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Abstract of the Dissertation

Machine Learning Algorithms for Protein Structure Prediction

By

Jianlin Cheng

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2006

Professor Pierre Baldi, Chair

The amino acid sequence of a protein dictates its three dimensional (3D) structure,

which determines its function. With the exponential growth of protein sequences

without determined 3D structures in the post-genomic era, the prediction of pro-

tein structure from sequence has become one of the most fundamental problems in

structural and functional bioinformatics.

Protein structure prediction can be classified into three different levels: 1D -

predict structural features along one dimensional sequences; 2D - predict relationship

between residues; and 3D - predict protein tertiary structure. In this thesis, we

present several statistical machine learning methods for predicting protein structure

at the three levels.

At the 1D level, we use 1D-Recursive Neural Networks and sequence profiles to

predict protein disordered regions and domain boundaries. We also apply support

vector machines to predict protein stability changes for single-site mutations using

sequence, structure, or both.

xviii



At the 2D level, we use 2D-Recursive Neural Networks, alignments, and graph

algorithms to predict beta-sheet architecture and disulfide bond connectivity.

At the 3D level, we present a novel machine learning information retrieval frame-

work for protein fold recognition - the key step for template-based 3D structure

prediction.

At last, we describe the protein structure prediction software and web servers

built on these algorithms. These software and servers are freely available to the

scientific community.
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Chapter 1

Introduction

1.1 Protein Sequence, Structure, and Function

Protein is a macromolecule composed of 20 different amino acids which are linked

by peptide bonds in the linear order (Sanger and Thompson, 1953a,b). The lin-

ear polypeptide chain is called the primary structure of the protein. The primary

structure can be represented as a sequence of 20 different letters, where each letter

denotes an amino acid.

In the native state, the amino acids (or residues) of a protein fold into local

secondary structures including alpha helix, beta sheet, and non-regular coil (Paul-

ing and Corey, 1951; Pauling et al., 1951). The secondary structure elements are

further packed to form tertiary structure due to hydrophobic forces and side chain

interactions between amino acids (Kendrew et al., 1960; Perutz et al., 1960; Dill,

1990). The tertiary structures of several related proteins can bind together to form

protein complex called quaternary structure.

In a cell, proteins with native tertiary structures interact to carry out all kinds

of biological functions including enzymatic catalysis, transport and storage, coor-

1



dinated motion, mechanical support, immune protection, generation and transmis-

sion of nerve impulses, and control of growth and differentiation (Laskowski et al.,

2003). Extensive biochemical experiments (Kendrew et al., 1960; Perutz et al., 1960;

Travers, 1989; Bjorkman and Parham, 1990) have shown that a protein’s function is

determined by its structure. Thus, elucidating a protein’s structure is the key to un-

derstand its function, which has fundamental significance in biological and medical

sciences.

Experimental approaches such as X-ray Crystallography (Bragg, 1975; Blun-

dell and Johnson, 1976) and Nuclear Magnetic Resonance (NMR) spectroscopy

(Wuthrich, 1986; Baldwin et al., 1991) are the main techniques to determine pro-

tein structure. Since the determination of the first two protein structures–myoglobin

and haemoglobin– using X-ray crystallography (Kendrew et al., 1960; Perutz et al.,

1960), the number of proteins with solved structures has increased rapidly. Cur-

rently, there are about 30,000 proteins with determined structures deposited in the

Protein Data Bank (PDB) (Berman et al., 2000). These diverse and abundant

structures provide invaluable data for us to understand how a protein folds into its

unique 3D structure and to predict the structure from its sequence (Chandonia and

Brenner, 2006).

Since the pioneering experiments (Sanger and Thompson, 1953a,b; Kendrew

et al., 1960; Perutz et al., 1960; Anfinsen, 1973) showed that a protein’s struc-

ture is dictated by its sequence, predicting protein structure from its sequence has

become one of the most fundamental problems in structural biology. In the post-

genomic era, with the application of high-throughput DNA and protein sequencing

technologies, the number of protein sequences has increased exponentially, whereas

the experimental determination of protein structure is still very expensive, time-

consuming, labor-intensive, and sometime impossible. Currently, only about 1.5%

2



of protein sequences (about 30,000 out of 2 million) have solved structures and

the gap between proteins with known structures and with unknown structures is

still increasing. Thus, predicting protein structure from its sequence is increasingly

imperative and useful. Protein structure prediction software is becoming a vital

tool in understanding phenomena in modern molecular and cell biology (Petrey and

Honig, 2005) and has important applications in medical sciences such as drug design

(Jacobson and Sali, 2004).

1.2 1D, 2D, and 3D Protein Structure Prediction

Protein structure prediction is a very challenging problem. We tackle the problem

from different aspects and at different levels. Protein structure prediction is often

classified into three levels: 1D, 2D, and 3D (Rost et al., 2003). 1D prediction is

to predict the structural features such as secondary structure (Rost and Sander,

1993a,b; Jones, 1999b; Pollastri et al., 2002b) and solvent accessibility (Rost and

Sander, 1994; Pollastri et al., 2002a) of each residues along one dimensional protein

sequence. 2D prediction is to predict the relationship between residues (e.g., contact

map prediction (Fariselli et al., 2001; Pollastri and Baldi, 2002) and disulfide bond

prediction (Fariselli and Casadio, 2004; Vullo and Frasconi, 2003; Baldi et al., 2005;

Cheng et al., 2006b) ). 3D prediction is to predict the 3D coordinates for all residues

or all atoms in a protein. Although the ultimate goal is to predict 3D structure,

1D and 2D prediction is of great interest to biologists and is also an important step

toward 3D structure prediction.

Two main methodologies of protein structure prediction are ab-initio method

(Levinthal, 1968; Qian and Sejnowski, 1988; Skolnick and Kolinski, 1991; Prevost

et al., 1991; Rost and Sander, 1993b,a; Sali et al., 1994; Baldwin, 1995; Elofsson
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and et al., 1995; Skolnick and et al., 1997.; Simons et al., 1997; Ortiz et al., 1999;

Honig, 1999; Lazaridis and Karplus, 2000; Simons et al., 2001; Baker and Sali, 2001;

Zhang et al., 2003) and template-based method (Browne et al., 1969; Blundell et al.,

1987; Greer, 1990; Bowie et al., 1991; Taylor, 1991; Jones et al., 1992; Godzik et al.,

1992; Levitt, 1992; Sali and Blundell, 1993; Bryant and Lawrence, 1993; Fisher and

Eisenberg, 1996; Rost et al., 1997; Karplus et al., 1998; Xu et al., 1998; Marti-

Renom et al., 2000; Kelley et al., 2000; Shi et al., 2001; Xu et al., 2003a; Zhou

and Zhou, 2004). Ab-initio approaches simulate protein folding or structure using

physicochemical principles or statistical machinery. The common feature of ab-

initio methods is to try to predict protein structure without referring to a specific

template protein with known structure. Ab-initio approaches have been successfully

used in 1D structure prediction such as secondary structure prediction (Rost and

Sander, 1993a,b; Jones, 1999b; Pollastri et al., 2002b). For 3D structure prediction,

the accuracy of ab-initio approaches is still very low. So this de novo approach is

usually applied to proteins without a good structure template in the Protein Data

Bank (Berman et al., 2000)

The existing, rather practical, method for 3D structure prediction is the template-

based approach including comparative modeling (or homology modeling) and fold

recognition (or threading). This approach is based on the observation that nature

tends to reuse existing structures/folds to accommodate new protein sequences and

functions during the evolution (Chothia, 1992). Thus, although protein sequence

space (number of protein sequences) is very large, the protein structure space (the

number of unique protein folds) is relatively small and expected to be limited (Grant

et al., 2004). Currently, we have collected millions of protein sequences, but the

number of unique structures (folds) is only about 1000 (out of about 30000 pro-

tein structures) in the protein classification databases such as SCOP (Murzin et al.,
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1995) and CATH (Orengo et al., 2002). Moreover, among the newly determined

protein structures in the structural genomics projects, the novel folds only account

for a small portion (about 10%) and the overall fraction of new folds continues to

decrease during the past 15 years (Chandonia and Brenner, 2006).

Thus, most protein sequences, particularly similar protein sequences within the

same family and superfamily evolving from the common ancestors, have the similar

structures with other proteins. So given a query protein without known structure,

template-based prediction is first to identify a template protein–if exists–that has

the solved, similar structure with the query protein. And then it uses the structure

of the template protein to model the structure of the query protein based on the

alignment between the query sequence and the template structure (Browne et al.,

1969; Blundell et al., 1987; Greer, 1990; Levitt, 1992; Sali and Blundell, 1993; Koehl

and Delarue, 1994; Bates et al., 2001; Petrey et al., 2003; Schwede et al., 2004).

Despite the common feature of using template, comparative modeling tradition-

ally refers to easy modeling case when the query protein has high sequence similarity

(>= 40% identity) with the template protein, which can be identified by PSI-BLAST

(Altschul et al., 1997); fold recognition refers to hard modeling case when the query

protein has less sequence similarity with the template protein and the structural rel-

evance between query and template proteins is harder to recognize. However, with

the development of more sensitive fold recognition methods such as sequence-profile

alignment (Bailey and Gribskov, 1997; Baldi et al., 1994; Krogh et al., 1994; Hughey

and Krogh, 1996; Altschul et al., 1997; Bailey and Gribskov, 1997; Karplus et al.,

1998; Eddy, 1998; Park et al., 1998; Koretke et al., 2001; Gough et al., 2001) and

profile-profile alignment (Thompson et al., 1994; Rychlewski et al., 2000; Notredame

et al., 2000; Yona and Levitt, 2002; Madera and Gough, 2002; Mitelman et al., 2003;

Ginalski et al., 2003b; Sadreyev and Grishin, 2003; Edgar and Sjolander, 2003, 2004;
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Ohlson et al., 2004; Wallner et al., 2004; Wang and Dunbrack, 2004; Marti-Renom

et al., 2004; Söding, 2005), the separation between comparative modeling and fold

recognition is blurred (Ginalski, 2006). Now we usually use template-based method

to refer to both of them and redefine the term “fold recognition” as a process of iden-

tifying a template protein for a query protein no matter how similar their sequences

are.

