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Abstract. Protein domains are the structural and functional units of proteins. The ability to parse protein
chains into different domains is important for protein classification and for understanding protein structure,
function, and evolution. Here we use machine learning algorithms, in the form of recursive neural networks, to
develop a protein domain predictor called DOMpro. DOMpro predicts protein domains using a combination of
evolutionary information in the form of profiles, predicted secondary structure, and predicted relative solvent
accessibility. DOMpro is trained and tested on a curated dataset derived from the CATH database. DOMpro
correctly predicts the number of domains for 69% of the combined dataset of single and multi-domain
chains. DOMpro achieves a sensitivity of 76% and specificity of 85% with respect to the single-domain
proteins and sensitivity of 59% and specificity of 38% with respect to the two-domain proteins. DOMpro
also achieved a sensitivity and specificity of 71% and 71% respectively in the Critical Assessment of Fully
Automated Structure Prediction 4 (CAFASP-4) (Fisher et al., 1999; Saini and Fischer, 2005) and was ranked
among the top ab initio domain predictors. The DOMpro server, software, and dataset are available at
http://www.igb.uci.edu/servers/psss.html.
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1. Introduction

Domains are considered the structural and functional units of proteins. They can be
defined using multiple criteria, or combinations of criteria, including evolutionary con-
servation, discrete functionality, and the ability to fold independently (Holm and Sander,
1994). A domain can span an entire polypeptide chain or be a subunit of a polypep-
tide chain that can fold into a stable tertiary structure independently of any other
domain (Levitt and Chothia, 1976). While typical domains consist of a single contin-
uous polypeptide segment, some domains may be comprised of several discontinuous
segments.

The identification of domains is an important step for protein classification and for
the study and prediction of protein structure, function, and evolution. The topology
of secondary structure elements in a domain is used by human experts or automated
systems in structural classification databases such as FSSP-Dali Domain Dictionary
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(Holm and Sander, 1998a, b), SCOP (Murzin et al., 1995), and CATH (Orengo et al.,
2002). The prediction of protein tertiary structure, especially ab initio prediction, can
be improved by segmenting the protein using the putative domain boundaries and
predicting each domain independently (Chivian et al., 2003). However, the identification
of protein domains based on sequence alone remains a challenging problem.

A number of methods have been developed to identify protein domains start-
ing from their primary sequence. These methods can be roughly classified into
three categories: template based methods (Chivian et al., 2003; Heger and Holm,
2003; Marsden et al., 2002; von Ohsen et al., 2004; Zdobnov and Apweiler, 2001;
Gewehr et al., 2005), non-template based (ab initio) methods (Bryson et al., 2005;
George and Heringa, 2002; Lexa and Valle, 2003; Linding et al., 2003; Liu and
Rost, 2004; Nagarajan and Yona, 2004; Wheelan et al., 2000), and meta domain
prediction methods (Saini and Fischer, 2005). Some template-based methods use
a sequence alignment approach where domains are identified by aligning the tar-
get sequence against sequences in a domain classification database (Marchler-Bauer
et al., 2003). Other methods use alignments of secondary structures (Marchler-Bauer
et al., 2002). In these methods, domains are assigned by aligning the predicted secondary
structure of a target sequence against the secondary structure of chains in CATH, which
have known domain boundaries.

Some ab initio methods, such as tertiary structure folding approaches, average sev-
eral hundred predictions obtained from coarse ab initio simulations of protein folding to
assign domain boundaries to a given sequence (George and Heringa, 2002). One draw-
back of these approaches is that they are computationally intensive. Other ab initio use
a statistical approach, such as Domain Guess by Size Wheelan et al., 2000), to predict
the likelihood of domain boundaries within a given sequence based on the distributions
of chain and domain lengths.

The ab initio prediction of domains using machine learning techniques is aided by
the availability of large, high quality, domain classification databases such as CATH,
SCOP and FSSP-Dali Domain Dictionary. Two recently published algorithms attempt
to predict domain boundaries using neural networks (Nagarajan and Yona, 2004; Liu
and Rost, 2004). The networks used by Nagarajan and Yona (2004) incorporate the
position specific physio-chemical properties of amino acid and predicted secondary
structure. Liu and Rost (2004) use neural networks with amino acid composition, po-
sitional evolutionary conservation, as well as predicted secondary structure and solvent
accessibility.

