
A Predictive Model of Gene Expression
Using a Deep Learning Framework

Rui Xie ∗, Andrew Quitadamo †, Jianlin Cheng ∗ and Xinghua Shi †
∗ Department of Computer Science, University of Missouri at Columbia
Columbia, MO, 65201, USA. Email: {rxpkd, chengji}@missouri.edu

† Department of Bioinformatics and Genomics, University of North Carolina at Charlotte
Charlotte, NC 28223, USA. Email: {aquitada, x.shi}@uncc.edu

Abstract—With an unprecedented amount of data available, it
is important to explore new methods for developing predictive
models to mine this data for scientific discoveries. In this study, we
propose a deep learning regression model based on MultiLayer
Perceptron and Stacked Denoising Auto-encoder (MLP-SAE) to
predict gene expression from genotypes of genetic variation.
Specifically, we use a stacked denoising auto-encoder to train
our regression model in order to extract useful features, and
utilize the multilayer perceptron for backpropagation. We further
improve our model by adding a dropout technique to prevent
overfitting. Our results on a real genomic dataset show that
our MLP-SAE model with dropout outperform Lasso, Random
Forests, and MLP-SAE without dropout. Our study provides a
new application of deep learning in mining genomics data, and
demonstrates that deep learning has great potentials in building
predictive models to help understand biological systems.

I. INTRODUCTION

Individuals of a species harbor genetic differences that can
lead to phenotypic differences including different levels of
gene expression. Genetic variation also provides an important
repertoire for natural selection. There are many different types
of genetic variation including single nucleotide polymorphisms
(SNPs) which are one base pair substitutions, small insertions
or deletions (indels), and structural variants (SVs) which can
be as large as whole chromosomes. The biological community
has generated genotypes of genetic variation in populations of
different organisms. Two genetic variation databases at Na-
tional Center for Biotechnology Information (NCBI), namely
dbSNP [1] and dbVar [2], respectively store short genetic
variation (SNPs and indels), and larger structural variation of
various organisms. Studies have shown that genetic variants
are associated with phenotypic traits ranging from growth to
disease, but also molecular traits such as gene expression.

Expression quantitative trait locus (eQTL) mapping [3],
[4] has been widely used to study the influence of genetic
variants on gene expression in yeast [5], [6] and many other
organisms. Genomic data is typically high dimensional, where
the number of genetic variants or genes is much larger than the
number of samples. The high dimensionality poses significant
challenges for eQTL mapping due to the curse of dimension-
ality. Traditional eQTL frameworks use linear regression and
correlation analysis to assess each pair of genetic variant and
gene expression, and apply multi-test correction afterwards.
Recently, machine learning methods emerging as powerful
alternatives for performing eQTL anlaysis. Studies have shown

that modern methods like Random Forests outperform legacy
eQTL methods [7]. The model of Random Forests [8], [9], [10]
is an ensemble learning method for classification, regression
and other tasks. By constructing a multitude of decision trees
at training time, Random Forests are capable of performing
classification or mean prediction (regression) of the individual
trees. In addition, Random Forests correct for decision trees’
habit of overfitting to training sets[11].

Another set of approaches stem from Lasso [12] and multi-
task Lasso [13], [14], [15].Lasso is a shrinkage and selection
method for linear regression [16]. It minimizes the usual sum
of squared errors, with a bound on the sum of the absolute
values of the coefficients. Lasso is useful in some situations
because of its tendency to prefer solutions with fewer param-
eter values. Therefore, Lasso simultaneously produces both
an accurate and sparse model, which makes it an appropriate
method for eQTL analysis.

In addition to providing improved eQTL mapping, these
machine learning based models have potentials for building a
predictive model of inferring gene expression from genetic
variant genotypes. With this in mind, we plan to explore
emerging methods in machine learning to address this biolog-
ical question of predicting gene expression from genotypes.

Since the seminal work in [17], deep learning methods are
breaking records in the areas of speech, signal, image, video
and text mining and recognition by significantly improving
state of the art classification accuracy [18]. With the deluge of
big data in genomics, deep learning has the potential to model
the hierarchical representations of the biological mechanisms
encoded in rich datasets. Recently, we have witnessed a
growing interest in applying deep learning models to genomic
studies. For example, a deep neural network was developed to
predict splicing patterns in individual tissues and differences in
splicing patterns across tissues, inferred from mouse RNASeq
data [19]. Other studies have used deep learning models
to predict protein contact map [20], protein residue-residue
contacts [21], [22], protein disorderedness [23], [24], protein
secondary structures [25], [26], [27], protein properties [28],
protein fold recognition [29], the functional effect of non-
coding variants [30], the pathogenicity of variants [31], and
the regulatory code of genomes [32], [33].