Using both template-based and ab-initio methodologies, this thesis presents sev-

eral machine learning algorithms to tackle the protein structure prediction problems

at 1D, 2D, and 3D levels, respectively.

1.3 Machine Learning Algorithms for Protein Struc-

ture Prediction

Statistical machine learning approaches provide powerful means to recognize pat-

terns from the vast amount of noisy data and have been widely used in Bioinfor-

matics. This thesis presents a number of novel machine learning methods for 1D

structure prediction (protein disordered region, domain, and the stability change of

a single point mutation ), 2D structure prediction (disulfide bond connectivity and

beta-sheet structure), and 3D structure prediction (protein fold recognition). The

thesis is organized as follows.

Chapter 2 describes the algorithms of using 1D-Recursive Neural Networks (1D-

RNN) to predict protein disordered regions. Intrinsically disordered regions in

proteins are relatively frequent and important for our understanding of molecular

recognition and assembly, and protein structure and function. From an algorithmic

standpoint, flagging large disordered regions is also important for ab initio protein

structure prediction methods. We first extract a curated, non-redundant, data set
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of protein disordered regions from the Protein Data Bank and compute relevant

statistics on the length and location of these regions. We then develop an ab initio

predictor of disordered regions called DISpro which uses evolutionary information

in the form of profiles, predicted secondary structure and relative solvent accessi-

bility, and ensembles of 1D-recursive neural networks. DISpro is trained and cross

validated using the curated data set. The experimental results show that DISpro

achieves an accuracy of 92.8% with a false positive rate of 5%.

Chapter 3 uses the similar 1D-RNN architecture to predict protein domain

boundary. Protein domains are the structural and functional units of proteins. The

ability to parse protein chains into different domains is important for protein clas-

sification and for understanding protein structure, function, and evolution. We use

machine learning algorithms, in the form of recursive neural networks, to develop a

protein domain predictor called DOMpro. DOMpro predicts protein domains using

a combination of evolutionary information in the form of profiles, predicted sec-

ondary structure, and predicted relative solvent accessibility. DOMpro is trained

and tested on a curated dataset derived from the CATH database. DOMpro cor-

rectly predicts the number of domains for 69% of the combined dataset of single

and multi-domain chains. DOMpro achieves a sensitivity of 76% and specificity of

85% with respect to the single-domain proteins and sensitivity of 59% and speci-

ficity of 38% with respect to the two-domain proteins. DOMpro also achieved a

sensitivity and specificity of 71% and 71% respectively in the Critical Assessment

of Fully Automated Structure Prediction 4 (CAFASP-4) (Fischer et al., 1999; Saini

and Fischer, 2005) and was ranked among the top ab initio domain predictors.

Chapter 4 uses Support Vector Machine algorithm to predict the stability change

of a single site mutation. Accurate prediction of protein stability changes for single

amino acid mutations is important for understanding protein structures and de-
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signing new proteins. We use support vector machines to predict protein stability

changes for single amino acid mutations leveraging both sequence and structural

information. We evaluate our approach using cross-validation methods on a large

dataset of single amino acid mutations. When only the sign of stability changes is

considered, the predictive method achieves 84% accuracy - a significant improvement

over previously published results. Moreover, the experimental results show that the

prediction accuracy obtained using sequence alone is close to the accuracy using

tertiary structure information. Because our method can accurately predict protein

stability changes using primary sequence information only, it is applicable to many

situations where tertiary structure is unknown, overcoming a major limitation of

previous methods which require tertiary information.

Chapter 5 uses kernel methods, 2D-Recursive Neural Networks (2D-RNN), and

graph matching algorithms to predict protein disulfide bonds. The formation of

disulphide bridges between cysteines plays an important role in protein folding,

structure, function, and evolution. We develop new methods for predicting disul-

phide bridges in proteins. We first build a large curated data set of proteins contain-

ing disulphide bridges to extract relevant statistics. We then use kernel methods to

predict whether a given protein chain contains intra-chain disulphide bridges or not,

and recursive neural networks to predict the bonding probabilities of each pair of

cysteines in the chain. These probabilities in turn lead to an accurate estimation of

the total number of disulphide bridges and to a weighted graph matching problem

that can be addressed efficiently to infer the global disulphide bridge connectivity

pattern. This approach can be applied both in situations where the bonded state of

each cysteine is known, or in ab initio mode where the state is unknown. Further-

more, it can easily cope with chains containing an arbitrary number of disulphide

bridges, overcoming one of the major limitations of previous approaches. It can clas-
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sify individual cysteine residues as bonded or non-bonded with 87% specificity and

89% sensitivity. The estimate for the total number of bridges in each chain is correct

71% of the times, and within one from the true value over 94% of the times. The

prediction of the overall disulphide connectivity pattern is exact in about 51% of the

chains. In addition to using profiles in the input to leverage evolutionary informa-

tion, including true (but not predicted) secondary structure and solvent accessibility

information yields small but noticeable improvements. Finally, once the system is

trained, predictions can be computed rapidly on a proteomic or protein-engineering

scale.

Chapter 6 uses alignment, 2D-RNN, and graph algorithms to predict protein

beta-residue pairings, beta-strand pairings, and beta-sheet architecture. Protein

β-sheets play a fundamental role in protein structure, function, evolution, and bio-

engineering. Accurate prediction and assembly of protein β-sheets, however, re-

mains challenging because protein β-sheets require formation of hydrogen bonds

between linearly distant residues. Previous approaches for predicting β-sheet topo-

logical features, such as β-strand alignments, in general have not exploited the

global covariation and constraints characteristic of β-sheet architectures. We pro-

pose a modular approach to the problem of predicting/assembling protein β-sheets

in a chain by integrating both local and global constraints in three steps. The first

step uses recursive neural networks to predict pairing probabilities for all pairs of

inter-strand β-residues from profile, secondary structure, and solvent accessibility

information. The second step applies dynamic programming techniques to these

probabilities to derive binding pseudo-energies and optimal alignments between all

pairs of β-strands. Finally, the third step, uses graph matching algorithms to pre-

dict the β-sheet architecture of the protein by optimizing the global pseudo-energy

while enforcing strong global β-strand pairing constraints. The approach is evalu-
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ated using cross-validation methods on a large non-homologous dataset and yields

significant improvements over previous methods.

Chapter 7 presents a machine learning information retrieval approach to pro-

tein fold recognition. Recognizing proteins that have similar tertiary structure is

the key step of template-based protein structure prediction methods. Tradition-

ally, a variety of alignment methods are used to identify similar folds, based on

sequence similarity and sequence-structure compatibility. Although these methods

are complementary, their integration has not been thoroughly exploited. Statisti-

cal machine learning methods provide tools for integrating multiple features, but

so far these methods have been used primarily for protein and fold classification,

rather than addressing the retrieval problem of fold recognition–finding a proper

template for a given query protein. We present a two-stage machine learning, in-

formation retrieval, approach to fold recognition. First, we use alignment methods

to derive pairwise similarity features for query-template protein pairs. We also use

global profile-profile alignments in combination with predicted secondary structure,

relative solvent accessibility, contact map, and beta-strand pairing to extract pair-

wise structural compatibility features. Second, we apply support vector machines

to these features to predict the structural relevance (i.e. in the same fold or not) of

the query-template pairs. For each query, the continuous relevance scores are used

to rank the templates. The FOLDpro approach is modular, scalable, and effective.

Compared to 11 other fold recognition methods, FOLDpro yields the best results in

almost all standard categories on a comprehensive benchmark dataset. Using predic-

tions of the top-ranked template, the sensitivity is about 85%, 56%, and 27% at the

family, superfamily, and fold levels respectively. Using the 5 top-ranked templates,

the sensitivity increases to 90%, 70%, and 48%.

Chapter 8 describes a number of protein Bioinformatics software and servers
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built on the algorithms above. These software and servers are freely available to the

scientific community.

1.4 Other Projects

During my PhD I also carried out the following projects.

Sigmoid: a generative, scalable software infrastructure for

pathway bioinformatics and systems biology

Sigmoid (Cheng et al., 2005b) is a collaborative project with Professor Eric Mjol-

sness’s group. In this project, we build the computational infrastructure to automate

modeling and simulation of biological networks (pathways). We have created an on-

line simulation system called Sigmoid using service oriented architecture (SOA).

Sigmoid has four major parts: biological network database, Mathematica simula-

tion engine, web service logic, and GUI, organized in three tiers. SIGMOID is the

first system having all three key functions for pathway bioinformatics: storage, sim-

ulation, and visualization. In addition to designing the architecture of Sigmoid, I

implemented the first version of object-oriented biological network database, the web

services for the remote database access and model simulation, and the automated

translation of biological networks into Mathematica/Cellerator commands (Shapiro

et al., 2002).

Model the structure of ty3 retrovirus

This is a collaborative project with Professor Suzanne Sandmeyer’s group. Like

HIV-1 virus, ty3 virus is a retrovirus that reproduces DNA from its RNA after in-
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fecting the host. The goal of the project is to investigate the structure and function

of the ty3 capsid protein that plays a key role in the assembly of ty3 retrovirus

envelope. My task is to predict and analyze the structure of the ty3 capsid protein.

I predict the secondary structure, solvent accessibility, domains, mutation stability

changes, tertiary structures, and quaternary structure for ty3 capsid protein, using

the tools developed in my research such as SSpro 4.0 (Cheng et al., 2005a), ACCpro

4.0 (Cheng et al., 2005a), DOMpro (Cheng et al., 2005d), MUpro (Cheng et al.,

2006a), BETApro (Cheng and Baldi, 2005) and FOLDpro (Cheng and Baldi, 2006)

as well as publicly available tools. The predictions generate several interesting hy-

potheses for the following site-directed mutagenesis experiments and suggest that

ty3 has the similar tertiary structure and assembly mechanism as other retroviruses

such as HIV-1. The predicted structure can explain some interesting observations

in the experiments conducted by Professor Suzanne Sandmeyer’s group (paper in

preparation).
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Chapter 2

Prediction of Protein Disordered

Regions Using Recursive Neural

Networks and Evolutionary

Information

2.1 Introduction

Proteins are fundamental organic macromolecules consisting of linear chains of

amino acids bonded together by polypeptide bonds and folded into complex three-

dimensional structures. The biochemical function of a protein depends on its three-

dimensional structure, thus solving protein structures is a fundamental goal of

structural biology. Tremendous efforts have been made to determine the three-

dimensional structures of proteins in the past several decades by experimental and

computational methods. Experimental methods such as X-ray diffraction and NMR

(Nuclear Magnetic Resonance) spectroscopy are used to determine the coordinates
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of all the atoms in a protein and thus its three-dimensional structure. While most

regions in a protein assume stable structures, some regions are partially or wholly

unstructured and do not fold into a stable state. These regions are labeled as dis-

ordered regions by structural biologists.

