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Introduction 

Recognition of the importance of intrinsically disordered proteins (IDPs) has gone through a long process 

[1-6]. In the 1950s and 1960, a few proteins were suggested to be similar to proteins unfolded by 8M urea, 

e.g. to be IDPs, using optical rotation or optical rotator dispersion, but much larger numbers of IDP 

regions were observed as missing electron density in X-ray crystal structures in the 1970s and 1980s. 

With a few exceptions for which such missing density was regarded as indicating functional disorder, in 

most cases such missing density was treated as arising from technical difficulties in X-ray diffraction 

experiments or was just ignored. More recently, IDPs are being considered to be a major group of 

proteins that stand in contrast to proteins having stable tertiary structures [1-6]. Simply put, IDPs are 

dynamic and flexible without defined, equilibrium coordinates and bond angles. Although structured 

proteins exhibit substantial and important dynamic motions, these motions tend to be normal mode 

oscillations and random thermal fluctuations about equilibrium conformations.   

A major factor raising recent interest in the IDPs has been the realization that IDPs and structured 

proteins carry out complementary sets of biological functions. Almost all structured proteins are enzymes, 

or transport proteins, or receptors that bind a variety of ligands.  IDPs and IDP regions, on the other hand, 

are involved in regulating enzyme active sites, in providing sites for posttranslational modification, or in 

providing sites for signaling interactions with nucleic acids or with other proteins. Such signaling 

interactions typically involve disorder-to-order transitions of IDP regions rather than lock and key 

interactions of preformed structures,   

During the process of gaining recognition of IDPs and IDP regions as an important group of proteins, 

starting in the 1990s, bioinformatics investigations and increased use of NMR in protein structural studies 

played important and complementary roles in helping to establish IDPs as a major class of protein that 

carry out essential functions in all three kingdoms of life, particularly in eukaryotes. Since then, 

computational research has exploded in all the aspects of IDPs, ranging from prediction of disorder, 

simulation of disordered ensembles, analysis of disorder function, to biological interpretation of 

disordered proteins in biological systems. In order to introduce this exciting research field to the broad 

scientific community, this tutorial provides an overview of major developments and new research 

frontiers in experimental determination, computational prediction, simulation, and analysis of intrinsically 

disordered proteins.   

Despite the long history and all of the advances briefly outlined above, there is no discussion of IDPs nor 

of their functional importance in any of the major biochemistry textbooks.  This continuing omission 



suggests that, despite the mounting evidence, IDPs are still not accepted by the entire community and that 

more work is still needed.   

Prediction of IDPs 

Computational prediction of disordered regions in IDPs from protein sequence is often the first important 

step of studying IDPs. To date, the bioinformatics community has developed more than 50 tools to predict 

disorder [7], which can be roughly organized into five categories [8], including ab initio methods [9-28], 

clustering methods [29-31], template-based methods [32], hybrid methods [32], and consensus methods 

[33-35]. Ab inito methods, the largest group of all, use only sequence information as input to predict the 

probability that a residue is disordered. Clustering methods simulate a number of tertiary structure models 

for a target protein, and then superpose the models together using structural alignment tools in order to 

identify the degree of structural variation of each residue in the models, which is then used to calculate 

the probability that the residue is disordered. Template-based methods search a target protein against 

known protein structures in order to identify homologous structural templates, and the regions of the 

target protein sequence that can be aligned with the templates are considered ordered and otherwise more 

likely disordered.  Template-based methods are often used with ab initio methods to form hybrid methods 

in order to handle different kinds of protein targets. Hybrid methods choose either template-based or ab 

initio method to make prediction according to their suitability for the target. Consensus methods apply 

more than one method to predict disordered regions of a protein and use the consensus of the methods as 

final predictions.    

Recognition and determination of IDPs 

Predicted disordered regions or domains can be detected and validated using a range of biophysical 

techniques including nuclear magnetic resonance (NMR), circular dichroism (CD), small angle X-ray 

scattering (SAXS), hydrodynamic characterizations, single molecular Förster resonance energy transfer 

(FRET), and others. Applications and practical considerations of these methods have been extensively 

discussed in a number of reviews [36-37] (and references therein). NMR is by far the most 

comprehensive method that can characterize the structural and dynamic unbound IDPs [38]. Many 

observables can be measured for multiple sites throughout the protein to infer (transient) organizations at 

the secondary and tertiary levels, including: chemical shift, coupling constant, nuclear Overhauser effect 

(NOE), paramagnetic resonance enhancement (PRE), residual dipolar coupling (RDC), and spin 

relaxation. Relaxation dispersion experiments can be also used to derive unparalleled mechanistic insights 

on binding-induced folding of IDPs [39].  

Simulation and modeling of IDPs 

Detailed understanding of the conformational properties of unbound IDPs is a key starting point for 

establishing the physical basis of how intrinsic disorder might support function.  The heterogeneous and 

dynamic nature of the disordered protein states, however, poses significant challenges for obtaining such 

understanding. Frequently, only  ensemble-averaged properties can be measured for disordered proteins 

except with single-molecule techniques (which have their own limitations in spatial resolution, labeling 

need and protein size). Recovering the underlying structural heterogeneity using averaged properties is a 

severely underdetermined problem [40-43]. Great care must be taken to avoid over-interpreting the 

experimental data and to establish the uniqueness of derived structural ensembles consistent with the 



available data. Substantial challenges in experimental characterization of IDPs arguably represent a 

unique opportunity for molecular modeling to make unique contributions [44]. At the same time, 

simulation of IDPs also pushes the limit in the accuracy of the current protein force fields as well as our 

ability to sufficiently sample relevant conformational space. So-called implicit solvent approaches have 

emerged as an effective approach that can provide a necessary balance between accuracy and 

computational efficiency [45].  

Analysis of IDPs  

IDPs play a variety of functional roles in cell, such as signaling, regulation, recognition and control [46-

49]. Analysis of IDPs’ function, evolution, structural transition, and pharmaceutical applications, has 

become one of the most active research fields in IDPology [50]. Recent work in this direction includes 

identification of function sites of IDPs (e.g. short linear motifs) [51], function and structural classification 

of IDPs [52-53], evolution of IDPs [54-55],  protein post-translational modifications of IDPs [56-58], 

structural disorder of disease related proteins [59-65], and drug potency of disordered proteins such as 

p53, BRCA1, CTFR and a-synuclein [66-68].  
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