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After decades of research, protein structure prediction remains a very challenging problem. In

order to address the di®erent levels of complexity of structural modeling, two types of modeling
techniques ��� template-based modeling and template-free modeling ��� have been developed.

Template-based modeling can often generate a moderate- to high-resolution model when a

similar, homologous template structure is found for a query protein but fails if no template or
only incorrect templates are found. Template-free modeling, such as fragment-based assembly,

may generate models of moderate resolution for small proteins of low topological complexity.

Seldom have the two techniques been integrated together to improve protein modeling. Here we

develop a recursive protein modeling approach to selectively and collaboratively apply tem-
plate-based and template-free modeling methods to model template-covered (i.e. certain) and

template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the

approach was tested on a number of hard modeling cases during the 9th Critical Assessment of

Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality
of modeling in most of these cases. Recursive modeling can signi¯cantly reduce the complexity of

protein structure modeling and integrate template-based and template-free modeling to

improve the quality and e±ciency of protein structure prediction.
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template-based modeling; CASP.
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1. Introduction

Predicting protein tertiary structure from protein sequence is important for protein

engineering, protein design and protein function analysis.1 It is becoming more and

more important in the post-genomic era as the vast majority of millions of protein

sequences being generated by high-throughput next-generation sequencing projects

do not have known structures.2 Currently, there are more than 100 million protein

sequences in GenBank,3 whereas only about 70,000 of them have known structures in

the Protein Data Bank (PDB).4

In order to address this challenge, two major types of protein structure modeling

methods have been developed to model protein structure from sequence��� template-

based modeling and template-free modeling. Template-based modeling (e.g. com-

parative modeling or homology modeling) builds the structure of a query protein

from the known structures of other proteins (i.e. templates), which are homologous

to the query.5�7 Template-free (e.g. ab initio) modeling folds the structure of a query

protein from scratch without explicitly referring to speci¯c structural templates.8,9

Template-based methods work well if an appropriate template structure (e.g. a close

homolog) can be found, but fails to produce an accurate structure if no template is

available or only incorrect templates are used. At present, template-free modeling

can generate low resolution models for small proteins with simple topologies. This is

due to the di±culty of e±ciently exploring the huge conformation space.

Although a variety of methods have been developed and tested for template-based

and template-free modeling, only a few have integrated the two methodologies

together to improve protein structure prediction. Initial e®orts at combining both

approaches were aimed at modeling relatively small local regions and applying ab

initio methods to model loops10�14 or N-/C- terminal tail regions of existing

models.15 Inspired by these initial attempts and the hierarchical protein folding

process,16,17 we designed a general, iterative, and recursive protein folding procedure

to seamlessly integrate the complementary strengths of both template-based and

template-free methods to e®ectively and e±ciently predict the structures of any

proteins. The approach can reduce the complexity of protein modeling by dividing

the modeling problem into certain (i.e. template-based) and uncertain (i.e. template-

free) regions. The regions are then modeled recursively and collaboratively using the

appropriate techniques and the most useful information. The approach was

implemented in our MULTICOM protein structure prediction system18 that uses

alternative alignments and multiple templates in conjunction with both the focused

template-based model generation and the more exploratory template-free model

generation in order to construct an ensemble of models for selection. The recursive

modeling approach was blindly tested on a number of hard protein targets in the

ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9)

(http://predictioncenter.org/casp9/).19 The approach successfully improved the

accuracy of predicted models in a majority of cases. The experiment demonstrated

that the recursive protein modeling approach can integrate template-based and
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template-free information together in a collaborative and reinforcing way to address

a full spectrum of protein modeling problems.

It is worth noting that our recursive protein modeling approach is a kind of the

Divide and Conquer protein modeling strategy of reducing modeling complexity that

had been explored in protein structure prediction. Other related previous protein

structure prediction work adopting Divide and Conquer strategies includes separ-

ating modeling of loops from regular structures,11�14 assembling protein models from

¯xed-size fragments and super-secondary structures,8,9 dividing modeling of a whole

multi-domain protein into individual domains widely used in CASPs,19�21ab initio

simulation of protein terminals,15 and distinguishing modeling of easy parts of a

protein from hard parts.6,22 The main conceptual di®erences between our method

and previous methods are the generality of our de¯nition of certain and uncertain

regions and the progressive expansion of certain regions through the collaborative

inter-play between template-based modeling and template-free modeling. As the

same modeling protocol is iteratively applied to the same query protein with

shrinking uncertain regions, the process is kind of recursive. The conceptual di®er-

ences and other substantial implementation di®erences with other Divide and

Conquer strategies are described in greater details in Sec. 2.