However, there is limited research in applying deep learning
to predict a quantitative trait from genetic variation. In this

paper we develop a deep learning model based on MultiLayer
Perceptron and Stacked Denoising Auto-encoder (MLP-SAE)
to build a predictive model of gene expression from genotypes.
Instead of using traditional neural networks, we propose a
new method to use a a local unsupervised criterion to pre-
train each layer in turn, and produce a useful higher-level
representation from the lower-level representation output by
the previous layer with stacked denoising auto-encoder. We
employ the auto-encoder as hidden layers in a neural network
for backpropagation. We further improve our model by adding
a dropout technique to prevent overfitting. We evaluate the
performance of our model, both with and without dropout,
and compare it to Lasso and Random Forests. Our comparison
analysis of these models suggests that our MLP-SAE model
with dropout performs the best. We then apply this MLP-SAE
model with dropout to a yeast data set and build a model to
predict yeast gene expression from its genetic variants. Our
study provides a software package that allows users to train
the model with their own data and make predictions of various
quantitative traits in not only yeast but also other organisms.

The rest of the paper is organized as follows. In the II, we
formulate the problem and introduce the deep learning method
based on MultiLayer Perceptron and Stacked Denoising Auto-
Encoder. In III, we present our results on a real yeast genomic
data and evaluate the performance of our model by comparing
our method with two other methods. We then conclude the
paper and point to future directions in Section IV.

II. METHODS

To build a model for predicting gene expression from
genotypes, we introduce a model based on the Multilayer Per-
ceptron (MLP) and Stacked Denoising Auto-Encoder (DAE)
as illustrated in Figure 1. The input data is SNP genotypes
(features) which are fed into the model after pre-processing.
The output layer is based on a regression model with the
quantitatively predicted gene expression values as the output.
The auto-encoder1 and auto-encoder2 serve as hidden layers
for the prediction model and are trained using back propaga-
tion. The model is trained with given features and optimized
through a backpropagation algorithm. The first training step is
based on training the auto encoder with a stochastic gradient
descent algorithm and the second training step utilizes the two
auto encoders as two hidden layers and training them with
MLP. A backpropagation algorithm is applied for optimization.
After training, we use cross validation to select the optimal
model and evaluate its performance on an independent data
set. We then compare the results of our model with those
from different methods including Lasso and Random Forests.
Our model is implemented using pylearn2[34].

A. Data and Pre-processing
To evaluate and demonstrate the application of our model,

we used a real genomic dataset on yeast widely used in the
community. The genotypes and gene expression quantifica-
tions are measured using microarrays for 112 yeast samples
[35]. We represent genotypes and gene expressions as input
and output matrices for modeling. We extract the genotypes

Fig. 1. An Illustration of Our Model for MLP and DAE.

of 2,956 SNPs and gene expression profiles of 7,085 genes
in the 112 samples. We remove genes with 100% missing
values in the expression matrix that result in 6,611 genes
for modeling. To ensure model performance, we pre-process
genotype data using the Scikit-Learn toolkit[36] including
Imputer and MinMaxScaler[37]. These tools handle missing
genotype data to minimize their negative effect during training.
They also scale and translate each feature individually such
that the data is in the given range on the training set, i.e.
between zero and one.
B. Deep Learning Regression Model

Since we handle the quantitative output of continuous values
of gene expressions, we use a regression model. The linear
regression model of the final layer of our model can be
represented as Equation 1:

f(x) = ωTx+ b (1)
where x represents the input or features. The w matrix is
the weight and b is the bias, and are trained to minimize the
objective function. The model first processes the input data and
then performs pre-training. When it reaches the output layer,
the model is finetuned with backpropagation. The algorithm
stops when it reaches convergence.
C. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a feedfoward network
that tries to map input onto output. An MLP has multiple
layers of nodes where each layer is fully connected with the
next one. Each node of the hidden layers is operated with
a nonlinear activation function. A backpropagation algorithm
is used to train the network[38]. Now let’s explain activation
functions for training and learning through backpropagation.