Here we describe DOMpro, an ab initio machine learning approach for predicting
domains, which uses profiles along with predicted secondary structure and solvent
accessibility in a 1D-recursive neural network (1D-RNN). These networks are also
used for the prediction of secondary structure and solvent accessibility (Pollastri et al.,
2001, 2002) in the SCRATCH suite of servers (Baldi and Pollastri, 2003; Cheng
et al., 2005a). Unlike previous neural network-based approaches (Liu and Rost, 2004;
Nagarajan and Yona, 2004), the direct use of profiles in DOMpro is based on the
assumption that sequence motifs and their level of conservation in the boundary regions
are different from those found in the rest of the protein. The final assignment of protein
domains is the result of post-processing and statistical inference on the output of the
1D-RNN.
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2. Methods

2.1. Data

DOMpro is trained and tested on a curated dataset derived from the annotated domains in
the CATH domain database, version 2.5.1. Because the CATH database contains only the
sequences of domain regions, sequences from the Protein Data Bank (PDB) (Berman
et al., 2000) must be incorporated to reconstruct entire chains. Once the chains are
reconstructed, short sequences (<40 residues) are filtered out.

UniqueProt (Mika and Rost, 2003) is then used to reduce sequence redundancy in
the dataset by ensuring that no pair of sequences have a HSSP value greater than 5.
The HSSP value between two sequences is a measure of their similarity and takes into
account both sequence identity and sequence length. A HSSP value of 5 corresponds
roughly to a sequence identity of 25% in a global alignment of length 250.

Finally, the secondary structure and relative solvent accessibility are predicted for each
chain using SSpro and ACCpro (Baldi and Pollastri, 2003; Pollastri et al., 2001, 2002).
Using predicted secondary structure and solvent accessibility values rather than the true
values, which can be easily obtained using the DSSP program (Kabsch and Sander,
1983), gives us a more realistic and objective evaluation since the actual secondary
structure and solvent accessibility are not known during the prediction phase. To leverage
evolutionary information, PSI-BLAST (Altschul et al., 1997) is used to generate profiles
by aligning all chains against the Non-Redundant (NR) database, as in other methods
(Jones 1999; Przybylski and Rost, 2002; Pollastri et al., 2001).

After redundancy reduction, our curated dataset contained 354 multi-domain chains
and 963 single-domain chains. The ratio of single to multi-domain chains reflects the
skewed distribution of single-domain chains in the PDB. Figure 1 shows the frequency
of single and multi-domain chains in the redundancy-reduced dataset. Figure 2 shows
the distribution of chain lengths among single and multi-domain chains.

Because the recursive neural networks are trained to recognize domain boundaries,
only multi-domain proteins are used during the training process. During the training
and testing of the neural networks on multi-domain proteins, ten fold cross-validation
is used. Additional testing is performed on single-domain proteins using models trained
with multi-domain proteins.

2.2. The inputs and outputs of the one dimensional recursive neural network

The problem of predicting domain boundaries can be viewed as a binary classification
problem for each residue along a one-dimensional protein chain. Each residue is labeled
as being either a domain boundary residue or not.

Specifically, the target class for each residue is defined as follows. Following the con-
ventions used in prior domain boundary prediction papers (Liu and Rost, 2004; Marsden
et al., 2002), residues within 20 amino acids of a domain boundary are considered
domain boundary residues and all other residues are considered non-boundary residues.
A variety of machine learning methods can be applied to this classification problem,
such as probabilistic graphical models, kernel methods, and neural networks. DOMpro
employs 1-D recursive neural networks (1D-RNNs) (Baldi and Pollastri, 2003),
which have been applied successfully in the prediction of secondary structure, solvent
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Figure 1. Frequency of single and multi-domain chains in the redundancy-reduced dataset.
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Figure 2. Distributions of the lengths of single and multi-domain chains in the redundancy-reduced dataset.

accessibility, and disordered regions (Cheng et al., 2005b; Pollastri et al., 2001, 2002).
For each chain, the input is the array I, where the length of I is equal to the number of
residues in the chain. Each element Ii is a vector with 25 components, which encodes
the profile as well as secondary structure and relative solvent accessibility at position
i. Twenty components of the vector Ii are real numbers corresponding to the amino
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acid profile probabilities. The other five components are binary: three correspond to
the predicted secondary structure class of the residue (Helix, Strand, or Coil) and two
correspond to the predicted relative solvent accessibility of the residue (i.e., under or
over 25% exposed).

