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Abstract: Evaluating or predicting the quality of protein models (i.e., predicted protein tertiary

structures) without knowing their native structures is important for selecting and appropriately
using protein models. We describe an iterative approach that improves the performances of

protein Model Quality Assurance Programs (MQAPs). Given the initial quality scores of a list of

models assigned by a MQAP, the method iteratively refines the scores until the ranking of the
models does not change. We applied the method to the model quality assessment data generated

by 30 MQAPs during the Eighth Critical Assessment of Techniques for Protein Structure Prediction.

To various degrees, our method increased the average correlation between predicted and real
quality scores of 25 out of 30 MQAPs and reduced the average loss (i.e., the difference between

the top ranked model and the best model) for 28 MQAPs. Particularly, for MQAPs with low average

correlations (<0.4), the correlation can be increased by several times. Similar experiments
conducted on the CASP9 MQAPs also demonstrated the effectiveness of the method. Our method

is a hybrid method that combines the original method of a MQAP and the pair-wise comparison

clustering method. It can achieve a high accuracy similar to a full pair-wise clustering method, but
with much less computation time when evaluating hundreds of models. Furthermore, without

knowing native structures, the iterative refining method can evaluate the performance of a MQAP

by analyzing its model quality predictions.

Keywords: protein model quality assessment; protein structure prediction; iterative Algorithm;

model ranking

Introduction

Nowadays, computer programs can generate a large

number of protein models in a relatively short time,

which makes protein model quality evaluation/

assessment indispensible. Protein model quality

assessment programs (MQAPs) can predict the qual-

ities of protein models before knowing the experi-

mental structures, which is essential to the proper

usage of the models.1–3 Current model quality

assessment programs can predict both global and

local qualities of one or multiple models. The meth-

ods used to predict global qualities can be catego-

rized as multiple-model (clustering) methods and

single-model methods.

Multiple-model methods assess the quality of a

model by assessing its similarity with other models

for the same protein target through full pair-wise

structural comparisons.4–10 Single-model methods

directly predict the quality of a model from its struc-

tural features using machine learning, statistical, or
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physical methods.11–16,21,22 According to recent

CASP experiments,17 multiple-model methods are

currently more accurate than single-model methods,

although they do not work well if only a small num-

ber of models are available or the structures of input

models are largely different. Another drawback is

that clustering methods usually need relatively long

computational time that makes it less efficient and

less feasible to be used in daily research. To address

these problems, recently a hybrid quality assessment

method18 was developed to integrate the strengths

of the two approaches. The hybrid method at first

uses a single-model quality assessment method16 to

generate initial quality scores of input models, and

then compares the structure of each model with

those of the top ranked models. It uses the average

structural similarity score with the top ranked mod-

els as predicted quality score.

Here we generalize the hybrid approach and use

it to refine the quality scores predicted by any

MQAPs. The iterative self-refining approach can

consistently improve single-model MQAPs in almost

all situations in just three iterations. Our results

showed that instead of performing full pair-wise

comparisons between models, partial pair-wise com-

parisons against a few top models can achieve simi-

larly high accuracy, but with much less computa-

tional time. Moreover, for the first time, the iterative

method can help evaluate the performance of a

MQAP before knowing the experimental structures.

Although our algorithm can also generate local qual-

ity scores, in this article, we mainly focus on discus-

sing its performances in improving global quality

assessment.