1) Activation Function: Two activation functions are used
for training. With a range from -1 to 1, a hyperbolic tangent
is used as described in Equation 2.

y
(
vi
)

= tanh
(
vi
)

(2)
Within the range from 0 to 1, a logistic function is used as

seen in Equation 3.
y
(
vi
)

= (1 + e−vi)−1 (3)
Here yi is the output of the ith node (neuron) and vi is the

weighted sum of the input synapses.
2) Learning Through Backpropagation: After the data of

each neuron is processed, an MLP network is learned through
changing connection weights. With the amount of error in
the output compared with the expected result, we are able
to perform supervised learning.

Here is a simple example. We calculate error e in node j
in the nth row of the training data by Equation 4.

errorj
(
n
)

= dj
(
n
)
− yj

(
n
)

(4)

where y is the target value and d is the expected value.
We then make corrections based on those corrections that
minimize errors on the entire output, given by Equation 5.

ε
(
n
)

=
1

2

∑
i

error2j
(
n
)

(5)

After gradient descent, the needed change for each weight
can be represented as in Equation 6.

∆ωji
(
n
)

= −η
∂ε
(
n
)

∂υj
(
n
)yi(n) (6)

where the output of the previous neuron is denoted as y and
the learning rate is represented by η.

With a variety of induced local fields, the derivative can be
calculated. The derivative for an output node is represented as
in Equation 7.

−
∂ε
(
n
)

∂υj
(
n
) = errorj

(
n
)
φ′(υj

(
n
)
) (7)

where φ′ is the derivative of the activation function de-
scribed above that does not vary. The analysis is more difficult
for the change in weights to a hidden node, but it can be shown
that the relevant derivative is represented by Equation 8.

−
∂ε
(
n
)

∂υj
(
n
) = φ′(υj

(
n
)
)
∑
k

−
∂ε
(
n
)

∂υk
(
n
)ωkj(n) (8)

This relative derivative depends on the change in node
weights, which is represented in the output layer. Therefore,
in order to change the hidden layer weights, we must first
change the output layer weights according to the derivative
of the activation function. This analysis thus represents a
backpropagation of the activation function.
D. Stacked Denoising Auto-encoder

An Auto-encoder [39] is a type of neural network that helps
learning efficient codings. The main goal of an auto-encoder
is to learn a compressed, distributed representation (encoding)
for a set of data, typically for the purpose of dimensionality
reduction. For each autoencoder, the network tries to reproduce
the provided input data by using supervised learning, thus the
backpropagation method is a suitable method in the supervised
training of multi-layer networks[40].

1) Pre-training: Similar to the Multilayer Perceptron
(MLP), a simple form of an autoencoder is a feedforward
and non-recurrent neural net [41], with an input layer, an
output layer and one or more hidden layers connecting them.
Although an MLP is similar to a neural network, there is
a difference between an MLP and an autoencoder. For an
autoencoder, the output layer has the same number of nodes as
the input layer. Instead of training the model to predict a target
value y given input x, an autoencoder is trained to reconstruct
its own input x through minimizing its objective function. The
training algorithm can be summarized as follows:
• For each input x, do a feed-forward pass to compute the

values of all nodes in hidden layers after activation, and
obtain an output x̂ at the output layer.

• Measure the deviation of x̂ from input x (a common
method is to use a squared error)

• Backpropagate the error through the network and per-
form weight updates (a common method is a stochastic
gradient descent algorithm).

In conclusion, the activations of the final hidden layer can
be regarded as a compressed representation of the input if the
hidden layers have fewer nodes than the input/output layers.
In addition, activation functions that are commonly used in
MLPs can be used in autoencoders. Moreover, the optimal
solution to an auto-encoder is strongly related to principal
component analysis (PCA) [42] if linear activations or only
a single sigmoid hidden layer are used[43]. An autoencoder
can potentially learn the identity function and become useless,
when the hidden layers are larger than the input layer. How-
ever, such autoencoders might still learn useful features [44].
As shown in Figure 2, input nodes are corrupted via process
q. Then the encoder tries to map the corrupted input to Y via
process f . Afterwards, Y can be reconstructed via process gθ,
resulting reconstructed Z. Finally, the reconstruction error is
measured by Lθ(X,Z) as described next.