Intrinsically disordered proteins (IDPs) play important roles in many vital cell

functions including molecular recognition, molecular assembly, protein modifica-

tion, and entropic chain activities (Dunker et al., 2002). One of the evolutionary

advantages of proteins with disordered regions may be their ability to have multi-

ple binding partners and potentially partake in multiple reactions and pathways.

Since the disordered regions may be determined only when the IDPs are in a bound

state, IDPs have prompted scientists to reevaluate the structure-implies-function

paradigm (Wright and Dyson, 1999). Disordered regions have also been associated

with low sequence complexity and an early survey of protein sequences based on

sequence complexity predicted that a substantial fraction of proteins contain disor-

dered regions (Wootton, 1994). This prediction has been confirmed to some extent

in recent years by the growth of IDPs in the Protein Data Bank (PDB) (Berman

et al., 2000), which currently contains about 30,000 proteins and 18,800,000 residues

. Thus the relatively frequent occurrence of IDPs and their importance for under-

standing protein structure/function relationships and cellular processes makes it

worthwhile to develop predictors of protein disordered regions. Flagging large dis-

ordered regions may also be important for ab initio protein structure prediction

methods. Furthermore, since disordered regions often hampers crystallization, the

prediction of disordered regions could provide useful information for structural bi-

ologists and help guide experimental designs. In addition, disordered regions can

cause the poor expression of a protein in bacteria, thus making it difficult to man-

ufacture the protein for crystallization or other purposes. Hence, disordered region
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predictions could provide biologists with important information that would allow

them to improve the expression of the protein. For example, if the N or C termini

regions were disordered, they could be omitted from the gene.

Comparing disorder predictors can be difficult due to the lack of a precise defini-

tion of disorder. Several definitions exist in the literature including loop/coil regions

where the carbon alpha (Cα) on the protein backbone has a high temperature factor

and residues in the PDB where coordinates are missing as noted in a REMARK465

PDB record (Linding et al., 2003a). Here, consistent with Ward et al. (2004),

we define a disordered residue as any residue for which no coordinates exist in the

corresponding PDB file.

Previous attempts at predicting disordered regions have used sequence complex-

ity, support vector machines, and neural networks (Wootton, 1994; Dunker et al.,

2002; Linding et al., 2003a; Ward et al., 2004). Our method for predicting disordered

regions, called DISpro, involves the use of evolutionary information in the form of

profiles, predicted secondary structure and relative solvent accessibility, and 1D-

recursive neural networks (1D-RNN). These networks are well suited for predicting

protein properties and have been previously used in our SCRATCH suite of predic-

tors, including our secondary structure and relative solvent accessibility predictions

(Pollastri et al., 2002a,b; Baldi and Pollastri, 2003; Cheng et al., 2005a).

2.2 Methods

2.2.1 Data

The proteins used for the training and testing of DISpro were obtained from the

PDB in May 2004. At that time, 7.6% (3,587) of the protein chains in the PDB

obtained by X-ray crystallography contained at least one region of disorder at least
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three residues in length. Most of these disordered regions were short segments near

the two ends of protein chains (N- and C- termini).

We first filtered out any proteins that were not solved by X-ray diffraction meth-

ods, were less than 30 amino acids in length, or had resolution coarser than 2.5Å.

Next, the proteins were broken down into their individual chains. For the creation

of our training and testing sets, we selected only protein chains that had sections of

disordered regions strictly greater than three residues in length. The determination

of residues as being ordered or disordered is based on the existence of an ATOM

field (coordinate) for Cα atom of a given residue in the PDB file. If no ATOM

records exist for a residue listed in the SEQRES record, the residue is classified as

disordered.

We then filtered out homologous protein chains using UniqueProt (Mika and

Rost, 2003) with a threshold HSSP value of 10. The HSSP value between two

sequences is a measure of their similarity taking into account both sequence identity

and sequence length. An HSSP value of 10 corresponds roughly to 30% sequence

identity for a global alignment of length 250 amino acids.

Secondary structure and relative solvent accessibility were then predicted for all

the remaining chains by SSpro and ACCpro (Pollastri et al., 2002a,b; Baldi and

Pollastri, 2003; Cheng et al., 2005a). Using predicted, rather than true secondary

structure and solvent accessibility, which are easily-obtainable by the DSSP pro-

gram (Kabsch and Sander, 1983), introduces additional robustness in the predictor,

especially when it is applied to sequences with little or no homology to sequences

in the PDB. The filtering procedures resulted in a set of 723 non-redundant disor-

dered chains. To leverage evolutionary information, PSI-BLAST (Altschul et al.,

1997) is used to generate profiles by aligning all chains against the Non-Redundant

(NR) database, as in (Jones, 1999b; Przybylski and Rost, 2002; Pollastri et al.,
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2002b). As in the case of secondary structure prediction, profiles rather than pri-

mary sequences are used in the input, as explained in next section. Finally, these

chains were randomly split into ten subsets of approximately equal size for ten-

fold cross-validated training and testing. The final dataset is available through:

http://www.ics.uci.edu/ baldig/scratch/.
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Figure 2.1: Frequency of Lengths of Disordered Regions

The final dataset has 215,612 residues, 6.4% (13,909) of which are classified as

disordered. Of the 13,909 disordered residues, 13.8% (1,924) are part of long regions

of disorder (≥ 30 AA). Figure 2.1 shows a histogram of the frequency of disordered

region lengths in our dataset.
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2.2.2 Input and Output of Neural Networks

The problem of predicting disordered regions can be viewed as a binary classification

problem for each residue along a one dimensional (1-D) protein chain. The residue

at position i is labeled as ordered or disordered. A variety of machine learning

methods can be applied to this problem, such as probabilistic graphical models, ker-

nel methods, and neural networks. DISpro employs 1-D recursive neural networks

(1D-RNN)(Baldi and Pollastri, 2003). For each chain, our input is the 1-D array I,

where the size of I is equal to the number of residues in the chain and each entry Ii

is a vector of dimension 25 encoding the profile as well as secondary structure and

relative solvent accessibility at position i. Specifically, twenty of the values are real

numbers which correspond to the amino acid frequencies in the corresponding col-

umn of the profile. The other five values are binary. Three of the values correspond

to the predicted secondary structure class (Helix, Strand, or Coil) of the residue

and the other two correspond to the predicted relative solvent accessibility of the

residue (i.e., under or over 25% exposed).

The training target for each chain is the 1-D binary array T , whereby each Ti

equals 0 or 1 depending on whether residue at position i is ordered or disordered.

Neural networks (or other machine learning methods) can be trained on the data

set to learn a mapping from the input array I onto an output array O, whereby Oi

is the predicted probability that residue at position i is disordered. The goal is to

make the output O as close as possible to the target T .
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2.2.3 The Architecture of 1-D-Recursive Neural Networks

(1D-RNNs)

The architecture of the 1D-RNNs used in this study is derived from the theory of

probabilistic graphical models, but use a neural network parameterization to speed

up belief propagation and learning (Baldi and Pollastri, 2003). 1D-RNNs combine

the flexibility of Bayesian networks with the fast, convenient, parameterization of

artificial neural networks without the drawbacks of standard feedforward neural

networks with fixed input size. Under this architecture, the output Oi depends

on the entire input I instead of a local fixed-width window centered at position

i. Thus, 1D-RNNs can handle inputs with variable length and allow classification

decisions to be made based on contextual long-ranged information outside of the

traditional local input window. Since 1D-RNNs use weight sharing in both forward

and backward recursive networks, only a fixed number of weights are required to

handle propagation of long-ranged information. This is in contrast to local window

approaches, where the number of weights (parameters) typically grows linearly with

the size of the window, increasing the danger of overfitting. Nevertheless, it is

important to recognize that since the problem of disordered region prediction can

be formulated as a standard classification problem, other machine learning or data

mining algorithms such as feed forward neural networks or support vector machines

can in principle be applied to this problem effectively, provided great care is given

to the problem of overfitting.

The architecture of the 1D-RNN is described in Figures 2.2 and 2.3 and is as-

sociated with a set of input variables Ii, a forward HF
i and backward HB

i chain of

hidden variables, and a set Oi of output variables. In terms of probabilistic graph-

ical models (Bayesian networks), this architecture has the connectivity pattern of
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an input-output HMM (Bengio and Frasconi, 1996), augmented with a backward

chain of hidden states. The backward chain is of course optional and used here to

capture the spatial, rather than temporal, properties of biological sequences.

H

H

O

i

i

i

I i

B

F

Figure 2.2: 1D-RNN associated with input variables, output variables, and both
forward and backward chains of hidden variables.

The relationship between the variables can be modeled using three separate

neural networks to compute the output, forward, and backward variables respec-

tively. These neural networks are replicated at each position i; (i.e., weight sharing).

One fairly general form of weight sharing is to assume stationarity for the forward,

backward, and output networks, which leads to a 1D-RNN architecture, previously

named a bidirectional RNN architecture (BRNN), and is implemented using three

neural networks NO, NF , and NB in the form

Oi = NO(Ii, H
F
i , HB

i )

HF
i = NF (Ii, H

F
i−1)

HB
i = NB(Ii, H

B
i+1)

(2.1)

as depicted in Figure 2.3. In this form, the output depends on the local input Ii
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at position i, the forward (upstream) hidden context HF
i ∈ IRn and the backward

(downstream) hidden context HB
i ∈ IRm, with usually m = n. The boundary

conditions for HF
i and HB

i can be set to 0, i.e. HF
0 = HB

N+1 = 0 where N is the

length of the sequence being processed. Alternatively these boundaries can also be

treated as a learnable parameter. Intuitively, we can think of NF and NB in terms

of two “wheels” that can be rolled along the sequence. For the prediction at position

i, we roll the wheels in opposite directions starting from the N- and C- terminus and

up to position i. We then combine the wheel outputs at position i together with

the input Ii to compute the output prediction Oi using NO.

i+1i-1
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Figure 2.3: A 1D-RNN architecture with a left (forward) and right (backward)
context associated with two recurrent networks (wheels).