Results and Discussion
We applied our iterative refinement approach to

each of the MQAPs that participated in the Eighth

Critical Assessment of Techniques for Protein Struc-

ture Prediction (CASP8, 2008) and the Ninth Criti-

cal Assessment of Techniques for Protein Structure

Prediction (CASP9, 2010). Taking CASP8 as an

example, we downloaded the predicted quality scores

of more than 50,000 tertiary structure (TS) models

Table I. Average Correlation, Overall Correlation, and Average Loss of CASP8 MQAPs Before and After Iterative
Refinements

Average correlation Overall correlation Average loss

T-test P-value < 0.0001 T-test P-value < 0.0001 T-test P-value < 0.01

Bef. Refine Aft. Refine Bef. refine Aft. Refine Bef. Refine Aft. Refine

qa-ms-torda-server 0.012 0.767 0.110 0.730 0.483 0.149
ProtAnG_s 0.145 0.823 0.100 0.878 0.130 0.070
MODCHECK-HD 0.284 0.826 0.501 0.858 0.141 0.081
Fiser-QA-COMB 0.476 0.836 0.484 0.856 0.214 0.092
Fiser-QA-FA 0.485 0.822 0.287 0.834 0.183 0.105
Fiser-QA 0.523 0.857 0.506 0.879 0.176 0.063
ModFOLD 0.597 0.835 0.681 0.868 0.132 0.076
SELECTpro 0.608 0.805 0.432 0.844 0.138 0.093
SIFT_SA 0.623 0.840 0.459 0.858 0.102 0.074
MUFOLD-QA 0.633 0.832 0.576 0.872 0.108 0.067
Pcons_ProQ 0.652 0.860 0.652 0.882 0.114 0.055
SIFT_consensus 0.658 0.850 0.673 0.869 0.097 0.068
MULTICOM-RANK 0.665 0.838 0.705 0.867 0.069 0.061
QMEANfamily 0.678 0.847 0.733 0.869 0.080 0.058
GS-MetaMQAP 0.681 0.843 0.771 0.856 0.124 0.079
Circle 0.683 0.862 0.658 0.881 0.098 0.055
QMEAN 0.699 0.859 0.740 0.877 0.081 0.060
MULTICOM-REFINE 0.710 0.848 0.772 0.871 0.085 0.061
MULTICOM-CMFR 0.721 0.836 0.734 0.869 0.075 0.066
Mariner2 0.730 0.813 0.877 0.889 0.126 0.068
FAMSD 0.825 0.856 0.661 0.880 0.060 0.058
selfQMEAN 0.833 0.842 0.893 0.892 0.071 0.063
GS-MetaMQAPconsII 0.838 0.866 0.829 0.882 0.074 0.053
GS-MetaMQAPconsI 0.860 0.870 0.855 0.883 0.072 0.051
MULTICOM-CLUSTER 0.865 0.847 0.878 0.871 0.064 0.066
LEE-SERVER 0.866 0.882 0.778 0.878 0.062 0.056
MULTICOM 0.879 0.869 0.891 0.886 0.050 0.049
QMEANclust 0.886 0.864 0.919 0.909 0.062 0.056
ModFOLDclust 0.894 0.856 0.891 0.878 0.053 0.049
Pcons_Pcons 0.900 0.840 0.886 0.870 0.055 0.057

Bold fonts denote improvements. According to t-tests, the P-values of observing differences in average correlation, overall
correlation, and average loss are less than 0.0001, 0.0001, and 0.01, respectively. The method ‘‘ModFOLDclust’’10 is a full
pair-wise clustering method that can serve as a baseline predictor for reference purpose. Our refinement method improved
the performance of some single-model MQAPs, such as QMEAN, to a level close to that of ModFOLDclust.
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associated with 120 CASP8 targets from the CASP8

web site. We also downloaded all the TS models and

compared each of them with its true experimental

structure using the tool TM_Score.19 The GDT-TS20

score resulted from comparison is considered as the

real quality score of the model. The real quality

scores were used to evaluate whether the iterative

quality assessment method improved the initial

quality scores predicted by CASP8 MQAPs.

We evaluated the iterative quality assessment

method using the following criteria: average and

overall correlations of predicted and real GDT-TS

scores, and average loss of the GDT-TS scores on top

one ranked models. The average correlation is the

average of the per-target Pearson correlations

between predicted quality scores and real GDT-TS

scores. The overall correlation is the Pearson corre-

lation of predicted quality scores and real GDT-TS

scores of all models of all CASP8 or CASP9 targets.