2) Corrupted Level: It is common to add noises to a model,
so that the data is shuffled and a denoising auto-encoder can
learn about that data by attempting to reconstruct it. The
main goal of the model then is to tease out data features
from noises. During training, a model is generated and an
objective function is evaluated. Common objective functions
include squared errors that measure the distance between that
model and the benchmark. The objective function can be
represented by L(X,Z) or LH(X,Z) between the original
X and a reconstruction Z, as in Equation 9 or Equation 10.

L
(
X,Z

)
= ||X − Z||2 (9)

LH
(
X,Z

)
= −

d∑
k

[xklogzk−
(
1−xk

)
log(1− logzk)] (10)

Equation 9 denotes the squared error objective for a real
value X while Equation 10 represents the cross-entropy objec-
tive for a binary X[45]. Both methods attempt to minimize the
loss function by resampling the shuffled input and reconstruct-
ing data, until it finds the input which brings its model closest
to the truth. Figure 2 illustrates a corruption model, where the
raw input X is corrupted via process q. Black nodes denote
the corrupted input. Then the corrupted input is changed to Y
via process fθ. After that, Y tries to reconstruct the raw input
via process gθ, that results in the reconstructed Z. We then
backpropagate via the reconstruction error LH(X,Z).

With randomly initialized parameters, a traditional MLP
does not perform well by directly optimizing the supervised
objective of interest through algorithms such as gradient de-
scent. A more efficient way to achieve a better performance is
to use a a local unsupervised criterion to pre-train each layer in
turn, and produce a useful higher-level representation from the
lower-level representation output by the previous layer. Thus,
the gradient descent on the supervised objective leads to much
better solutions in terms of generalization performance.[45]
E. Improving the Model by Applying Dropout

Although an MLP-SAE can produce comparable results
when compared with other methods, we need to better control

Fig. 2. An Illustration of an Auto-encoder Corruption Model.

overfitting in order to improve the performance. One strategy is
by applying dropout, which prevents overfitting and provides a
way of approximately combining exponentially many different
neural network architectures efficiently [46]. The term dropout
refers to drop out units (hidden and visible) in a neural
network. To drop out a unit is to temporarily remove it
from the network, along with all its incoming and outgoing
connections. The choice of which units to drop is random. In
the simplest case, each unit is retained with a probability p
independent of other units, where p can be chosen using a
validation set or simply set at 0.5, which seems to be close to
optimal for a wide range of networks and tasks. For the input
units, however, the optimal probability of retention is usually
closer to 1 than to 0.5.

Hence, an intuitive goal of dropout regularization is to
approximate the following concept: (1) Ignore units and their
associated weights by a probability p for a particular training
sample, and train with back propagation; (2) Repeat (ignoring
any other random set of units and then train) and train training
samples; (3) Average the weights across all these modified
structures when doing predictions on new samples. In this
study, we explore the multilayer perceptron combined with
a stacked denoising autoencoder, with and without dropout to
evaluate their performance.

III. RESULTS

After establishing our model, we compare the multilayer
perceptron with a stacked denoising autoencoder (MLP-SAE),
with and without dropout, with other methods including Lasso
and Random Forests, to evaluate their performance on a real
yeast dataset. In our experimental setup, we split the dataset
into three datasets, with a training dataset and validation
dataset to be used in training phase, and an independent test
dataset which does not participate in any training to avoid
overfitting. Additionally, we take part of the training dataset as
a validation dataset, which does not participate in training, and
use five-fold cross validation on the training dataset to obtain
our optimal model. Finally, we apply the trained model with
learned parameters to an independent test dataset to obtain and
compare the predictive results. To compare the performance

of different models, we used mean square errors (MSE) for
model evaluation defined in Equation 11.

MSE =
1

n

n∑
i

(zi − yi)2 (11)

where zi is the predicted output and yi is the original output,
with i ∈ [1,n] (n is the number of samples).

Results suggest that our MLP-SAE model, with an optimal
learning rate trained using cross-validation, outperform other
classical methods like Lasso and Random Forests. The MLP-
SAE model can be further improved using dropout. Since our
model based on deep learning can easily incorporate evidence
from other datasets such as epigenetic markers and functional
elements, and achieve potentially scalable results on larger
datasets, we argue that our study provides a new framework
for building predictive models on genomic data.