The output Oi for each residue position i is computed by two normalized-

exponential units, which is equivalent to one logistic output unit. The error function

is the relative entropy between the true distribution and the predicted distribution.

All the weights of the 1D-RNN architecture, including the weights in the recur-

rent wheels, are trained in supervised fashion using a generalized form of gradient

21



descent on the error function, derived by unfolding the wheels in space. To improve

the statistical accuracy, we average over an ensemble of five trained models to make

prediction.

2.3 Results

We evaluate DISpro using ten-fold cross validation on the curated dataset of 723

non-redundant protein chains. The resulting statistics for DISpro are given in Ta-

ble 2.1, including a separate report for the special subgroup of long disordered

regions(> 30 residues), which have been shown to have different sequence pat-

terns than N- and C- termini disordered regions (Li et al., 1999). Performance

is assessed using a variety of standard measures including correlation coefficients,

area under the ROC curves, Accuracy at 5% FPR (False Positive Rate), Precision

[TP/(TP+FP)], and Recall [TP/(TP+FN)]. The accuracy at 5% FPR is defined as

[(TP+TN)/(TP+FP+TN+FN)] when the decision threshold is set so that 5% of

the negative cases are above the decision threshold. Here, TP, FP, TN, and FN refer

to the number of true positives, false positives, true negatives, and false negatives

respectively.

The area under the ROC curve of DISpro computed on all regions is .878. An

ROC area of .90 is generally considered a very accurate predictor. An area of 1.00

would correspond to a perfect predictor and an area of .50 would correspond to

a random predictor. At 5% FPR, the TPR is 92.8% for all disordered regions.

DISpro achieves a precision and recall rate of 75.4% and 38.8% respectively, when

the decision threshold is set at .5. Figure 2.4 shows the ROC curves of DISpro

corresponding to all disordered regions and to disordered regions 30 residues or

more in length. It shows that the long disordered regions are harder to predict than
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Figure 2.4: ROC curve for DISpro on the set of 723 protein chains

the shorter disordered regions.

We have also compared our results to those of other predictors from CASP5

(Ward et al., 2004) (Critical Assessment of Structure Prediction). The set of proteins

from CASP5 should be considered a fair test since each chain had a low HSSP score

(< 7) in comparison to our training set. Table 2.2 shows our results in comparison

to other predictors. DISpro achieves an ROC area of 0.935, better than all the

Table 2.1: Results for DISpro on 723 non-homologous protein chains

Dataset Corr. Coef. ROC area Accuracy Precision Recall
(5% FPR)

All disorder 0.589 0.878 92.8% 75.4% 38.8%
Long disorder 0.255 0.789 94.5% 22.1% 25.9%
(≥ 30 AA)

23



Table 2.2: Summary of comparison results for six predictors using the proteins from
CASP5. Results for predictors other than DISpro were reported by Ward et al.,
2004.

Predictor Corr. Coef. ROC area Accuracy
(5% FPR)

DISpro 0.51 0.935 93.2%
DISOPRED2 0.52 0.900 93.1%
Dunker VLXT 0.31 0.809 91.4%
Dunker VL2 0.36 0.786 91.8%
Obradovic VL3 0.38 0.801 92.1%
FoldIndex 0.26 0.738 91.0%

other predictors. The correlation coefficient of DISpro is 0.51, roughly the same as

DISOPRED2. The accuracy of DISpro at a 5% FPR is 93.2% on the CASP5 protein

set. Thus, on the CASP5 protein set, DISpro is roughly equal or slightly better than

all the other predictors on all three performance measures. DISOPRED2 and DISpro

performance appear to be similar and significantly above all other predictors.

2.4 Conclusion

DISpro is a predictor of protein disordered regions which relies on machine learn-

ing methods and leverages evolutionary information as well as predicted secondary

structure and relative solvent accessibility. Our results show that DISpro achieves

an accuracy of 92.8% with a false positive rate of 5% on large cross-validated tests.

Likewise, DISpro achieves an ROC area of 0.88.

There are several directions for possible improvement of DISpro and disordered

region predictors in general that are currently under investigation. To train better

models, larger training sets of proteins with disordered regions can be created as

new proteins are deposited in the PDB. In addition, protein sequences containing
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no disordered regions, which are excluded from our current experiment, may also

be included in the training set to decrease false positive rate.

Our results confirm that short and long disordered region behave differently and

therefore it may be worth training two separate predictors. In addition, it is also

possible to train a separate predictor to detect whether a give protein chain con-

tains any disordered regions or not using another machine learning technique, such

as kernel methods, for classification, as is done for proteins with or without disul-

phide bridges (Frasconi et al., 2002). Results derived from contact map predictors

(Baldi and Pollastri, 2003) may also be used to try to further boost the prediction

performance. It is reasonable to hypothesize that disordered regions ought to have

poorly defined contacts. We are also in the process of adding to DISpro the ability

to directly incorporate disorder information from homologous proteins. Currently,

such information is only used indirectly by the 1D-RNNs. Prediction of disordered

regions in proteins that have a high degree of homology to proteins in the PDB

should not proceed entirely from scratch but leverage the readily available informa-

tion about disordered regions in the homologous proteins. Large disordered regions

may be flagged and be removed or treated differently in ab initio tertiary structure

prediction methods. Thus it might be useful to incorporate disordered region predic-

tions into the full pipeline of protein tertiary structure prediction. Finally, beyond

disorder prediction, bioinformatics integration of information from different sources

may shed further light on the nature and role of disordered regions. In particular,

if disordered regions act like reconfigurable switches allowing certain proteins to

partake in multiple interactions and pathways, one might be able to cross-relate in-

formation from pathway and/or protein-protein interaction databases with protein

structure databases.
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Chapter 3

Protein Domain Prediction Using

Profiles, Secondary Structure,

Relative Solvent Accessibility, and

Recursive Neural Networks

3.1 Introduction

Domains are considered the structural and functional units of proteins. They can be

defined using multiple criteria, or combinations of criteria, including evolutionary

conservation, discrete functionality, and the ability to fold independently (Holm and

Sander, 1994). A domain can span an entire polypeptide chain or be a subunit of

a polypeptide chain that can fold into a stable tertiary structure independently of

any other domain (Levitt and Chothia, 1976). While typical domains consist of a

single continuous polypeptide segment, some domains may be comprised of several

discontinuous segments.
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The identification of domains is an important step for protein classification and

for the study and prediction of protein structure, function, and evolution. The

topology of secondary structure elements in a domain is used by human experts or

automated systems in structural classification databases such as FSSP-Dali Domain

Dictionary (Holm and Sander, 1998a,b), SCOP (Murzin et al., 1995), and CATH

(Orengo et al., 2002). The prediction of protein tertiary structure, especially ab

initio prediction, can be improved by segmenting the protein using the putative

domain boundaries and predicting each domain independently (Chivian et al., 2003).

However, the identification of protein domains based on sequence alone remains a

challenging problem.

A number of methods have been developed to identify protein domains starting

from their primary sequence. These methods can be roughly classified into three

categories: template based methods (Chivian et al., 2003; Heger and Holm, 2003;

Marsden et al., 2002; von Ohsen et al., 2004; Zdobnov and Apweiler, 2001; Gewehr

and Zimmer, 2005), non-template based (ab initio) methods (Bryson et al., 2005;

George and Heringa, 2002; Lexa and Valle, 2003; Linding et al., 2003b; Liu and Rost,

2004; Nagarajan and Yona, 2004; Wheelan et al., 2000), and meta domain prediction

methods (Saini and Fischer, 2005). Some template-based methods use a sequence

alignment approach where domains are identified by aligning the target sequence

against sequences in a domain classification database (Marchler-Bauer et al., 2003).

Other methods use alignments of secondary structures (Marsden et al., 2002). In

these methods, domains are assigned by aligning the predicted secondary structure

of a target sequence against the secondary structure of chains in CATH, which have

known domain boundaries.

Some ab initio methods, such as tertiary structure folding approaches, average

several hundred predictions obtained from coarse ab initio simulations of protein
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folding to assign domain boundaries to a given sequence (George and Heringa, 2002).

One drawback of these approaches is that they are computationally intensive. Other

ab initio use a statistical approach, such as Domain Guess by Size (Wheelan et al.,

2000), to predict the likelihood of domain boundaries within a given sequence based

on the distributions of chain and domain lengths.

The ab initio prediction of domains using machine learning techniques is aided

by the availability of large, high quality, domain classification databases such as

CATH, SCOP and FSSP-Dali Domain Dictionary. Two recently published algo-

rithms attempt to predict domain boundaries using neural networks (Nagarajan

and Yona, 2004; Liu and Rost, 2004). The networks used by Nagarajan and Yona

(2004) incorporate the position specific physio-chemical properties of amino acid

and predicted secondary structure. Liu and Rost (2004) use neural networks with

amino acid composition, positional evolutionary conservation, as well as predicted

secondary structure and solvent accessibility.

Here we describe DOMpro, an ab initio machine learning approach for predicting

domains, which uses profiles along with predicted secondary structure and solvent

accessibility in a 1D-recursive neural network (1D-RNN). These networks are also

used for the prediction of secondary structure and solvent accessibility (Pollastri

et al., 2002b,a) in the SCRATCH suite of servers (Baldi and Pollastri, 2003; Cheng

et al., 2005a). Unlike previous neural network-based approaches (Liu and Rost,

2004; Nagarajan and Yona, 2004), the direct use of profiles in DOMpro is based on

the assumption that sequence motifs and their level of conservation in the boundary

regions are different from those found in the rest of the protein. The final assignment

of protein domains is the result of post-processing and statistical inference on the

output of the 1D-RNN.
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3.2 Methods

3.2.1 Data

DOMpro is trained and tested on a curated dataset derived from the annotated

domains in the CATH domain database, version 2.5.1. Because the CATH database

contains only the sequences of domain regions, sequences from the Protein Data

Bank (PDB)(Berman et al., 2000) must be incorporated to reconstruct entire chains.

