences are predicted correctly using 10-fold cross validation. Uniform
random noise in the range of [0,0.5] is added to both the true bond number
and the predicted bond number to improve readability.

TABLE V. Cysteine Bonding State Sensitivity and Specificity with Different
Combinations of Secondary Structure and Solvent Accessibility Information

on the SPX Dataset

No SS No SA SS SA SS and SA PSS and PSA

Bond. state sens. 0.886 0.883 0.884 0.894 0.889
Bond. state spec. 0.876 0.878 0.872 0.878 0.879

SS, � secondary structure; SA, solvent accessibility; PSS, predicted secondary structure; PSA, predicted
solvent accessibility.
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sequence information and profiles are used in the RNN
input. While the accuracy on the SP41 dataset is lower
than that on the SPX dataset, it follows the same pattern
and in general deteriorates with the number of bridges.

Prediction of disulphide bridge connectivity
patterns

It is very difficult to correctly predict the entire disul-
phide connectivity pattern because the number of connec-
tivity patterns increases exponentially with K. Not know-
ing the bonding states of individual cysteines makes the
prediction even harder. Table IX reports the pattern
prediction accuracy for K between 1 and 4, and the overall
accuracy for all the chains in the SPX dataset. The overall
accuracy with no additional input information is 48% and
reaches 51% using true SS and SA as inputs. Thus, for
about half of all the chains, we can predict the entire
pattern of disulphide bridges correctly. Consistently with
our other experiments and with recent results in Ferre and
Clote,49 using true SS and SA information slightly im-
proves performance, however predicted SS or SA informa-
tion seems too noisy at this stage to be helpful.

CONCLUSION

We have presented a framework for disulphide bridge
predictions that addresses all four subproblems in this
area: chain classification, residue classification, bridge
classification, and connectivity prediction. Table X summa-
rizes the motivation for the initial chain classification step,
by comparing overall results on residue and bridge classifi-
cation derived with and without the chain classification
step. In all cases, as expected, the chain classification step
increases the specificity but reduces the sensitivity. The
tradeoff, assessed by the F measure of information re-
trieval, is in favor of having the chain classification step
(F � 0.62 versus F � 0.54 for residue classification, and
F � 0.38 versus F � 0.33 for bridge classification). Thus,
retaining the chain classification step in the overall pipe-
line is justified both in terms of overall performance, and
because the classification can be of biological interest as
well. Furthermore, our web server reports the results of
each prediction stage separately.

Beyond the chain classification step, the prediction
pipeline we have described presents several advantages

TABLE VI. Prediction Accuracy for the Number of Disulphide Bridges
on the SPX Dataset

No SS No SA SS SA SS and SA PSS and PSA

Accuracy (number of bridges) 0.68 0.68 0.67 0.71 0.68
Mean square root of residual 1.06 1.05 1.09 1.04 1.05

TABLE VII. Specificity and Sensitivity for the Disulphide Bridge Classification Problem Derived on the SPX Dataset, as a
Function of the Number K of Bridges in the Chain from 1 to 26, and with Different Combinations of Input Information

K

No SS No SA SS SA SS and SA PSS and PSA

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

1 0.71 0.47 0.71 0.47 0.70 0.46 0.71 0.48 0.71 0.48
2 0.59 0.59 0.63 0.63 0.59 0.59 0.63 0.63 0.59 0.60
3 0.59 0.65 0.61 0.67 0.58 0.64 0.62 0.67 0.55 0.61
4 0.44 0.49 0.48 0.53 0.46 0.52 0.50 0.55 0.44 0.48
5 0.33 0.37 0.33 0.37 0.31 0.35 0.37 0.41 0.32 0.35
6 0.24 0.28 0.32 0.37 0.29 0.34 0.29 0.33 0.32 0.36
7 0.26 0.31 0.30 0.36 0.21 0.25 0.31 0.36 0.29 0.32
8 0.16 0.18 0.21 0.25 0.26 0.30 0.30 0.32 0.20 0.22
9 0.50 0.59 0.56 0.64 0.55 0.63 0.61 0.71 0.44 0.52
10 0.40 0.43 0.27 0.29 0.40 0.43 0.37 0.40 0.33 0.36
12 0.38 0.44 0.54 0.61 0.46 0.58 0.50 0.55 0.38 0.39
14 0.71 0.83 0.50 0.54 0.42 0.50 0.57 0.62 0.79 0.85
16 0.19 0.20 0.19 0.20 0.31 0.33 0.22 0.23 0.13 0.13
17 0.35 0.40 0.41 0.47 0.38 0.43 0.35 0.40 0.53 0.60
25 0.08 0.13 0.24 0.40 0.28 0.47 0.24 0.40 0.32 0.53
26 0.38 0.67 0.31 0.53 0.23 0.40 0.42 0.73 0.31 0.51

Overall 0.52 0.51 0.54 0.53 0.52 0.51 0.55 0.54 0.52 0.51

TABLE VIII. Prediction of Disulphide Bridges with Two-Dimensional DAG-RNN on All the Cysteines, without Assuming
Knowledge of the Bonding State on the SP41 Dataset

K 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19

Sensitivity .74 .61 .54 .52 .33 .27 .36 .27 .23 .30 .34 .17 .27 .11 .22 .06 .11
Specificity .39 .51 .45 .59 .42 .34 .55 .41 .35 .45 .47 .23 .50 .13 .33 .09 .20
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over other approaches. First, assuming knowledge of cys-
teine bonding states, the method outperforms existing ap
proaches on the same validation data. Second, the method
can easily cope with chains containing an arbitrary num-
ber of bonded cysteines, overcoming the limitation of
previous approaches which restrict predictions to chains
containing at most 10 oxidized cysteines (K � 5). As an
added bonus, larger training and testing sets can now be
used. Third, the method proposed can deal with ab initio
predictions and, in particular, it does not require pre-
existing knowledge or prediction of cysteine bonding states.
Good specificity and sensitivity on connectivity predictions
are achieved even when the bonding state of individual
cysteines is not known. Equally important, for previous
methods that rely on predicting the cysteine bonding state
first, false predictions are fatal. Once a false prediction has
been made at the residue level, the corresponding disul-
phide bridges cannot be recovered (false negative) or
eliminated (false positive) during subsequent bridge classi-
fication or connectivity prediction. When used in ab initio
mode, the method presented here delays the prediction of
the bonding state by first predicting the total number of
disulphide bridges in a cooperative, robust fashion, and
then globally predicting the overall connectivity from
which cysteine bonding states are trivially inferred. The
same fundamental idea of combining pairing probabilities
with graph matching algorithms to enforce global con-
straints has now been expanded and applied to the prob-
lem of beta-sheet topology prediction.50 Fourth, the method
can leverage true secondary structure and relative solvent
accessibility information. Results demonstrate the role
secondary structure and solvent accessibility can play in
disulphide bridge prediction. Overall, inclusion of SS and
SA information leads to small, but noticeable improve-
ments in the range of 1%. This is demonstrated by
appropriately encoding the corresponding information in
the input layer of the architecture. Predicted SS or SA
information, however, is currently not accurate enough to
improve performance and therefore is not retained in our

implementation. Finally, while training can take days,
once trained predictions can be carried on a proteomic or
protein engineering scale to sift through large numbers of
proteins. The resulting disulphide bridge prediction server
(DIpro), software, and datasets are available through
http://www.igb.uci.edu/servers/psss.html.
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