2. Methods

2.1. A general recursive modeling procedure

In the recursive protein modeling procedure, a query protein is ¯rst searched against

a template protein library using a sequence or pro¯le alignment method.23�28 A

query-template sequence alignment will be generated if some seemly homologous/

analogous templates or template fragments are found. The sequence of the query

protein is then initially decomposed into certain and uncertain regions based on its

alignment with the signi¯cant homologous template hits. Certain regions correspond

to portions of the query sequence which align well with any one of signi¯cant

homologous templates (e.g. low PSI-BLAST e-value < 0:001)23; and uncertain

regions are the long query regions (e.g. � 20 residues) that are not covered by a

template or aligned with low con¯dence. The short unaligned regions in the query

sequence are not considered as uncertain regions here. Instead, they are treated as

loops in the certain regions to be handled by template-based modeling. Therefore, the

uncertain regions in the decomposition usually correspond to one or more domains or

a large portion of a domain composed of di®erent kinds of secondary structures

rather than a single loop, which distinguishes our approach from traditional protein

loop modeling. Similarly, a certain region may correspond to any component (a part

of a domain, a domain, or multiple domains) of a protein. After the decomposition,

the conformations of the certain regions are generated by template-based modeling

using the alignments and the corresponding template structures while leaving the

uncertain regions alone. It is worth noting that in a complicated situation, one query

may have multiple disjoint certain regions covered by one template or multiple
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templates. In practice, this situation does not pose any di±culties as such regions can

be handled altogether by current template-based modeling tools. While keeping the

conformation of the certain regions which usually form the core of the structure ¯xed

or rigid, template-free modeling methods are applied to sample the conformations of

uncertain regions. This template-free sampling is di®erent from an independent, free

sampling of uncertain regions because of the in°uence of the certain regions (e.g.

core) is taken into account in both conformation sampling and energy assessment.

The core-restrained sampling can often improve the e®ectiveness and e±ciency of

template free sampling by dragging the \wild," free conformation toward the core

region through the presence of the conformation of the certain core region and its

energy. This method is particularly e®ective for sampling partial uncertain regions of

a single protein domain taking into account of the in°uence of its certain/¯xed

regions. It can also facilitate docking whole uncertain domains with whole certain

domains together by taking into account interactions between them when modeling

multi-domain proteins, which may work better than traditional approaches splitting

multi-domain proteins into separate chunks, modeling them independently and then

almost randomly assemble them together. However, since the latter approaches are

generally faster at modeling individual domains that can largely fold rather indepen-

dently, in order to speed up sampling in practice, sometime it is necessary to model

domain-level uncertain regions in a large multi-domain protein using template-free

modeling separately. In this situation, the conformations of di®erent regions simulated

by either template-based or template-free modeling will then be used as templates by

an extra template-based modeling to combine them into one full-length model.

After a round of sampling, the quality of each certain and uncertain region is

assessed using global/local protein model quality assessment methods.29�34 The con-

formations of certain regions and some well-modeled uncertain regions are combined

into larger certain regions, leaving a smaller set of uncertain regions. The same mod-

eling process is applied to model the newly de¯ned certain and uncertain regions by

using the conformations generated in the last iteration for the certain regions as new

templates. After each round of modeling, the new certain region becomes larger than

before because it includes both the previous certain region and all or a part of the

previous uncertain regions that has been improved to an acceptable quality. Since the

larger certain region is used as templates by template-basedmodeling in the next round

of modeling, their conformation will be kept (almost) completely ¯xed, leaving a

smaller uncertain region for template-free modeling to explore. The process continues

until no uncertain regions remain or the quality of the entire query protein is acceptable

according to model quality assessment. The entire procedure is described in Fig. 1.