The loss on a target is the difference between the

real GDT-TS score of the top one ranked model and

the real GDT-TS score of the best model. The aver-

age loss over all targets measures the ranking abil-

ity of a MQAP, which ideally equals to zero indicat-

ing the program can always rank the best model as

the top one model.

Table I reports the average correlation, overall

correlation, and average loss of 30 CASP8 MQAPs

before and after applying our refinement algorithm.

The average (overall) correlations of 25 (24) out of

30 MQAPs were increased. The average losses of 28

MQAPs were reduced. According to t-tests, the P-

value of observing the difference before and after

refinements for average correlation, overall correla-

tion, and average loss is less than 0.0001, 0.0001,

and 0.01, respectively. The correlations of MQAPs

with low initial correlation scores (<0.4), such as qa-

ms-torda-server and ProtAnG_s, were increased by

several times. After refinement, the correlations of

all MQAPS except one were improved to above 0.80;

and the average losses of all the MQAPs except two

were reduced to below 0.10. One extreme example is

Table II. Average Correlation, Overall Correlation, and Average Loss of CASP9 MQAPs Before and After Iterative
Refinements

Average correlation Overall correlation Average loss

T-test P-value < 0.1 T-test P-value < 0.1 T-test P-value < 0.05

Bef. Refine Aft. Refine Bef. refine Aft. refine Bef. refine Aft. Refine

PconsR 0.052 0.629 0.026 0.743 0.155 0.102
PconsD 0.119 0.649 �0.158 0.605 0.168 0.120
PRECORS-QA 0.260 0.676 0.065 0.694 0.155 0.124
ProQ 0.415 0.777 0.665 0.684 0.140 0.092
MetaMQAP 0.583 0.783 0.744 0.883 0.143 0.098
Baltymus 0.586 0.810 0.573 0.888 0.117 0.085
Distill_NNPIF 0.601 0.757 0.626 0.833 0.128 0.096
ProQ2 0.627 0.798 0.781 0.901 0.074 0.072
ConQuass 0.656 0.837 0.722 0.853 0.134 0.093
MULTICOM-NOVEL 0.662 0.795 0.767 0.890 0.101 0.082
QMEAN 0.685 0.777 0.808 0.889 0.108 0.097
QMEANfamily 0.697 0.805 0.805 0.904 0.111 0.088
Modcheck-J2 0.730 0.799 0.820 0.884 0.145 0.093
Gws 0.769 0.772 0.868 0.893 0.110 0.100
MQAPsingle 0.810 0.766 0.926 0.906 0.100 0.097
Splicer_QA 0.818 0.827 0.885 0.914 0.079 0.073
MULTICOM-CONSTRUCT 0.832 0.806 0.903 0.898 0.078 0.078
ModFOLDclustQ 0.832 0.849 0.929 0.898 0.062 0.066
QMEANdist 0.833 0.854 0.788 0.863 0.066 0.071
MULTICOM-REFINE 0.866 0.821 0.929 0.918 0.086 0.083
Pcomb 0.870 0.862 0.929 0.892 0.063 0.061
MULTICOM 0.885 0.860 0.933 0.925 0.060 0.059
PconsM 0.885 0.838 0.930 0.893 0.066 0.066
IntFOLD-QA 0.887 0.870 0.940 0.912 0.060 0.058
ModFOLDclust2 0.888 0.863 0.944 0.915 0.061 0.058
Pcons 0.893 0.851 0.933 0.881 0.069 0.066
MQAPmulti 0.895 0.855 0.932 0.920 0.064 0.061
MetaMQAPclust 0.896 0.835 0.936 0.919 0.064 0.065
MULTICOM-CLUSTER 0.916 0.872 0.947 0.912 0.059 0.060
MUFOLD-QA 0.920 0.874 0.941 0.914 0.062 0.062
MUFOLD-WQA 0.920 0.865 0.896 0.888 0.057 0.058
QMEANclust 0.921 0.865 0.950 0.917 0.059 0.061