The training target for each chain is the 1-D binary array T, where each Ti equals 1 or 0
depending on whether or not the residue at position i is within a boundary region. Neural
networks (and most other machine learning methods) can be trained on the dataset to
learn a mapping from the input array I onto an output array O, where Oi is the predicted
probability that the residue at position i is within a domain boundary region. The goal
is to make the output O as close as possible to the target T.

2.3. Post-processing of the 1D-RNN output

The raw output from the 1D-RNN is quite noisy (see Figure 3). DOMpro uses smoothing
to help correct for the random noise that is the result of false positive hits. The smoothing
is accomplished by averaging over a window of length three around each position.
Figure 3 shows how this smoothing technique helps to reduce the noise found in the
raw output of the 1D-RNN. After smoothing, a domain state (boundary/not boundary)
is assigned to each residue by thresholding the network’s output at 0.5.

While smoothing the neural network’s output helps correct for random spikes, it
does not necessarily create the long, continuous segments of boundary residues that are
required for domain assignment. Therefore, further inference on the output is required.

DOMpro infers the domain boundary regions from the residues predicted as domain
boundaries by pattern matching on the discretized output. Any section of the output
that matches the regular expression pattern ((B+N{0,m}+B+) is considered a domain
boundary region, where B is a predicted boundary residue, N is a predicted non-boundary
residue and m is the maximum separation between two boundary residues that should
be merged into one region.

Once DOMpro has inferred all possible domain boundary regions, it needs to identify
false positive domain boundary regions. DOMpro considers the boundary region’s length
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Figure 3. Example of smoothing applied to the raw output from the 1D-RNN.
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Figure 4. Histograms of length distributions for false positive and true positive boundary regions.

a measure of its signal strength. Figure 4 shows that there is a clear difference between
the length distributions of true domain boundary regions and false domain boundary
regions. Based on these statistics, domain boundary regions shorter than three residues
are considered false positive hits and are ignored. The target sequence is then cut into
domain segments at the middle residue of each boundary region. A target sequence with
no predicted domain boundaries is classified as a single-domain chain. The final step of
DOMpro is to assign domain numbers to each predicted domain segment. Our method
simply assigns each domain segment to a separate domain, ignoring at this time the
relatively rare problem of non-contiguous domains.

3. Results

The evaluation and comparison of domain predictors is complicated by the existence of
several domain datasets/databases that sometimes conflict with each other (Liu and Rost,
2004). Thus, the performance of a predictor on a dataset other than its training dataset is
limited by the percentage of agreement between the training and testing datasets. With
this caveat in mind, we observe that DOMpro correctly predicts the number of domains
for 69% of the combined dataset of single and multi-domain proteins. DOMpro achieves
a sensitivity of 76% and specificity of 85% with respect to the single-domain proteins
and sensitivity of 59% and specificity of 38% with respect to the two-domain proteins.

The precise prediction of domain boundaries for multi-domain proteins is more
difficult than the prediction of the number of domains (domain number). DOMpro is
able to correctly predict the domain number and boundary for 25% of the two-domain
proteins in our dataset derived from CATH. Additionally, DOMpro is able to correctly
predict both the domain number and domain boundary location for 20% of the multi-
domain chains. For the evaluation of multi-domain chains, we consider that a domain
boundary has been correctly identified if the predicted domain boundary is within 20
residues of the true domain boundary as annotated in the CATH database. This definition
is consistent with previous work (Marsden et al., 2002).