It is worth pointing out that the term \region" here may refer to any level of

protein structure, such as a part of a domain, an entire domain, or even multiple

domains. It is di®erent from the ab initio loop modeling that is exclusively used to

build a loop joining two parts of protein structure. Here, conceptually the recursive

modeling procedure aims to build a protein structure from smaller components in a

bottom-up, hierarchical way. On one hand, it somewhat conceptually mimics or is in
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accordance with the physical, hierarchical protein folding process, where local regions

fold ¯rstly and then interact to fold into larger protein conformations,16,17 although

each decomposed region may not actually correspond to a physical folding unit. On

the other hand, the procedure is in accordance with the \divide and conquer

strategy" widely used in computer science, where a complicated problem is divided

into smaller, easier to solve problems, and the solutions to the smaller problems are

combined recursively in order to solve the larger problem. In the protein modeling

context, the procedure improves template-based modeling by better packing of long

unaligned regions (e.g. loops, tails, and small domains) and enhances template-free

modeling by utilizing the template core as restraints. The protocol can not only

integrate template-base and template-free modeling seamlessly and collaboratively,

but also improve the quality and speed of protein modeling.

One major conceptual di®erence between our method and the other Divide and

Conquer approach ��� TASSER6 and I-TASSER22 is that our method reduces

uncertain region and enlarges certain region from iteration to iteration, while

TASSER and I-TASSER use the distance constraints extracted from the models

generated in the last iteration as whole to guide modeling in the next iteration

without gradually keeping a larger and larger region ¯xed from iteration to iteration.

So our method is a recursively progressive approach i.e. the newly ¯xed region always

contains the previously ¯xed region and likely more in order to achieve the higher

Fig. 1. The °owchart of the recursive protein modeling procedure. TBM and FM denote template-based
modeling and template-free modeling, respectively.
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simulation e±ciency, while I-TASSER may simulate the same regions again and

again with di®erent constraints from iteration to iteration. Apart from TASSER and

I-TASSER, our method synergistically models certain and uncertain regions using

both template-based and template-free modeling alternately in order to shrink

uncertain regions and expand certain regions gradually to reach a locally, approxi-

mately optimal solution. During each iteration, template-base and template-free

modeling in°uence/improve each other through the progressive expansion and growth

of certain regions. That is, from iteration to iteration, template-basedmodeling creates

a largely ¯xed conformation of enlarged certain regions to facilitate template-free

modeling of shrunk uncertain regions, whereas template-free modeling continuously

reduces the size of uncertain regions by turning some or the whole uncertain regions

into certain regions. There are also substantial implementation di®erences between our

method and I-TASSER. For example, our method uses fragment assembly to model

uncertain regions, but I-TASSER uses a 3D grid simulation approach for hard regions.

2.2. A speci¯c preliminary implementation

The general recursive modeling process can be implemented in a number of ways

depending on the speci¯c tools and methods selected for each step. For the recursive

modeling in our MULTICOM protein modeling system, we used buildali.pl (i.e.

buildali.pl query.fasta) in the HHSearch 1.535 calling PSI-BLAST to search a query

protein sequence against the NCBI Non-Redundant protein sequence database to

collect homologous sequences. The e-value parameter (-e) of PSI-BLAST was set to

0.001. The query sequence together with its homologous sequences was used by

hhmake of a pro¯le-pro¯le alignment tool HHSearch35 to construct a Hidden Markov

Model (HMM) as pro¯le. We used hhsearch of the HHSearch35 to search the query

pro¯le against our pre-built in-house template pro¯le library. The pro¯le�pro¯le

search returned a number of templates ranked by their signi¯cances (e-values) and

generated alignments between the query protein and each template. The e-value

threshold for selecting signi¯cant templates was set to 0.001. The alignment between

the query and the most signi¯cant template was selected to decompose the query

sequence into certain and uncertain regions. Generally, a long unaligned region of the

query (e.g. >¼ 20 residues) was considered an uncertain region (see the regions of

T0547 circled by red and green rectangle in Fig. 2 as an example).

We used the simplest protocol of Modeller 9v736 ��� automodel ��� to perform

template-based modeling for certain regions with default parameter settings taking

the query-template alignments generated by HHSearch and the template structures

as input. The automodel protocol constructed structural conformations for aligned

residues in certain regions and also automatically built loops for unaligned residues if

they existed. If certain regions were covered by multiple signi¯cant templates, all of

them were used by automodel to generate models according to their alignments with

the same certain regions. Ten models were generated and the model with the mini-

mum Modeller energy was chosen as the model of the certain regions. Modeller also
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generated conformations ��� most likely long extended chains ��� for uncertain

regions, which were further folded by template-free modeling as follows.