Once the chains are reconstructed, short sequences (< 40 residues) are filtered out.

UniqueProt (Mika and Rost, 2003) is then used to reduce sequence redundancy

in the dataset by ensuring that no pair of sequences have a HSSP value greater

than 5. The HSSP value between two sequences is a measure of their similarity and

takes into account both sequence identity and sequence length. A HSSP value of 5

corresponds roughly to a sequence identity of 25% in a global alignment of length

250.

Finally, the secondary structure and relative solvent accessibility are predicted

for each chain using SSpro and ACCpro (Baldi and Pollastri, 2003; Pollastri et al.,

2002b,a). Using predicted secondary structure and solvent accessibility values rather

than the true values, which can be easily obtained using the DSSP program (Kabsch

and Sander, 1983), gives us a more realistic and objective evaluation since the actual

secondary structure and solvent accessibility are not known during the prediction

phase. To leverage evolutionary information, PSI-BLAST (Altschul et al., 1997) is

used to generate profiles by aligning all chains against the Non-Redundant (NR)

database, as in other methods (Jones, 1999b; Przybylski and Rost, 2002; Pollastri

et al., 2002b).

After redundancy reduction, our curated dataset contained 354 multi-domain

chains and 963 single-domain chains. The ratio of single to multi-domain chains
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Figure 3.1: Frequency of single and multi-domain chains in the redundancy-reduced
dataset.

reflects the skewed distribution of single-domain chains in the PDB. Figure 3.1 shows

the frequency of single and multi-domain chains in the redundancy-reduced dataset.

Figure 3.2 shows the distribution of chain lengths among single and multi-domain

chains.

Because the recursive neural networks are trained to recognize domain bound-

aries, only multi-domain proteins are used during the training process. During the

training and testing of the neural networks on multi-domain proteins, ten fold cross-

validation is used. Additional testing is performed on single-domain proteins using

models trained with multi-domain proteins.
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Figure 3.2: Distributions of the lengths of single and multi-domain chains in the
redundancy-reduced dataset.

3.2.2 The Inputs and Outputs of the One Dimensional Re-

cursive Neural Network

The problem of predicting domain boundaries can be viewed as a binary classifica-

tion problem for each residue along a one-dimensional protein chain. Each residue

is labeled as being either a domain boundary residue or not.

Specifically, the target class for each residue is defined as follows. Following

the conventions used in prior domain boundary prediction papers (Liu and Rost,

2004; Marsden et al., 2002), residues within 20 amino acids of a domain bound-

ary are considered domain boundary residues and all other residues are considered

non-boundary residues. A variety of machine learning methods can be applied to

this classification problem, such as probabilistic graphical models, kernel methods,

and neural networks. DOMpro employs 1-D recursive neural networks (1D-RNNs)

(Baldi and Pollastri, 2003), which have been applied successfully in the prediction
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of secondary structure, solvent accessibility, and disordered regions (Cheng et al.,

2005c; Pollastri et al., 2002b,a). For each chain, the input is the array I, where the

length of I is equal to the number of residues in the chain. Each element Ii is a

vector with 25 components, which encodes the profile as well as secondary structure

and relative solvent accessibility at position i. Twenty components of the vector Ii

are real numbers corresponding to the amino acid profile probabilities. The other

five components are binary: three correspond to the predicted secondary structure

class of the residue (Helix, Strand, or Coil) and two correspond to the predicted

relative solvent accessibility of the residue (i.e., under or over 25% exposed).

The training target for each chain is the 1-D binary array T , where each Ti equals

1 or 0 depending on whether or not the residue at position i is within a boundary

region. Neural networks (and most other machine learning methods) can be trained

on the dataset to learn a mapping from the input array I onto an output array

O, where Oi is the predicted probability that the residue at position i is within a

domain boundary region. The goal is to make the output O as close as possible to

the target T .

3.2.3 Post-Processing of the 1D-RNN Output

The raw output from the 1D-RNN is quite noisy (see Figure 3.3). DOMpro uses

smoothing to help correct for the random noise that is the result of false positive hits.

The smoothing is accomplished by averaging over a window of length three around

each position. Figure 3.3 shows how this smoothing technique helps to reduce the

noise found in the raw output of the 1D-RNN. After smoothing, a domain state

(boundary/not boundary) is assigned to each residue by thresholding the network’s

output at 0.5.

While smoothing the neural network’s output helps correct for random spikes, it
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Figure 3.3: Example of smoothing applied to the raw output from the 1D-RNN

does not necessarily create the long, continuous segments of boundary residues that

are required for domain assignment. Therefore, further inference on the output is

required.

DOMpro infers the domain boundary regions from the residues predicted as

domain boundaries by pattern matching on the discretized output. Any section

of the output that matches the regular expression pattern ((B+N{0,m})+B+) is

considered a domain boundary region, where B is a predicted boundary residue, N

is a predicted non-boundary residue and m is the maximum separation between two

boundary residues that should be merged into one region.

Once DOMpro has inferred all possible domain boundary regions, it needs to

identify false positive domain boundary regions. DOMpro considers the boundary

region’s length a measure of its signal strength. Figure 3.4 shows that there is a

clear difference between the length distributions of true domain boundary regions

and false domain boundary regions. Based on these statistics, domain boundary

regions shorter than three residues are considered false positive hits and are ignored.

The target sequence is then cut into domain segments at the middle residue of
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Figure 3.4: Histograms of length distributions for false positive and true positive
boundary regions

each boundary region. A target sequence with no predicted domain boundaries is

classified as a single-domain chain. The final step of DOMpro is to assign domain

numbers to each predicted domain segment. Our method simply assigns each domain

segment to a separate domain, ignoring at this time the relatively rare problem of

non-contiguous domains.

3.3 Results

The evaluation and comparison of domain predictors is complicated by the existence

of several domain datasets/databases that sometimes conflict with each other (Liu

and Rost, 2004). Thus, the performance of a predictor on a dataset other than

its training dataset is limited by the percentage of agreement between the training

and testing datasets. With this caveat in mind, we observe that DOMpro correctly

predicts the number of domains for 69% of the combined dataset of single and multi-

domain proteins. DOMpro achieves a sensitivity of 76% and specificity of 85% with

respect to the single-domain proteins and sensitivity of 59% and specificity of 38%
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with respect to the two-domain proteins.

The precise prediction of domain boundaries for multi-domain proteins is more

difficult than the prediction of the number of domains (domain number). DOM-

pro is able to correctly predict the domain number and boundary for 25% of the

two-domain proteins in our dataset derived from CATH. Additionally, DOMpro is

able to correctly predict both the domain number and domain boundary location

for 20% of the multi-domain chains. For the evaluation of multi-domain chains,

we consider that a domain boundary has been correctly identified if the predicted

domain boundary is within 20 residues of the true domain boundary as annotated

in the CATH database. This definition is consistent with previous work (Marsden

et al., 2002).

DOMpro was independently evaluated along with 12 other predictors in the Crit-

ical Assessment of Fully Automated Structure Prediction 4 (CAFASP-4)(Fischer

et al., 1999; Saini and Fischer, 2005). The results, kindly provided by Dr. Saini, are

available at http://cafasp4.bioinformatics.buffalo.edu/dp/update.html. The evalua-

tion set consisted of 41 single-domain CASP6 targets and 17 two-domain CASP6

targets (58 targets in total). Since this evaluation set contains only comparative

modeling and fold recognition targets (no new fold targets), predictors based on

templates have an advantage in this evaluation. DOMpro achieved a higher sen-

sitivity and specificity than one method that uses homologous information and all

other ab initio predictors including Armadillo, Biozon (Nagarajan and Yona, 2004),

Dompred-DPS (Bryson et al., 2005), Globplot (Linding et al., 2003b), and Mateo

(Lexa and Valle, 2003), averaged over all of the targets (See Table 3.1 and Figure

3.5). However, the performance of the top three ab initio predictors (DOMpro,

Globplot, and Dompred-DPS) is close. The specificity and sensitivity of DOMpro

is 4-5% higher than the template-based method ADDA (Heger and Holm, 2003),

35



Table 3.1: CAFASP-4 evaluation results

Predictor 1-D Sen. 1-D Spec. 2-D Sen. 2-D Spec. All Sen. All Spec.
DOMpro 0.85 0.76 0.35 0.50 0.71 0.71
ADDA †‡ 0.85 0.73 0.18 0.33 0.66 0.67
Armadillo † 0.10 1.00 0.24 0.18 0.14 0.31
Biozon † 0.10 1.00 0.35 0.19 0.17 0.29
Domssea ‡ 0.80 0.75 0.29 0.63 0.66 0.73
Dompred-DPS † 0.68 0.78 0.47 0.50 0.62 0.69
Dopro ‡ 0.85 0.88 0.53 0.64 0.76 0.81
Globplot † 0.83 0.71 0.18 0.60 0.64 0.70
InterProScan ‡ 0.93 0.75 0.24 0.67 0.72 0.74
Mateo † 0.51 0.78 0.12 0.15 0.40 0.58
SSEP-Domain ‡ 0.93 0.84 0.47 0.73 0.79 0.82
RobettaGinzu ‡ 0.80 0.92 0.53 0.69 0.72 0.86
Rosettadom ‡ 0.83 0.94 0.71 0.75 0.79 0.88
† had lower sensitivity and specificity averaged over all targets compared to DOMpro

‡ template based methods

similar to Domssea (Marsden et al., 2002), and lower than other template-based

methods such as Dopro (von Ohsen et al., 2004), InterProScan (Zdobnov and Ap-

weiler, 2001), SSEP-Domain (Gewehr and Zimmer, 2005), and RobettaGinzu (Chi-

vian et al., 2003).