Bold fonts denote improvements. According to t-tests, the P-values of observing differences in average correlation, overall
correlation, and average loss are less than 0.1, 0.1, and 0.05, respectively. The method ‘‘MULTICOM-CLUSTER’’23 is a full
pair-wise clustering method that can serve as a baseline predictor for reference purpose.
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qa-ms-torda-sever, whose average correlation was

improved from 0.012 to 0.767. However, we noticed

that the refinement method did not improve the cor-

relations of several clustering-based methods prob-

ably because they had already used structural com-

parisons in their model evaluation process. In

contrast, all the single-model methods that do not

utilize structural comparisons were improved by the

iterative refinement method. The same experiment

was performed on 107 valid CASP9 targets (Table

T2 II). Our method improved the average correlation,

overall correlation, and average loss of almost all

CASP9 MQAPs that did not use structural compari-

sons, such as PconsR, PconsD, PRECORES-QA,

ProQ, MetaMAQP, Batymus, DistillNNPIE, ProQ2,

ConQuass, MULTICOM-NOVEL, and QMEAN.

However, our method rarely improved clustering-

based MQAPs that used structural comparisons,

such as MULTICOM-CLUSTER, MUFOLD-QA, and

QMEANclust, although it slightly reduced the aver-

age loss of ModFOLDclust2 and Pcons, two of the

top pair-wise comparison methods. According to t-

test, the P-value of the improvements on average

correlation and overall correlation is 0.1 for all

Figure 1. The plot of the average losses against iterations for CASP8 MQAPs. The method ‘‘ModFOLDclust’’10 is a full pair-

wise clustering method that can serve as a baseline predictor for reference purpose.

Figure 2. The plot of the average losses against iterations for CASP9 MQAPs. The method ‘‘MULTICOM-CLUSTER’’23 is a

full pair-wise clustering method that can serve as a baseline predictor for reference purpose.
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CASP9 MQAPs, which is less significant than the

ones on CASP8 data. This may be because a larger

portion of CASP9 MQAPs used structural compari-

sons. However, the P-value of the improvements on

loss is still at a significant level 0.05.

To investigate how fast the iterative QA method

converged, we plotted the average loss against itera-

tions for each CASP8 MQAP (Fig. 1) and CASP9

MQAP (Fig. 2). Most methods converged in the first

one or two iterations (Figs. 1 and 2). On average, it

takes up to about five iterations to converge. The

number of iterations depends on the quality of initial

ranking. Better initial rankings require fewer itera-

tions of refinement.

To investigate how ‘‘the number of reference

models’’ influences the refinement performance and

also the efficiency of our method, we created a ran-

dom MQAP on CASP9 dataset (Fig. 3). The pre-

dicted model quality scores of this random MQAP

were randomly generated, which had an average

correlation �0.00357, an overall correlation 0.0021,

and a loss 0.161 compared with the true model qual-

ity scores. Models were then initially ranked by

these randomly generated quality scores. After a

Figure 4. The Kendall tau rank correlations of the rankings before and after each round of refinement for CASP8 MQAPs.

L

Figure 3. The average correlation, overall correlation, average loss, and average computational time under different numbers

of reference models. This experiment was conducted on a MQAP whose predicted quality scores of CASP9 models were

randomly generated. The predicted model quality scores had an average correlation of �0.0036 with the true model quality

scores. Different numbers of reference models were tested under a single round of refinement.
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single iteration of refinement using top 1 ranked

model as reference model, our method substantially

improved the average correlation to 0.667 and the

overall correlation to 0.738. Moreover, when top 3

ranked models were used as reference models, both

the average correlation and overall correlation were

improved to 0.814 and 0.862, respectively, after only

one round of iteration. The improvement continued

as the number of reference models increased and

started to saturate after using 15–25 reference mod-

els. When 25 top models were used as reference

models, the average correlation, overall correlation,

and average loss were improved to 0.896, 0.940, and

0.067 respectively, which were much better than the

initial ranking generated by the random MQAP.