A. Lasso and Random Forests
The first method for comparison is Lasso [12], which is

a linear model with l1 norm as regularizer. The objective
function is to minimize the least-square penalty with an l1
norm, as described in Equation 12.

min
1

2n
||Xw − y||22 + α||w||1 (12)

where α is a constant and ||w||1 is the l1-norm of the
parameter vector. The sparsity of the model is controlled by
α which can be learned through training. If α is large, the
model is sparser and more coefficients will be shrunk to zero.
Those features with non-zero coefficients will be selected as
contributing features of the model. After cross validation, we
use the optimal model trained to make predictions on our test
dataset. Table I shows the MSEs of results by Lasso with
different values of α after 5-fold cross validation.

TABLE I
MSE OF THE RESULTS FROM LASSO WITH VARIED α.

α MSE
0.05 0.3516
0.1 0.3182
0.2 0.3002
0.3 0.2951
0.4 0.2930
0.5 0.2918
0.6 0.2914
0.7 0.2912
0.8 0.2912

The second method we compare with is Random Forests.
Table II shows the MSE values of the results obtained from
Random Forests after cross validation, with different number
of estimators (i.e. trees). As expected, MSE values decrease
and thus the model performs better as the number of estimators
increase with the cost of increased computing resources.
B. MLP-SAE

We apply our model of Multilayer Perceptron with Stacked
Denoising Auto-encoder (MLP-SAE) on the same dataset.
Table III illustrates the MSE values of the results with different
learning rates. According to cross validation, we select our
optimal model with a learning rate of 0.1 on the yeast data.
With this setting, our MLP-SAE model outperforms Lasso and
Random Forest models.

TABLE II
MSE OF RESULTS FROM RANDOM FORESTS WITH VARIED NO. OF TREES.

Number of Estimators MSE
10 0.3221
20 0.3127
30 0.3080
40 0.3001
50 0.2989
60 0.3003
70 0.2986
100 0.3003
150 0.2974
200 0.2967

TABLE III
MSE OF THE RESULTS ON MLP-SAE WITH VARIED LEARNING RATES.

Learning Rate MSE
0.1 0.289001373
0.01 0.290938859
0.001 0.289527237
0.0001 0.290783006
0.00001 0.29175354

C. MLP-SAE with Dropout
Although the MLP-SAE model outperform other meth-

ods, we still need to better control overfitting to further
improve its performance. We implement a MLP-SAE model
with dropout[46] to handle overfitting. Our results show that
dropout can produce better results on the same data set
compared with MLP-SAE without dropout. The average MSE
of MLP-SAE with Dropout is 0.3082, while that of MLP-SAE
without dropout is 0.3093.

Fig. 3. Comparison between True and Estimated Gene Expression
Finally, we make predictions on the yeast data using a

trained MLP-SAE model with dropout. Figure 3 visualizes
true and our model estimated gene expression quantifications.
Figure 4 zooms into a partial picture of the gene expression
profiles that can be well predicted by our model. We observe
that estimated values aligned well with true data. Although
the true and estimated values might not be exactly the same
for some genes, our model captures similar peaks in the data
which suggests that the estimated gene expression quantifi-
cations encode similar up-regulated and down-regulated trend
of gene expression, using only SNP genotypes as explanatory
variables. We believe that our model can be further improved
to recapitulate true gene expression signals by including more

feature types (e.g. regulatory elements and pathways) and
environmental conditions (e.g. media and temperature).

Fig. 4. Comparison between True and Estimated Gene Expression
To demonstrate that our model is scalable, we measure the

training and prediction time usage of our model for different
deep learning architecture as described in TableIV. The mea-
surement is done on a computer with 7.8 GiB memory, Intel
Core i7-2600 CPU 3.40GHz processor, Gallium 0.4 on AMD
CEDAR graphics, 64-bit OS type and 445.5 GB disk. We can
see that the time for prediction is far less than the training
time. With a well trained model in hand, we believe that our
model can handle big datasets with a large number of features
and labels.

TABLE IV
TRAINING AND PREDICTION TIME COST FOR DIFFERENT

CONFIGURATIONS.

Configuration Training(s) Prediction(s)
1500, 750 1683.24 4.65
2000, 1000 2350.67 6.13
3000, 1500 4045.95 7.782
4000. 2000 5884.088 10.99165

IV. CONCLUSION
In conclusion, we provide a new deep learning model, based

on the Multilayer Perceptron with Stacked Denoising Auto-
encoder (MLP-SAE) with dropout, that can be deployed to
predict quantitative traits from genotype data. We use a stacked
denoising auto-encoder to train our regression model in order
to extract useful features, and then utilize the multilayer per-
ceptron for backpropagation. Applying the MLP-SAE model
to a well-established yeast dataset [35], we show that this
model is well posed to predict gene expression values from
SNP genotypes. We compare the MLP-SAE model with and
without dropout, to other classical methods including Lasso
and Random Forest. The comparison shows that MLP-SAE
with dropout improves the performance of the MLP-SAE
model and outperforms other models.