3.4 Conclusions

We have created DOMpro, an ab initio predictor of protein domains using a recursive

neural network that leverages evolutionary information in the form of profiles and

predicted secondary structure and relative solvent accessibility. The raw output of

the 1D-RNN in DOMpro goes through a post-processing procedure to produce the

final domain segmentation and assignment. In the CAFASP-4 evaluation, DOMpro

was ranked among the top ab initio domain predictors.
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Figure 3.5: Sensitivity vs specificity in CAFASP-4

Despite recent advances, domain prediction remains a challenge. A 25% accuracy

on the prediction of two-domain proteins is encouraging but not sufficient for most

applications and clearly there is room for improvement. We are currently adding a

module to DOMpro which would incorporate known domain assignments for pro-

teins that are homologous to structures in the PDB and CATH databases. We are

also training ensembles of predictors, although preliminary experiments so far have

not lead to significant improvements. In addition, we are focusing on the predic-

tion/classification of discontinuous domains. To overcome the current limitations

of DOMpro and the naive assignment of domain numbers, we are experimenting

with the use of predicted contact maps, as well as domain length statistics, in the

assignment of domain boundaries and the creation of domains consisting of multiple
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non-adjacent domain segments. The contact maps are predicted using 2D-RNNs

(Baldi and Pollastri, 2003; Pollastri and Baldi, 2002). The basic idea is that do-

mains should be associated with a relatively higher density of contacts. Following

this logic, two discontinuous segments having the proper length statistics and a suf-

ficient number of inter-segment residue-residue contacts would be predicted to be in

the same domain.

38



Chapter 4

Prediction of Protein Stability

Changes for Single-Site Mutations

Using Support Vector Machines

4.1 Introduction

Single amino acid mutations can significantly change the stability of a protein struc-

ture. Thus, biologists and protein designers need accurate predictions of how single

amino acid mutations will affect the stability of a structure (Dahiyat, 1999; De-

Grado, 1999; Street and Mayo, 1999; Saven, 2002; Mendes et al., 2002; Bolon et al.,

2003; Looger et al., 2003). The energetics of mutants has been studied extensively

both through theoretical and experimental approaches. The methods for predict-

ing protein stability changes resulting from single amino acid mutations can be

classified into four general categories: (1) physical potential approach; (2) statis-

tical potential approach; (3) empirical energy function approach; and (4) machine

learning approach (Capriotti et al., 2004). The first three categories are similar

39



in that they all rely on energy functions (Guerois et al., 2002). Physical poten-

tial approaches (Bash et al., 1987; Dang et al., 1989; Prevost et al., 1991; Tidor and

Karplus, 1991; Lee and Levitt, 1991; Miyazawa and Jernigan, 1994; Lee, 1995; Pitera

and Kollman, 2000) directly simulate the energy of the atomic force fields present

in a given structure and, as such, remain too computationally intensive to be ap-

plied on large datasets. (Guerois et al., 2002) Statistical potential approaches (Lee,

1995; Sippl, 1995; Gilis and Rooman, 1997; Topham et al., 1997; Gilis and Rooman,

1999; Carter et al., 2001; Kwasigroch et al., 2002; Zhou and Zhou, 2002, 2004) derive

potential functions using statistical analysis of environmental propensities, substitu-

tion frequencies, and correlations of contacting residues in solved tertiary structures.

Statistical potential approaches achieve predictive accuracy comparable to physical

potential approaches. (Lazaridis and Karplus, 2000)

The empirical energy function approach (Guerois et al., 2002; Villegas et al.,

1996; Munoz and Serrano, 1997; Lacroix et al., 1998; Takano et al., 1999; Domingues

et al., 2000; Taddei et al., 2000; Funahashi et al., 2001; Bordner and Abagyan, 2004)

derives an energy function of weighted combinations of physical energy terms, sta-

tistical energy terms, and structural descriptors, and by fitting the function to the

experimental energy data. From a data fitting perspective, both machine learning

methods (Capriotti et al., 2004; Casadio et al., 1995; Frenz, 2005) and empirical po-

tential methods learn a function for predicting energy changes from an experimental

energy dataset. However, instead of fitting a linear combination of energy terms,

machine learning approaches can learn more complex nonlinear functions of input

mutation, protein sequence, and structure information. This is desirable for captur-

ing complex local and non-local interactions that affect protein stability. Machine

learning approaches such as support vector machines (SVM) and neural networks

are more robust in their handling of outliers than linear methods, thus, explicit out-
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lier detection used by empirical energy function approaches (Guerois et al., 2002)

is unnecessary. Furthermore, machine learning approaches are not limited to using

energy terms; they can readily leverage all kinds of information relevant to protein

stability. With suitable architectures and careful parameter optimization, neural

networks can achieve performance similar to SVMs, We choose to use SVMs in this

study because they are not susceptible to local minima and a general high-quality

implementation of SVMs (SVM-light (Joachims, 1999, 2002)) is publicly available.

Most previous methods use structure-dependent information to predict the sta-

bility changes, and therefore can not be applied when tertiary structure information

is not available. Although non-local interactions are the principal determinant of

protein stability (Gilis and Rooman, 1997), previous research (Gilis and Rooman,

1997; Bordner and Abagyan, 2004; Casadio et al., 1995) shows that local interactions

and sequence information can play important roles in stability prediction. Casadio

et al. (Casadio et al., 1995) uses sequence composition and radial basis neural

networks to predict the energy changes caused by mutations. Gillis and Rooman

(Gilis and Rooman, 1997; Gillis and Rooman, 1996) shows that statistical torsion

potentials of local interactions along the chain based on propensities of amino acids

associated with backbone torsion angles is important for energy prediction, espe-

cially for the partial buried or solvent-accessible residues. The AGADIR algorithm

(Munoz and Serrano, 1997; Lacroix et al., 1998), which uses only local interactions,

has been used to design the mutations that increase the thermostability of pro-

tein structures. Bordner and Abagyan (Bordner and Abagyan, 2004) show that

the empirical energy terms based on sequence information can be used to predict

the energy change effectively, even though accuracy is still significantly lower than

when using structural information. Frenz (Frenz, 2005) uses neural networks with

sequence-based similarity scores for mutated positions to predict protein stability
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changes in Staphylococcal nuclease at 20 residue positions.

Here we develop a new machine learning approach based on support vector ma-

chines to predict the stability changes for single site mutations in two contexts

taking into account structure-dependent and sequence-dependent information, re-

spectively. In the first classification context, we predict whether a mutation will

increase or decrease the stability of protein structure as in Capriotti et al. (2004).

In this framework, we focus on predicting the sign of the relative stability change

(44G). In many cases, the correct prediction of the direction of the stability change

is more relevant than its magnitude. (Capriotti et al., 2004) In the second regres-

sion context, we use an SVM-based regression method to predict directly the 44G

resulting from single site mutations, as most previous methods do. A direct predic-

tion of the value of relative stability changes can be used to infer the directions of

mutations by taking the sign of 44G.

There are a variety of ways in which sequence information can be used for protein

stability prediction. Previous methods use residue composition (Casadio et al.,

1995) or local interactions derived from a sequence. Our method directly leverages

sequence information by using it as an input to the SVM. We use a local window

centered around the mutated residue as input. This approach has been applied

successfully to the prediction of other protein structural features, such as secondary

structure and solvent accessibility (Rost and Sander, 1993b,a; Jones, 1999b; Pollastri

et al., 2002b,a). The direct use of sequence information as inputs can help machine

learning methods extract the sequence motifs which are shown to be important for

protein stability (Lacroix et al., 1998). Like the neural network approach (Capriotti

et al., 2004), we take advantage of the large amount of experimental mutation data

deposited in the ProTherm (Gromiha et al., 2000) database to train and test our

method. On the same dataset compiled in (Capriotti et al., 2004), our method
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yields a significant improvement over previous energy-based and neural network-

based methods using 20-fold cross-validation.

An important methodological caveat results from the dataset containing a sig-

nificant number of identical mutations applied to the same sites of the same pro-

teins. We find that it is important to remove the site-specific redundancy to accu-

rately evaluate the prediction performance for mutations at different sites. On the

redundancy-reduced dataset, the prediction accuracy obtained using only sequence

information alone is close to the accuracy obtained using structure-dependent infor-

mation. Thus, our method can make accurate predictions in the absence of tertiary

structure information. Furthermore, to estimate the performance on unseen and

nonhomologous proteins, we remove the mutations associated with the homologous

proteins and split the remaining mutations by individual proteins. We use the mu-

tations of all proteins except for one to train the system and use the remaining one

for testing (leave-one-out cross validation). Thus we empirically estimate how well

the method can be generalized to unseen and nonhomologous proteins.

4.2 Materials and Methods

4.2.1 Data

We use the dataset S1615 compiled by Capriotti et al. (Capriotti et al., 2004). S1615

is extracted from the ProTherm (Gromiha et al., 2000) database for proteins and

mutants. The dataset includes 1615 single site mutations obtained from 42 different

proteins. Each mutation in the dataset has six attributes: PDB code, mutation,

solvent accessibility, pH, temperature, and energy change (44G). To make values

of solvent accessibility, pH, and temperature near the same scale as other attributes,

they are divided by 100, 10, and 100 respectively. If the energy change 44G is
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positive, the mutation increases stability and is classified as a positive example.

If 44G is negative, the mutation is destabilizing and is classified as a negative

example. For the classification task, there are 119 redundant examples having the

exactly same values as some other example for all six attributes, provided only the

sign of the energy changes is considered. These examples correspond to identical

mutations at the same sites of the same proteins with the same temperature and

pH, only the magnitudes of the energy changes are slightly different. To avoid

any redundancy bias, we remove these examples for classification task. We refer

to this redundancy-reduced dataset as SR1496. To leverage both sequence and

structure information, we extract full protein sequences and tertiary structures from

the Protein Data Bank (Berman et al., 2000) for all mutants according to their PDB

codes.

We test three different encoding schemes (SO: sequence only, TO: structure only,

ST: sequence and structure). (See section 2.2, below) Since solvent accessibility

contains structure information, to compare SO with TO and ST fairly, we test SO

scheme without using solvent accessibility on the SR1496 dataset. All schemes are

evaluated using 20-fold cross validation. Under this procedure, the dataset is split

randomly and evenly into 20 folds. 19 folds are used as the training dataset and the

remaining fold is used as the test dataset. This process is repeated 20 times where

each fold is used as the test dataset once. Performance results are averaged across

the 20 experiments. The cross-validation results are compared with similar results

in the literature obtained using a neural network approach (Capriotti et al., 2004).