This performance was also close to the average cor-

relation 0.916, overall correlation 0.947, and average

loss 0.059 of a full pair-wise comparison method

MULTICOM-CLUSTER,23 which was developed by

our group and was ranked as one of the top MQAPs

in CASP9 (see Table II).

We studied some cases in which our refinement

method worked well or failed in the experiment on

the random MQAP mentioned above. We found that

it worked well on template-based modeling (TBM)

targets whose models are largely of good quality. For

Figure 5. The Spearman’s rank correlations of the rankings before and after each round of refinement for CASP8 MQAPs.

Figure 6. The Kendall tau rank correlations of the rankings before and after each round of refinement for CASP9 MQAPs.

J_ID: PRO Customer A_ID: PRO764 Date: 19-November-11 Stage: Page: 6

ID: guganp I Black Lining: [ON] I Time: 20:57 I Path: N:/3b2/PRO#/Vol00000/110211/APPFile/JW-PRO#110211

6 PROTEINSCIENCE.ORG Protein Model Quality Estimation



example, the predictions of the random MQAP had

an average correlation �0.071 on an easy TBM tar-

get T0522; and 218 out of 371 models of that target

have true GDT-TS20 scores > 0.9. A GDT-TS score is

a structural similarity score that ranges from 0 to 1,

whereas 1 indicates the model is the same as the

native structure and 0 completely different. After

one round of refinement using the top one ranked

model as reference model, the average correlation

was improved to 0.985. In contrast, our refinement

Figure 7. The Spearman’s rank correlations of the rankings before and after each round of refinement for CASP9 MQAPs.

Table III. The Average Kendall Tau Ranking Correlation and Average Spearman’s Ranking Correlation Before and
After the First and Last Iteration Tested on CASP8 MQAPs

Average Kendall tau rank correlation Average Spearman’s rank correlation

Bef. & aft. first iter. Bef. & aft. last iter. Bef. & aft. first iter. Bef. & aft. last iter.

qa-ms-torda-server 0.153 0.991 0.214 0.999
ProtAnG_s 0.221 0.993 0.320 0.999
MODCHECK-HD 0.254 1.000 0.358 1.000
Fiser-QA-COMB 0.348 0.998 0.482 1.000
Fiser-QA 0.348 0.989 0.482 0.999
Fiser-QA-FA 0.375 0.991 0.521 0.999
Pcons_ProQ 0.438 0.992 0.597 0.999
SIFT_SA 0.468 0.987 0.630 0.998
MUFOLD-QA 0.476 0.996 0.638 1.000
SIFT_consensus 0.479 0.989 0.642 0.998
SELECTpro 0.499 0.987 0.654 0.999
GS-MetaMQAP 0.503 0.988 0.670 0.999
ModFOLD 0.504 0.991 0.668 0.999
circle 0.506 0.988 0.676 0.998
MULTICOM-RANK 0.518 0.990 0.689 0.998
MULTICOM-CMFR 0.528 1.000 0.696 1.000
MULTICOM-REFINE 0.541 0.983 0.717 0.997
QMEAN 0.542 0.992 0.713 0.999
QMEANfamily 0.567 0.984 0.741 0.998
Mariner2 0.601 0.990 0.753 0.998
selfQMEAN 0.665 0.992 0.830 0.998
GS-MetaMQAPconsII 0.671 0.986 0.838 0.999
FAMSD 0.681 0.991 0.848 0.999
GS-MetaMQAPconsI 0.705 0.999 0.862 1.000
LEE-SERVER 0.837 1.000 0.941 1.000
Pcons_Pcons 0.840 0.989 0.951 0.998
ModFOLDclust 0.847 0.969 0.955 0.995
QMEANclust 0.884 0.961 0.967 0.994
MULTICOM-CLUSTER 0.919 0.978 0.977 0.999
MULTICOM 0.958 0.970 0.993 0.998
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method did not work well on some of the hard targets

whose models are mostly of low quality. For example,

the random MQAP has an initial correlation �0.013

on the models of target T0537, which is a hard target

that contains two free modeling (FM) domains. The

best CASP9 model of the target has a GDT-TS score

0.32 whereas all other models have a GDT-TS score

<0.3. After one round of refinement using the top-one

ranked model as reference model, the correlation

became �0.067. These two extreme examples may

suggest that, similarly as clustering method, the iter-

ative refinement method works better if a large por-

tion of input models have reasonable qualities.