In this study, we demonstrate our method in a scenario
where gene expression values are predicted from SNP geno-
types, which implies the contribution of germline mutations to
gene expression. Our model is built upon a flexible platform
that is able to include other data types to further improve the
model by including epigenetic, metabolic, and environmen-
tal factors. For example, protein quantifications [47], [48],
metabolite screening [49], [50] and chromatin accessibility
data [51], [52] are available for yeast. All these data can be
directly incorporated and integrated in our model to predict
a quantitative trait of interest, not limited to gene expression
(e.g. growth rate).

Our study indicates that deep learning has great potential in
solving predictive problems in biological systems. There are
other deep learning architectures such as Restricted Boltzmann
Machine [53] and the Recurrent Neural Network [54], which
can be adopted to solve the quantitative trait prediction prob-
lem in this study. We anticipate vast room for improvement
when more of the available data is used, and when a more
detailed exploration of these architectures is performed.

ACKNOWLEDGMENT
This work is supported in part by US NIH grant

(R01GM093123) and NSF grant (DBI1149224) to JX, and
NSF grants (DGE-1523154 and IIS-1502172) to XS.

REFERENCES

[1] dbsnp: Database for short genetic variations.
http://www.ncbi.nlm.nih.gov/snp/.

[2] dbvar: Database of genomic structural variation.
http://www.ncbi.nlm.nih.gov/dbvar.

[3] Nica AC, Dermitzakis ET. Expression quantitative trait loci: present
and future. Philos Trans R Soc Lond B Biol Sci., 368(1620):20120362,
2013.

[4] Tian L, et al. Methods for population based eQTL Analysis in human
genetics. Tsinghua Science and Technology, 19(6):624-634, 2014.

[5] Brem RB, et al. Genetic Dissection of Transcriptional Regulation in
Budding Yeast. Science, 296(5568):752-755, 2002.

[6] Brem RB, et al. Genetic interactions between polymorphisms that affect
gene expression in yeast. 436, 296(5568):701703, 2005.

[7] Michaelson JJ, et al. Data-driven assessment of eqtl mapping methods.
BMC Genomics., 11:502, 2010.

[8] Breiman L. Random forests. Machine learning, 45(1):5–32, 2001.
[9] Breiman L, et al. Arcing classifier (with discussion and a rejoinder by

the author). The annals of statistics, 26(3):801–849, 1998.
[10] Geurts P, et al. Extremely randomized trees. Machine learning, 63(1):3–

42, 2006.
[11] Hastie T, et al. The Elements of Statistical Learning. Springer Series in

Statistics. 2001.
[12] Tibshirani R. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society, Series B, 58(1):267–288, 1996.
[13] Lee S, Xing EP. Leveraging input and output structures for joint mapping

of epistatic and marginal eqtls. Bioinformatics, 28(12):i137–i146, 2012.
[14] Chen X, et al. A two-graph guided multi-task lasso approach for eqtl

mapping. In ICML, pages 208–217, 2012.
[15] Cheng W, et al. Graph-regularized dual lasso for robust eqtl mapping.

Bioinformatics, 30(12):i139–i148, 2014.
[16] Pedregosa F, et al. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.
[17] Hinton GE, et al. A fast learning algorithm for deep belief nets. Neural

Computation., 18(7):1527-1554, 2006.
[18] Bengio Y, et al. Representation learning: a review and new perspectives.

IEEE Trans. Pattern Anal. Mach. Intell., 35:1798-1828, 2013.
[19] Leung MK, et al. Deep learning of the tissue-regulated splicing code.

Bioinformatics., 30(12):i121–9, 2014.
[20] Di Lena P, et al. Deep architectures for protein contact map prediction.

Bioinformatics., 28(19):2449–57, 2012.
[21] Eickholt J, Cheng J. Predicting protein residue-residue contacts using

deep networks and boosting. Bioinformatics., 28:3066–3072, 2012.
[22] Adhikari B., Cheng J. Protein Residue Contacts and Prediction Methods.