DOMpro was independently evaluated along with 12 other predictors in the
Critical Assessment of Fully Automated Structure Prediction 4 (CAFASP-4)
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Table 1. CAFASP-4 evaluation results

Predictor 1-D Sen. 1-D Spec. 2-D Sen. 2-D Spec. All Sen. All Spec.

DOMpro 0.85 0.76 0.35 0.50 0.71 0.71

ADDA (Heger and Holm, 2003)†‡ 0.85 0.73 0.18 0.33 0.66 0.67

Armadillo† 0.10 1.00 0.24 0.18 0.14 0.31

Biozon (Nagarajan and Yona, 2004)† 0.10 1.00 0.35 0.19 0.17 0.29

Dompred-Domssea (Marsden et al.,
2002)‡

0.80 0.75 0.29 0.63 0.66 0.73

Dompred-DPS (Bryson et al., 2005)† 0.68 0.78 0.47 0.50 0.62 0.69

Dopro (von Ohsen et al., 2004)‡ 0.85 0.88 0.53 0.64 0.76 0.81

Globplot (Linding et al., 2003)† 0.83 0.71 0.18 0.60 0.64 0.70

InterProScan (Zdobnov and
Apweiler, 2001)‡

0.93 0.75 0.24 0.67 0.72 0.74

Mateo (Lexa and Valle, 2003)† 0.51 0.78 0.12 0.15 0.40 0.58

SSEP-Domain (Gewehr et al., 2005)‡ 0.93 0.84 0.47 0.73 0.79 0.82

Robetta-Ginzu (Chivian et al., 2003)‡ 0.80 0.92 0.53 0.69 0.72 0.86

Robetta-Rosettadom‡ 0.83 0.94 0.71 0.75 0.79 0.88

† had lower sensitivity and specificity averaged over all targets compared to DOMpro.
‡ template based methods.
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(Fischer et al., 1999; Saini and Fischer, 2005). The results, kindly provided by Dr.
Saini, are available at http://cafasp4.bioinformatics.buffalo.edu/dp/update.html. The
evaluation set consisted of 41 single-domain CASP6 targets and 17 two-domain
CASP6 targets (58 targets in total). Since this evaluation set contains only com-
parative modeling and fold recognition targets (no new fold targets), predictors
based on templates have an advantage in this evaluation. DOMpro achieved a
higher sensitivity and specificity than one method that uses homologous infor-
mation and all other ab initio predictors averaged over all of the targets (See
Table I and Figure 5). However, the performance of the top three ab initio predictors
(DOMpro, Globplot, and Dompred-DPS) is close. The specificity and sensitivity
of DOMpro is 4–5% higher than the template-based method ADDA, similar to
Dompred-Domssea, and lower than other template-based methods such as Dopro,
SSEP-Domain, and Robetta-Ginzu.

4. Conclusions

We have created DOMpro, an ab initio predictor of protein domains using a recursive
neural network that leverages evolutionary information in the form of profiles and
predicted secondary structure and relative solvent accessibility. The raw output of the
1D-RNN in DOMpro goes through a post-processing procedure to produce the final
domain segmentation and assignment. In the CAFASP-4 evaluation, DOMpro was
ranked among the top ab initio domain predictors.

Despite recent advances, domain prediction remains a challenge. A 25% accuracy
on the prediction of two-domain proteins is encouraging but not sufficient for most
applications and clearly there is room for improvement. We are currently adding a
module to DOMpro which would incorporate known domain assignments for proteins
that are homologous to structures in the PDB and CATH databases. We are also training
ensembles of predictors, although preliminary experiments so far have not lead to
significant improvements. In addition, we are focusing on the prediction/classification
of discontinuous domains. To overcome the current limitations of DOMpro and the
naive assignment of domain numbers, we are experimenting with the use of predicted
contact maps, as well as domain length statistics, in the assignment of domain boundaries
and the creation of domains consisting of multiple non-adjacent domain segments. The
contact maps are predicted using 2D-RNNs (Baldi and Pollastri, 2003;. Pollastri and
Baldi, 2002). The basic idea is that domains should be associated with a relatively higher
density of contacts. Following this logic, two discontinuous segments having the proper
length statistics and a sufficient number of inter-segment residue-residue contacts would
be predicted to be in the same domain.
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