Moreover, to investigate how model rankings

are changed during the refinement process, we cal-

culated the average Kendall tau rank correlation

and Spearman’s rank correlation. Kendall tau rank

correlation coefficient is defined as

s ¼ nc � nd

1
2 nðn� 1Þ

where nc is the number of concordant pair of models

whose ranking orders are not changed in two rank-

ings, nd is the discordant pairs, and n is the total

number of models in the ranking. Kendall tau rank

correlation measures the agreement level between

two rankings and ranges from �1 and 1, while 1

Table IV. The Average Kendall Tau Ranking Correlation and Average Spearman’s Ranking Correlation Before and
After the First and Last Iteration Tested on CASP9 MQAPs

Average Kendall tau rank correlation Average Spearman’s rank correlation

Bef. & aft. first iter. Bef. & aft. last iter. Bef. & aft. first iter. Bef. & aft. last iter.

PconsD 0.170 0.992 0.246 0.999
PconsR 0.201 0.975 0.282 0.994
ProQ 0.343 0.989 0.478 0.998
PRECORS-QA 0.411 0.996 0.555 1.000
ConQuass 0.424 0.981 0.578 0.997
Baltymus 0.438 0.984 0.595 0.997
ProQ2 0.441 0.987 0.596 0.998
MetaMQAP 0.442 0.984 0.595 0.998
QMEAN 0.489 0.998 0.655 1.000
QMEANfamily 0.500 0.995 0.669 0.999
Distill_NNPIF 0.505 0.989 0.673 0.998
MULTICOM-NOVEL 0.512 0.996 0.682 1.000
Modcheck-J2 0.571 0.990 0.725 0.999
QMEANdist 0.654 0.999 0.822 1.000
Splicer_QA 0.684 0.996 0.842 0.999
Pcomb 0.734 0.995 0.884 0.999
ModFOLDclustQ 0.763 0.997 0.897 1.000
Gws 0.783 0.999 0.905 1.000
IntFOLD-QA 0.806 1.000 0.929 1.000
ModFOLDclust2 0.810 0.999 0.932 1.000
MQAPmulti 0.812 0.996 0.932 1.000
Pcons 0.820 0.996 0.941 0.999
PconsM 0.828 0.996 0.944 1.000
MULTICOM-CLUSTER 0.830 0.999 0.936 1.000
MUFOLD-WQA 0.839 0.998 0.951 1.000
MetaMQAPclust 0.847 0.996 0.951 1.000
QMEANclust 0.848 0.998 0.954 1.000
MUFOLD-QA 0.856 0.999 0.961 1.000
MQAPsingle 0.867 0.991 0.948 0.999
MULTICOM-REFINE 0.899 0.998 0.970 1.000
MULTICOM 0.918 1.000 0.983 1.000
MULTICOM-CONSTRUCT 0.936 1.000 0.984 1.000

Figure 8. The plot of the Spearman’s RCBAF values

against the average per-target correlation of the 30 CASP8

MQAPs. Their Pearson’s correlation is 0.965. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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indicates the two rankings are the same, �1 one

ranking is the reverse of the other, and 0 the two

rankings are completely independent. The Spear-

man’s rank correlation coefficient is defined as

q ¼ 1� 6
P

d2
i

nðn2 � 1Þ

where di ¼ xi – yi, which is the difference between

the ranking orders of a model in two rankings; and

n is the number of models in the rankings.