To model unaligned/uncertain regions, we used a modi¯ed Rosetta 3.1 modeling

protocol to do template-free (i.e. fragment assembly) modeling.37 The modeling

procedure for these regions was carried out in four steps. First, a query speci¯c

fragment library for the sequence was created using the make fragments script

included in the Rosetta software suite (command:make fragments.pl -nojufo -noprof

-nosam -xx aa -id 9999 query.fasta). This process identi¯ed and created 3- and

9-residue long fragments of the protein chain stored in two library ¯les

(e.g. aa999909 05.200 v1 3, aa999903 05.200 v1 3). Next, the template-based

(a)

(b)

Fig. 2. Domain architecture of CASP target T0547. (a) The experimental structure of T0547; (b) The

region decomposition of target T0547 based on its sequence alignment with a template. T0457 was aligned

with template 1TWI (chain A) by HHSearch. Red and green rectangles delineate the unaligned regions,
which correspond to template-free domains 3 and 4 of T0547. 1TWI covers domains 1 and 2 of T0547.
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models were idealized using the idealize program from the Rosetta Modeling Suite

(command: idealize.linuxgccrelease -in:¯le:s query.pdb). This ensured that bond

lengths and angles contained in the models passed in from Modeller were compatible

with the modeling protocols of Rosetta. A new idealized model ¯le (query.idealized.

pdb) was generated. Then a modi¯ed version of the AbinitioRelax protocol was called

to perform fragment assembly on uncertain regions of the idealized model. For ex-

ample, one command may look like \AbinitioRelax.linuxgccrelease -in:¯le:native

query.idealized.pdb-database $ROSETTA PATH/rosetta database/ -in:¯le:frag9

aa999909 05.200 v1 3-in:¯le:frag3aa999903 05.200 v1 3-out:pdb -run:use time as -

seed -out:nstruct 100 -abinitio:re¯ne range \1�25 " -abinitio:increase cycles \0.3 "

-abinitio:start native true", which aims to do fragment assembly on residues 1�25 of

the model and produce 100 new re¯ned models. The primary purpose of this protocol

is to randomly replace portions (e.g. uncertain regions) of a protein model with

fragment selected from the fragment library. After a replacement was made, the

resulting structure was evaluated by Rosetta's scoring function; and if the new

conformation was more favorable, it was kept and otherwise rejected.9 This process

was repeated a number of times and then the ¯nal structure was re¯ned using a full-

atom force ¯eld which is part of the AbinitioRelax protocol. As shown in the com-

mand above, we modi¯ed the protocol (i.e. its Cþþ code) such that we could specify

where fragment replacements could be applied in terms of range of residues. For

example, if the ¯rst 30 residues of a query are uncertain, the range (1�30) can be

passed into the modi¯ed AbinitioRelax to do fragment assembly on the ¯rst 30 or so

residues without changing much of other certain regions. One caveat is that the

actual region changed by Rosetta can be 8 (or 16) residues larger than the input

range because Rosetta can do a 9-mer fragment replacement starting from either end

of the input range. Although conformation changes were limited to speci¯ed

uncertain regions, the whole conformation including certain regions was used to

calculate an energy change induced by a fragment replacement in the uncertain

regions. Thus, this approach allowed for the unaligned/uncertain regions to be

modeled in such a way that when fragments were replaced and scored, they were

in°uenced by the certain/¯xed regions. Finally, after the models had been updated

by the AbinitioRelax protocol, they were compared to their form prior to modi¯-

cation by fragment based assembly. This last check was needed to ensure that only

unaligned/uncertain regions were modi¯ed. It was required as occasionally the

idealization or relaxation of a model caused changes outside of the speci¯ed una-

ligned/uncertain regions.