Methods Mol Biol., 1415:463–76, 2016.
[23] Eickholt J and Cheng J. DNdisorder: predicting protein disorder using

boosting and deep networks. BMC Bioinformatics., 14:88, 2013.
[24] Wang S, et al. DeepCNF-D: Predicting Protein Order/Disorder Regions

by Weighted Deep Convolutional Neural Fields. Int J Mol Sci.,
16(8):17315–30, 2015.

[25] Zhou J,Troyanskaya O. Deep Supervised and Convolutional Generative
Stochastic Network for Protein Secondary Structure Prediction. Deep
Learning Workshop NIPS., 2013.

[26] Wang S, et al. Protein Secondary Structure Prediction Using Deep
Convolutional Neural Fields. Sci Rep., 6:18962, 2016.

[27] Spencer M, et al. A Deep Learning Network Approach to ab initio
Protein Secondary Structure Prediction. IEEE/ACM Trans Comput Biol
Bioinform., 12(1):103112, 2015.

[28] Wang S, et al. RaptorX-Property: a web server for protein structure
property prediction. Nucleic Acids Res., gkw306, 2016.

[29] Jo T, et al. Improving protein fold recognition by deep learning
networks. Scientific Reports., 5:17573, 2015.

[30] Zhou J, Troyanskaya O. Predicting effects of noncoding variants with
deep learning-based sequence model. Nat Methods., 12(10):931–4, 2015.

[31] Quang D, et al. DANN: a deep learning approach for annotating the
pathogenicity of genetic variants. Bioinformatics., 31(5):761–3, 2015.

[32] Kelley DR, et al. Basset: Learning the regulatory code of the acces-
sible genome with deep convolutional neural networks. Genome Res.,
pii(gr.200535):115, 2016.

[33] Xu W, et al. SD-MSAEs: Promoter Recognition in Human Genome
based on Deep Feature Extraction. J Biomed Inform., pii:S1532–0464,
2016.

[34] Goodfellow IJ, et al. Pylearn2: a machine learning research library.
arXiv preprint arXiv:1308.4214, 2013.

[35] Brem RB, Kruglyak L. The landscape of genetic complexity across
5,700 gene expression traits in yeast. PNAS, 102(5):1572–1577, 2005.

[36] Pedregosa F, et al. Scikit-learn: Machine learning in python. The Journal
of Machine Learning Research, 12:2825–2830, 2011.

[37] Buitinck L, et al. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning, pages 108–122, 2013.

[38] Rumelhart DE, et al. Learning internal representations by error propa-
gation. Technical report, 1985.

[39] Vincent P, et al. Extracting and composing robust features with denoising
autoencoders. In Proceedings of ICML, pages 1096–1103. ACM, 2008.

[40] Ng A. Sparse autoencoder. CS294A Lecture notes, 72, 2011.
[41] Graves A. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.
[42] Richardson M. Principal component analysis. 2009.
[43] Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and

singular value decomposition. Biolog. cybernetics, 59(4):291-294, 1988.
[44] Bengio Y. Learning deep architectures for AI. Foundations and trends

in Machine Learning, 2(1):1–127, 2009.
[45] Vincent P, et al. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. The
Journal of Machine Learning Research, 11:3371–3408, 2010.

[46] Srivastava N, et al. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[47] Albert FW, et al. Genetics of single-cell protein abundance variation in
large yeast populations. Nature., 506(7489):494–7, 2014.

[48] Picotti P, et al. A complete mass-spectrometric map of the yeast
proteome applied to quantitative trait analysis. Nature., 494(7436):266–
70, 2013.

[49] Zhu J, et al. Stitching together Multiple Data Dimensions Reveals
Interacting Metabolomic and Transcriptomic Networks That Modulate
Cell Regulation. PLoS Biology., 10:e1001301, 2012.

[50] Breunig JS, et al. Genetic basis of metabolome variation in yeast. PLoS
Genet., 10(3):e1004142, 2014.

[51] Connelly CF, et al. Evolution and genetic architecture of chromatin
accessibility and function in yeast. PLoS Genet., 10(7):e1004427, 2014.

[52] Lee K, et al. Genetic landscape of open chromatin in yeast. PLoS
Genet., 9(2):e1003229, 2013.

[53] Hinton G. A practical guide to training restricted boltzmann machines.
Momentum, 9(1):926, 2010.

[54] Graves A, et al. Speech recognition with deep recurrent neural networks.
In Proceedings of ICASSP, pages 6645–6649. IEEE, 2013.