The average Kendall tau and Spearman’s rank

correlations were plotted against iteration numbers

in Figures 4 and 5 for CASP8, and Figures 6 and 7

for CASP9. Similarly as for the average correlation,

it took about three iterations to converge on average.

For almost all the cases, the biggest increase hap-

pened after the first iteration of refinement. The

‘‘rank correlations between the rankings before and

after the first iteration of refinement’’ (RCBAF) is

particularly interesting since it reports the degree a

ranking is changed by the refinement. The RCBAF

of initially less accurate MQAPs (e.g., qa-ms-torda-

server) is much lower than that of initially more

accurate MQAPs (e.g., Pcons-Pcons, ModFOLDclust,

QMEANclust, and MULTICOM). Tables III and IV

report the average Spearman’s and Kendall tau

rank correlations before and after the fist and last

iteration. The RCBAF for a less accurate MQAP is

relatively low (e.g., < 0.5 for Spearman’s and < 0.4

for Kendall tau). These suggest that the RCBAF can

be used to assess the performance of a MQAP.

To further verify this, we plotted the RCBAF

values against average per-target correlations of

30 CASP8 MQAPs (Figs. 8 and 9). The average

per-target correlation of a MQAP indicates its actual

performance or accuracy. Figures 8 and 9 show that

RCBAF have strong correlations with actual accura-

cies of a MQAP, which are 0.965 and 0.911, respec-

tively. These results indicate that the iterative

refinement method can be used to estimate the

performance of a MQAP or the accuracy of a model

ranking list, without knowing real quality scores of

the models. This could be a useful pre-assessing

procedure for a MQAP without any other data

sources but its own ranking.

Another finding that will contribute to the com-

munity is that instead of performing full pair-wise

comparisons, partial pair-wise comparisons against a

few top models can achieve a similarly high accuracy.

This decreases the computational complexity from

O(n2) as of full pair-wise comparisons to linear O(n).

This computational efficiency makes our method a fast

and accurate alternative to full pair-wise comparison

methods, particularly when evaluating a large number

of models.

Conclusions
We described an iterative refinement method to

improve the initial ranking quality and prediction

accuracy of a MQAP. The method can improve the

performances of MQAPs in terms of average correla-

tion, overall correlation, and loss. It is particularly

effective for single-model MQAPs. Moreover, the

iterative refinement method can be used to estimate

the performance and accuracy of a MQAP by analyz-

ing how much the initial ranking is changed during

the refinement process. Since in reality the real

structures are mostly unknown, this unique prop-

erty makes it a useful tool to self-assess a MQAP.

Materials and Methods

The iterative quality assessment (IQA) method starts

from the initial quality scores of a set of protein mod-

els. In the first round of refinement, the initial scores

are used to rank all models. The top n models are

selected as reference models and used to compare

with every model by a structural comparison tool TM-

Score,19 which generates a GDT-TS score20 for each

comparison. The average GDT-TS score over the n ref-

erence models is used as the refined global quality

score of a model. The new, presumably better, quality

scores are then used to generate a new ranking of the

models for the next round of refinement. The same

refinement process is executed iteratively until it con-

verges, that is, the ranking of models does not change

any more. The average GDT-TS scores generated in

the last round are used as the final global quality

scores. When comparing a model to each of the n ref-

erence models in each round, TM-Score superimposes

two models and outputs the superimposed coordinates

of each pair of residues. These coordinates are used to

calculate the residue-specific distances. The averaged

Figure 9. The plot of the Kendall tau RCBAF values

against the average per-target correlation of the 30 CASP8

MQAPs. Their Pearson’s correlation coefficient is 0.911.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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residue-specific distances over the n reference models

are used as the refined local quality scores. The aver-

age residue-specific distances generated in the last

round are used as the final local quality scores. The

only parameter of the iterative quality assessment is

n, the number of reference models, which is set to five

during most of our experiments except for Figure 3.
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