By specifying and limiting fragment replacements to uncertain regions (and

possibly some short extensions into adjacent certain regions for the purpose of

smoothly stitching the boundaries), the fragment assembly of the other regions can

be in°uenced by the rigid regions because their conformations are considered during

the assembly of fragments for uncertain regions. For instance, fragment replacements

in uncertain regions that are energetically favored by certain regions are more likely

to be accepted. Generally, AbinitioRelax was executed to generate 100 or more
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models with almost the exactly same conformation for the certain regions and likely

di®erent conformations for the uncertain regions. One model was selected by either

ModelEvaluator34,38 or APOLLO.30 ModelEvaluator is a single model quality

assessment tool that uses the structural features extracted from the model (e.g.

secondary structure, relative solvent accessibility, and contact map) to predict its

structural similarity with native structure in terms of GDT-TS score.39 Mod-

elEvaluator only requires two parameters (a query sequence ¯le and a model ¯le) as

input to predict the score of a model. APOLLO has a pairwise structure comparison-

based model evaluation tool that superposes each model with all other models to

calculate their structural similarity scores (e.g. GDT-TS score or Root Mean Squared

Distance) and uses the average score as the predicted quality score of the model.

Based on model superposition, APOLLO can also predict local quality of a model.30

APOLLO only requires as input a directory of containing model ¯les and a list of

model ¯le names to be evaluated. The model of the query protein can then be

decomposed into larger certain regions (the previous certain regions before template-

free modeling plus newly formed certain regions of good quality produced by

template-free modeling) and shrunk, smaller uncertain regions, which may be sub-

jected to the next round of template-based and template-free modeling if necessary

i.e. the conformation of enlarged certain regions will be used as new template by

template-based modeling and that of shrunk uncertain regions will be re¯ned by

template-free modeling. The process stops if the overall quality of the model is

acceptable (e.g. above a quality score threshold) or there is no uncertain region. The

threshold of acceptable global quality score of ModelEvaluator and APOLLO was set

to 0.5 and 0.4, respectively.

In addition to the main process described above, a simpli¯ed modeling process was

applied to uncertain regions that were su±ciently long (e.g. > 45 residues) to be

stand-alone domains within a large multi-domain protein for time e±ciency. Con-

sidering that a domain-level uncertain region can fold rather independently, our

MULTICOM system excised it together with a few residues extension at its ends o®

from the query sequence to do modeling, and also invoked the template-free modeling

to construct models for it, and then composed the selected model of this region with

the remaining conformations of other regions into one model using the template-

based modeling tool Modeller. The composition process simply used the confor-

mations of all the regions as templates for Modeller to generate a combined

full-length model. The main reason of applying this simpli¯ed modeling to uncertain

domains was to speed up the template-free modeling process in practice as the cur-

rent template-free modeling method (e.g. Rosetta) was very slow on large proteins

(e.g. > 300 residues) with multiple domains. Folding a single smaller domain alone

with the template-free modeling can be much faster and thus can explore larger

conformation space in limited time than running a full template-free modeling in the

context of the whole conformation of a large protein. Furthermore, in most cases, the

template-based modeling can readily compose the conformations of certain and

uncertain multiple domains into one cohesive model. However, the relative

Recursive Protein Modeling

1242003-9



orientations between some domains whose models were not constructed in the same

step might not be assembled very accurately by the less exploratory template-based

composition process. The problem was often alleviated because large certain domains

modeled together tend to have largely correct domain orientations to be used as

sca®old to restrict the orientation of uncertain template-free domains (see case 1 in

Sec. 3 for an example). The problem might be further addressed by orienting domain

models generated in this simpli¯ed protocol according to a smaller number of models

generated by the slower domain-level template-free modeling in the context of the

conformation of the whole protein. Moreover, as more and more computing power is

available and template-free modeling becomes faster, large-scale running of domain-

level template-free modeling with the whole conformation of a large multi-domain

protein will become more practical, likely leading to the better domain assembly.

These options will be extensively explored in the future as we continue to improve

the implementation of the protocol.

3. Results

The recursive modeling approach was implemented within our MULTICOM system

as four automated protein structure prediction servers (i.e. MULTICOM-

CLUSTER, MULTICOM-REFINE, MULTICOM-NOVEL, and MULTICOM-

CONSTRUCT), which mainly di®ered in model ranking and combination.40 The

MULTICOM system was blindly tested during the 9th Critical Assessment of

Techniques for Protein Structure Prediction (CASP9), 2010.19 It showed its promise

by improving the quality of protein modeling in a majority of hard cases where both

template-based and template-free modeling could be applied. Here we discuss how

the recursive modeling improved structure prediction in three typical situations.