Using the same experimental settings as in Capriotti et al. (2004), the subset S388 of

S1615 dataset is also used to compare our predictor with other predictors based on

potential functions and available over the web. The S388 dataset includes 388 unique

mutations derived under physiological conditions. We gather the cross validation
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predictions restricted to the data points in the S388 dataset, and then compute the

accuracy and compare it with the three energy function based methods (Guerois

et al., 2002; Kwasigroch et al., 2002; Zhou and Zhou, 2002; Gillis and Rooman,

1996) available over the web.

There is an additional subset of 361 redundant mutations that are identical to

other mutations in the S1615 dataset, except for difference in temperature or pH.

The energy changes of these mutations are highly correlated; and the signs of the

energy changes are always same with a few exceptions. This is in contrast to the

S388 subset, which contains no repeats of the same mutations at the same site. We

find that it is important to remove this redundancy for comparing the performance

of structure-dependent and sequence-dependent encoding schemes. Thus we derive

a dataset without using solvent accessibility, pH, and temperature information and

remove all the mutations–with the same or different temperature and pH–at the

same site of the same proteins. The stringent dataset includes 1135 mutations in

total. We refer to this dataset as SR1135.

In order to estimate the performance of mutation stability prediction on unseen

and nonhomologous proteins, we use also UniqueProt (Mika and Rost, 2003) to

remove homologous proteins by setting HSSP threshold to 0, so that the pairwise

similarity between any two proteins is below 25%. Because the proteins in S1615

dataset are very diverse, only six proteins (1RN1, 1HFY, 1ONC, 4LYZ, 1C9O, and

1ANK) are removed. We remove 154 mutations associated with these proteins.

Then we split the mutation data into 36 folds according to the remaining 36 pro-

teins. For each fold, we further remove all the identical mutations at the same sites.

There are 1023 mutations left in total. We refer to this dataset as SR1023. We

apply an encoding scheme using only sequence information to this dataset without

using solvent accessibility, pH, and temperature. We use 36-fold cross validation to
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evaluate the scheme by training SVMs on 35 proteins and testing them on the re-

maining one. Thus, we empirically estimate how well the method can be generalized

to unseen and nonhomologous proteins.

For the regression task, we use sequence or structure information without consid-

ering solvent accessibility, temperature, and pH. We remove the identical mutations

at the same sites and with identical energy changes. The final dataset has 1539 data

points. We refer to this dataset as SR1539.

4.2.2 Inputs and Encoding Schemes

Most previous methods, including the neural network approach (Capriotti et al.,

2004), use tertiary structure information for the prediction of stability changes and

in general do not use the local sequence context directly. To investigate the effec-

tiveness of sequence-dependent and structure-dependent information, we use three

encoding schemes: Sequence-Only (SO), Structure-Only (TO) and the combinations

of sequence and structure (ST). All the schemes include the mutation information

consisting of 20 inputs, which code for the 20 different amino acids. We set to -1

the input corresponding to the deleted residue and to 1 the new introduced residue;

all other inputs are set to 0. (Capriotti et al., 2004)

The SO scheme encodes the residues in a window centered on the target residue.

We investigate how window size affects prediction performance. A range of window

sizes work well for this task, however, we chose to use window of size 7 because it is

the smallest size which produces accurate results. As more data becomes available,

we imagine a larger window may become helpful. Since the target residue is already

encoded in the mutation information, the SO scheme only needs to encode three

neighboring residues on each side of the target residue. 20 inputs are used to encode

the residue type at each position. So the total input size of the SO scheme is
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140 (6*20+20). The TO scheme uses 20 inputs to encode the three-dimensional

environment of the target residue. Each input corresponds to the frequency of each

type of residue within a sphere of 9 Å radius around the target mutated residue.

The cut-off distance threshold of 9 Å between Ca atoms worked best in the previous

study (Capriotti et al., 2004). So the TO encoding scheme has 40 (20+20) inputs.

The ST scheme containing both sequence and structure information in SO and TO

scheme has 160 inputs (6*20+20+20).

On the SR1496 dataset, two extra inputs (temperature, and pH) are used with

SO scheme; three extra inputs (solvent accessibility, temperature, and pH) are used

with the TO and ST schemes. These additional inputs are not used for all other

experiments on the SR1135, SR1023, and SR1539 datasets.

4.2.3 Prediction of Stability Changes Using Support Vector

Machines

From a classification standpoint, the objective is to predict whether a mutation

increases or decreases the stability of a protein, without concern for the magnitude

of the energy change, as in Capriotti et al. (2004). From a regression perspective,

the objective is to predict the actual value of 44G. Here we apply SVMs (Vapnik,

1998) (see (Burges, 1998; Smola and Scholkopf, 1998) for tutorials on SVMs) to the

stability classification and regression problems.

The SVM provides nonlinear function approximation by nonlinearly mapping

the input vectors into high dimensional feature space and using linear methods

for regression or classification in feature space (Vapnik, 1998, 1995; Drucker et al.,

1997; Schölkopf and Smola, 2002). Thus SVMs, and more generally kernel meth-

ods, combine the advantages of linear and nonlinear methods by first embedding
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(a) no linear separating (b) linear seprating hyperplane in 
       feature space Hhyperplane in input space X

(c) Corresponding non−linear separating
      surface in input space X

Figure 4.1: Classification with SVM. (a) The negative and positive examples (white
and gray circles) can not be linearly separated in input space X . (b) Instead of
looking for a separating hyperplane (thick line) directly in the input space, SVM
maps training data points implicitly into a feature space H through a function φ

in which a linear hyperplane is computed. (c) This hyperplane corresponds to a
nonlinear complex surface in the original input space. The virtual lines in the
feature space are the boundary of positive and negative examples respectively and
the distance between them is the margin of SVM.

the data into a feature space equipped with a dot product and then using linear

methods in feature space to perform classification or regression tasks based on the

dot product between data points. One important feature of SVMs is that com-

putational complexity is reduced because data points do not have to be explicitly

mapped to the high dimensional feature space. Instead SVMs use a kernel function,

K(x, y) = φ(x) ·φ(y) to calculate the dot product of φ(x) and φ(y) implicitly, where

x and y are input data points, φ(x) and φ(y) are the corresponding data vectors of

x and y in feature space, and φ is the map from input space to feature space. This

significantly reduces the computation cost. Figure 4.1 illustrates how SVM maps

nonlinearly separatable task into feature space and then finds a linear separating

hyperplane with the maximum margin in the feature space. Figure 4.2 shows how

SVM constructs a linear regression line in feature space for nonlinearly related data

points in input space.

Given a set of data points S (S+ denotes the subset of positive training data

points (44G > 0 ) and S− denotes the subset of negative training data points
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(b) linear regression line in feature space H(a)non−linear function in input space X (c)corresponding non−linear regression
in input space X

Figure 4.2: Regression with SVM. (a) The data points can not be fitted by a linear
regression line in input space X . (b) SVM maps data points implicitly into a feature
space H through a function φ in which a linear regression line is computed. (c)
This linear regression line corresponds to a nonlinear regression curve in the original
input space. The two virtual lines centered around regression line in feature space
form a regression tube with width 2ε.

(44G < 0)), based on structure risk minimization theory (Vapnik, 1998, 1995;

Drucker et al., 1997; Schölkopf and Smola, 2002), SVMs learn a classification func-

tion f(x) in the form of

f(x) =
∑

xi∈S+

αiK(x, xi) −
∑

xi∈S−

αiK(x, xi) + b

or a regression function in the form of

f(x) =
∑

xi∈S

(αi − α∗
i )K(x, xi) + b

where αi or α∗
i are non-negative weights assigned to the training data point

xi during training by minimizing a quadratic objective function and b is the bias

term. K is the kernel function, which can be viewed as a function for computing

the similarity between two data points. Thus the function f(x) can be viewed as

a weighted linear combination of similarities between training data points xi and

target data point x. Only data points with positive weight α in the training dataset
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affect the final solution - these are called support vectors. For classification problems,

a new data point x is predicted to be positive (44G > 0) or negative (44G < 0)

by taking the sign of f(x). For regression, f(x) is the predicted value of 44G.

We use SVM-light (http://svmlight.joachims.org) (Joachims, 1999, 2002) to train

and test our methods. We experimented with several common kernels including

linear kernel, Gaussian radial basis kernel (RBF), polynomial kernel, and sigmoid

kernel. In our experience, the RBF (e−γ||x−y||2 or e−
||x−y||2

σ2 ) works best for muta-

tion stability prediction. Using the RBF kernel, f(x) is actually a weighted sum

of Gaussians centered on the support vectors. Almost any separating boundary or

regression function can be obtained with this kernel (Vert et al., 2004), thus it is im-

portant to tune the parameters of SVMs to achieve good generalization performance

and void overfitting. We adjust three critical parameters in both classification and

regression. For both tasks, we adjust the width parameter γ of the RBF kernel and

regularization parameter C. γ is the inverse of the variance (σ2) of the RBF and

controls how peaked are the Gaussians centered on the support vectors. The bigger

is γ, the more peaked are the Gaussians, and the more complex are the resulting

decision boundaries (Vert et al., 2004). C is the maximum value that weights (α)

can have. C controls the trade-off between training errors and the smoothness of

f(x) (particularly, the margin for classification) (Vapnik, 1998, 1995; Drucker et al.,

1997; Schölkopf and Smola, 2002). A larger C corresponds to less training errors

and a more complex (less smooth) function f(x) which can overfit training data.

For classification, the ratio of penalty of training error between positive examples

and negative examples, is another parameter that we tune. A penalty ratio >

1 penalizes the training errors of positive examples more than that of negative

examples. For regression, the width of the regression tube (ε) which controls the

sensitivity of the cost associated with training errors (f(x) − 44G), needs to be
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tuned as well. The training error within range [−ε, +ε] does not affect the regression

function.

The three parameters for each task (penalty ratio, γ, and C for classification;

tube width, γ, and C for regression) are optimized on the training data. For each

cross-validation fold, we optimize these parameters using the LOOCV (leave one out

cross validation) procedure. Under the LOOCV procedure, for a training dataset

with N data points, in each round, one data point is held out and the model is

trained on the remaining N − 1 data points. Then the model is tested on the held-

out data point. This process is repeated N times until all data points are tested

once and the overall accuracy is computed for the training dataset.