Case 1: Recursive modeling enhances the modeling of large, complicated,

multi-domain proteins. Instead of improving the uncertain regions of a single

domain, here, recursive modeling can synergistically model several template-based

and template-free domains entangled together. The decomposition of a query protein

into multiple regions can help solve the complicated domain architecture involving

discontinuous segments and domain insertions.

The CASP9 target T0547 is a good example illustrating this case. This protein has

a very complicated domain architecture composed of four domains as illustrated

in Fig. 2(a). The ¯rst template-based domain has three discontinuous segments

interrupted by two inserted domains ��� one template-based domain (i.e. domain 2)

and one template-free domain (i.e. domain 3). The third fragment of domain 1 is

joined by the fourth template-free domain. Traditional template-based modeling

alone will fail on the two template-free domains, and template-free modeling alone

simply cannot handle such a large protein with such complicated domain archi-

tecture. However the region decomposition approach used by recursive modeling can

successfully identify the two template-based domains and template-free domains and
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compose them together. Figure 2 shows that two disjoint fragments of T0547 were

aligned with one template 1TWI (chain A), which was considered a certain region.

The entire aligned region was modeled by MULTICOM-REFINE based on the

structure of template 1TWI using template-based modeling, which was better than

modeling the two disjoint parts separately using a traditional domain-cutting

strategy. The latter would not be able to model the three disjoint fragments of the

¯rst domain. Thus the \region" concept used in recursive modeling is a broader

modeling-oriented concept, which may correspond to a part of a domain, one domain

or even multiple domains and can even span discontinuous sequence fragments. The

two unaligned/uncertain regions were modeled by MULTICOM-REFINE with the

template-free method. Then the three components were composed into one model

using the template-based modeling again (Fig. 3). In this case, the large template-

based component consisting of two domains served as a sca®old to dock two ab initio

domains with other domains. This is more e®ective than traditional approaches

which would randomly assemble these domains without considering their inter-

actions at all.

It turned out that all four domains generated by MULTICOM-REFINE's

recursive modeling procedure were ranked among the high-quality server models in

CASP9 (Fig. 3). This example clearly demonstrates that the recursive modeling

protocol can e®ectively decompose a large protein to reduce modeling complexity,

resulting in better modeling quality. In addition to this example, we found that

Fig. 3. The model predicted by MULTICOM-REFINE for target T0547. The template-based domain 1

has three discontinuous segments °anked by template-based domain 2 and template-free domain 3.
Domain 4 is a template-free domain. According to the GDT-TS scores, these four domains are among the

top server models in CASP9.
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recursive modeling could also improve modeling on other targets composed of mul-

tiple template-based and template-free domains (e.g. T0543, T0571).

Case 2: Recursive modeling improves ab initio modeling by starting from

a very weak, largely incorrect template that contains a few fragments

close to the native structure. For some very hard targets, only a number of

highly uncertain templates can be found; and these templates may only have par-

tially correct template conformations (e.g. just one or two secondary structure

elements). In this case, a template-free extension from the partially correct core

secondary element(s) may still improve the quality of modeling. Target T0616 (107

residue long) was a TBM/FM example, in which some analogous templates existed

but were not likely be found or used by any server predictor. Our server MULTI-

COM-REFINE found a partial template covering the last �80 residues (Fig. 4),

which at most had part of a helix matching the native structure. The recursive

modeling method initially built a model for the aligned regions from the template

[Fig. 5(a)], and then extended the unaligned N-terminal region using template-free

modeling [Fig. 5(b)]. As shown in Fig. 5, starting from the partial central helix, the

template-free modeling on the ¯rst 31 residues (i.e. unaligned 21 residues plus a short

extension) was able to extend the partially correct region to a structure closer to

the native structure. The model was the best CASP9 server model submitted for

this target.

Case 3: The recursive modeling procedure improves template-based

modeling by ¯xing uncertain terminal regions. In this case, a large portion of a

query protein can be aligned con¯dently to one or more partial templates, while

leaving some parts of the query unaligned (e.g. front/back tails, partially unfolded

internal helices/strands/loops). The recursive modeling models template-based

regions ¯rstly and then uses them as additional restraints for template-free modeling

to improve the modeling of unaligned/uncertain regions iteratively. The CASP9

target T0539 is a good example, where the whole target except for the �20

N-terminal residues can be aligned to a few templates (Fig. 6).

Using the conformation core generated from the template information as

restraints, the recursive modeling method in the MULTICOM-CONSTRUCT server

Fig. 4. Alignment between CASP9 target T0616 and a structure template (PDB code: 2CTO; chain A).
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correctly reconstructed the loop-helix-loop structure of the uncertain front region

and its interaction with the core as shown in Fig. 7. The GDT-TS score39 was

increased by 14% from 0.64 to 0.73. There were quite a few other similar CASP9

targets (e.g. T0568, T0574, T0592, T0593, T0596, T0597, T0632, and T0636) whose

Fig. 5. As example of recursive modeling on CASP target T0616. (a) a model generated solely by

template-based modeling (GDT-TS¼ 0.34); (b) a model integrating both template-based modeling (GDT-

TS ¼ 0.39); (c) the native experimental structure.

Fig. 6. Alignment between CASP9 target T0539 and a good homologous template (PDB code: 1VI8;

chain B). The ¯rst �20 N-terminal residues of the target that do not have alignment cannot be modeled

well using template-based modeling alone.
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uncertain regions could be improved by the recursive modeling procedure. However,

the improvement may not always be re°ected in the GDT-TS scores according to

CASP9 assessment because in CASP some uncertain regions are often removed

before assessment. Overall, according to our assessment, recursive modeling gener-

ally improves the quality of modeling in this situation.

The three typical cases above demonstrate that recursive modeling can readily

integrate template-based and template-free modeling to improve tertiary structure

prediction of both single- and multi-domain proteins. It can also be easily

implemented using existing or slightly modi¯ed alignment and model generation

tools. However, it is worth pointing out that recursive modeling may not realize its

best potential if region decomposition deviates too far away from the true bound-

aries between certain and uncertain regions. For instance, modeling one half of

an uncertain region (e.g. template-free/ab initio domain) using template-free

modeling and the other half by an incorrect template usually leads to a poor pre-

diction as evidenced by our predictions for target T0534. In this situation, the GDT-

TS score of the template-free region is often low (e.g. � 0.2). Nevertheless, the

alignment-based region decomposition is generally robust against some residue

shifts. A slightly more conservative region decomposition approach, that is to say

only classifying very con¯dent regions into certain regions in the beginning, seems

to work better.

(a) (b) (c)

Fig. 7. An example of applying recursive modeling to CASP9 target T0539 by the server MULTICOM-

CONSTRUCT. (a) Template-based modeling is used to model the aligned/certain part (green) of T0539
while leaving the unaligned/uncertain region (red) free; the GDT-TS score of the model is 0.64.

(b) Fragment assembly is used to model the uncertain region (red) while keeping template-based core

(green) ¯xed; the GDT-TS score of the model composed of both template-based and template-free com-

ponents is 0.73, 14% higher than the model in (a). (c) The superposition of the composed model (green þ
red) with the experimental structure (blue þ yellow), showing that the uncertain tail (i.e. loop-helix-loop)

is well packed with the template-based core in the model. Particularly the helix�helix interaction is

reproduced in the composed model, which may not be possible by using either template-based modeling or

template-free modeling independently.
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4. Conclusions

We have described a general recursive protein modeling approach which can e®ec-

tively integrate template-based and template-free modeling to improve protein

modeling quality as demonstrated by its successful performance in the CASP9

experiments. This approach can often decompose a large, complicated modeling

problem into several smaller and simpler modeling problems, which can be more

readily addressed by synergistically integrating template-based and template-free

modeling. Furthermore, the solutions to the smaller problems can be composed

together to solve a larger, more complex modeling problem. In general, this \divide

and conquer" strategy can improve both the quality and speed of protein structure

modeling. According to this strategy, it is not necessary to divide protein modeling

into two distinct approaches; instead, it can be viewed as a full spectrum of modeling

based on an arbitrary percentage of template-based or template-free modeling. In the

future, we plan to improve the modeling process by designing more robust methods

for the detection of certain and uncertain regions based on sequence alignments or

the local quality of a model. We also plan to implement more e®ective ways (e.g.

conformation ensemble-like approaches41) to use template information to guide

template-free modeling or to use template-free modeling to extend template-based

regions. We expect to test the new methods in both the rolling CASP experiment

(CASP ROLL) and the upcoming 10th CASP experiment (CASP10).
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