For all the parameter sets we tested, we choose a set of parameters with the best

accuracy to build the model on the training dataset; and then it is blindly tested

on the testing dataset. A set of good parameters for classification on the SR1496

dataset is (γ=0.1, penalty ratio=1, C=5) for SO scheme, (γ=0.1, penalty ratio=2,

C=5) for TO schemes, and (γ=0.1, penalty ratio=2, C=5) for ST scheme. A set

of good parameters on the SR1135 dataset is (γ=0.05, penalty ratio=1, C=2) for

SO scheme, (γ=0.05, penalty ratio=1, C=4) for TO scheme, and (γ=0.06, penalty

ratio=1, C=0.5) for ST scheme. For regression task, a set of good parameters for

all schemes is (γ=0.1, tube width=0.1, C=5).

4.3 Results and Discussion

For classification, we use a variety of standard measures to evaluate the prediction

performance of our method and compare it with previous methods. In the following

equations, TP, FP, TN, and FN refer to the number of true positives, false positives,

true negatives, and false negatives respectively. The measures we use include corre-
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Table 4.1: Results(correlation coefficient, accuracy, specificity, sensitivity of both
positive and negative examples) on the SR1496 dataset. The last row (NeuralNet*)
is the current best results reported in (Capriotti et al., 2004).

Method Corr. Coef. Accuracy Sens.(+) Spec.(+) Sens.(-) Spec.(-)

SO 0.59 0.841 0.711 0.693 0.897 0.888
TO 0.60 0.845 0.711 0.712 0.895 0.895
ST 0.60 0.847 0.671 0.733 0.910 0.883
NeuralNet* 0.49 0.810 0.520 0.710 0.910 0.830

lation coefficient [(TP*TN-FP*FN)/((TP+FN)*(TP+FP)*(TN+FN) *(TN+FP))

1/2], accuracy [(TN+TP) / (TN+TP+FN+FP)], specificity [TP/(TP+FP)] and sen-

sitivity [TP/(TP+FN)] of positive examples, and specificity [TN/(TN+FN)] and

sensitivity [TN / (TN+FP)] of negative examples.

Table 4.1 reports the classification performance of three schemes on the SR1496

dataset. The results show that the performance of all three schemes is improved over

neural network approach (Capriotti et al., 2004) using most measures, even though

we use redundancy reduced dataset instead of the S1615 dataset. (On the original

S1615 dataset, the accuracy is about 85-86% for all three schemes). For instance,

on average, accuracy is improved by 3% to about 84%, and correlation coefficient is

increased by 0.1. The sensitivity of positive examples is improved by more than 10%

using these three schemes, while the specificity of positive examples is very similar.

The sensitivity of negative examples using the SO and TO schemes is slightly worse

than neural network approach, but the specificity of negative examples is improved

by more than 5% over the neural network approach. The accuracy of the SO scheme

is slightly lower than that of the TO and ST schemes.

Following the same comparison scheme, we compare our methods with energy-

based methods (Guerois et al., 2002; Kwasigroch et al., 2002; Zhou and Zhou, 2002;

Gillis and Rooman, 1996) available on the web and with the neural network method
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Table 4.2: Results on the S388 dataset

Method Corr. Coef. Accuracy Sens.(+) Spec.(+) Sens.(-) Spec.(-)

FOLDX 0.25 0.75 0.56 0.26 0.78 0.93
DFIRE 0.11 0.68 0.44 0.18 0.71 0.90
PoPMuSic 0.20 0.85 0.25 0.33 0.93 0.90
NeuralNet 0.25 0.87 0.21 0.44 0.96 0.90
SO 0.26 0.86 0.30 0.40 0.94 0.90
TO 0.28 0.86 0.31 0.42 0.94 0.91
ST 0.27 0.86 0.31 0.40 0.93 0.91

Table 4.3: Results on the SR1135 dataset

Method Corr. Coef. Accuracy Sens.(+) Spec.(+) Sens.(-) Spec.(-)

SO 0.31 0.78 0.28 0.64 0.95 0.80
TO 0.39 0.79 0.46 0.60 0.90 0.83
ST 0.34 0.79 0.29 0.71 0.97 0.80

(Capriotti et al., 2004) in the classification context on the S388 dataset. We compare

the predictions of the following methods: FOLDX (Guerois et al., 2002), DFIRE

(Zhou and Zhou, 2002) and PoPMuSiC (Kwasigroch et al., 2002; Gillis and Rooman,

1996), and NeuralNet (Capriotti et al., 2004). In Table 4.2, we show the results

obtained with the three schemes (SO, TO, ST) and the four external predictors on

the S388 dataset, where results for the energy function based methods are taken

from (Capriotti et al., 2004). The results show that our method, using the three

encoding schemes for this specific task, performs similarly to or better than, all other

methods using most evaluation measures. For instance, the correlation coefficient

of our method is better than all other methods, while the accuracy is better than

DFIRE, FOLDX, and PoPMuSic, but slightly worse than NeuralNet. FOLDX and

DFIRE have relatively higher sensitivity but lower specificity on positive examples

than other methods.

Table 4.3 reports the results on the SR1135 dataset without any site-specific
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Table 4.4: Specificity and sensitivity of the SO scheme for helix, strand, and coil on
the SR1135 dataset.

Secondary structure Sens.(+) Spec.(+) Sens.(-) Spec.(-)

Helix 0.31 0.67 0.94 0.79
Strand 0.16 0.48 0.97 0.84
Coil 0.30 0.68 0.95 0.79

redundancy. All the schemes do not use solvent accessibility, pH, and tempera-

ture. The results show that the accuracy of the structure-dependent schemes (TO

and ST) are about 1% higher than the sequence-dependent scheme (SO). Specifi-

cally, the correlation coefficient of the TO scheme is significantly higher than the

SO scheme. But the accuracy of the SO scheme is still very close to the accuracy

derived using tertiary structure information . This is probably due to two reasons.

First, the sequence window contains significant amount of information related to the

prediction of mutation stability. Second, the method for encoding structural infor-

mation in the TO and ST schemes is not optimal for the task and does not capture

all structure information that is relevant to protein stability. On this redundancy

reduced dataset, we also compare the accuracy according to the type of secondary

structure encountered at mutation sites. The secondary structure is assigned by

the DSSP program (Kabsch and Sander, 1983). Table 4.4 reports the specificity

and sensitivity for both positive and negative examples according to three types of

secondary structure (helix, strand, and coil) using the SO scheme. The SO scheme

achieves the similar performance on helix and coil mutations. The sensitivity and

specificity for positive examples on β-strands, however, is significantly lower. This

is probably due to the long-range interactions between β-strands.

Table 4.5 reports the results of the SO scheme on the SR1023 dataset after

removing both the homologous proteins and site-specific redundancy. The overall

54



Table 4.5: Results on the SR1023 dataset using the SO scheme

Method Corr. Coef. Accuracy Sens.(+) Spec.(+) Sens.(-) Spec.(-)

SO 0.13 0.74 0.15 0.42 0.93 0.77

Table 4.6: Results(correlation between predicted energy and experimental energy,
and standard error) on the SR1539 dataset using SVM regression.

Scheme SO TO ST

correlation 0.75 0.76 0.75
std 1.10 1.09 1.09

accuracy is 74%. Not surprisingly, the accuracy is lower than the accuracy obtained

when mutations on the homologous and identical proteins are included in the train-

ing and test dataset. The sensitivity and specificity of the positive examples drop

significantly. This indicates that the accuracy of the method depends on having

seen mutations on the similar or identical proteins in the training dataset. The re-

sults show that the prediction of mutation stability on unseen and nonhomologous

proteins remains very challenging.

The performance of SVM regression is evaluated using the correlation between

the predicted energy and experimental energy, and the standard error (std or root

mean square error) of the predictions. Table 4.6 shows the performance of the direct

prediction of 44G using SVM regression with three encoding schemes. The three

schemes have similar performance, where the TO scheme performs slightly better

with a correlation of 0.76, and std of 1.09. Figure 4.3 shows the scatter plots of

predicted energy versus experimental energy using the SO and TO schemes. Overall,

the results show that our method effectively uses sequence information to predict

energy changes associated with single amino acid mutations both in regression and

classification tasks.
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Figure 4.3: (a) The experimentally measured energy changes versus the predicted
energy changes using SVM regression with the SO scheme on the SR1539 dataset.
The correlation is 0.75. The std is 1.10. The slope of the red regression line is
1.03. (b) The experimentally measured energy changes versus the predicted energy
changes using SVM regression with the TO scheme on the SR1539 dataset. The
correlation is 0.76. The std is 1.09. The slope of the red regression line is 1.01.
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4.4 Conclusions

In this study, we have used support vector machines to predict protein stability

changes for single-site mutations. Our method consistently shows better perfor-

mance than previous methods evaluated on the same datasets. We demonstrate that

sequence information can be used to effectively predict protein stability changes for

single site mutations. Our experimental results show that the prediction accuracy

based on sequence information alone is close to the accuracy of methods that de-

pend on tertiary structure information. This overcomes one shortcoming of previous

approaches that require tertiary structures to make accurate predictions. Thus, our

approach can be used on a genomic scale to predict the stability changes for large

numbers of proteins with unknown tertiary structures.
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Chapter 5

Large-Scale Prediction of

Disulphide Bridges Using Kernel

Methods, Two-Dimensional

Recursive Neural Networks, and

Weighted Graph Matching

5.1 Introduction

5.1.1 Disulphide Connectivity

The formation of covalent links between cysteine (Cys) residues by disulphide bridges

is an important and unique feature of protein folding and structure. Simulations

(Abkevich and Shankhnovich, 2000), experiments in protein engineering (Matsumura

et al., 1989; Clarke and Fersht, 1993; Klink et al., 2000), theoretical studies (Betz,

1993; Doig and Sternberg, 1995; Wedemeyer et al., 2000), and even evolutionary
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models (Demetrius, 2000) stress the importance and selective advantage of disul-

phide bridges in stabilizing the native state of proteins. This stabilizing role of disul-

phide bridges derives from a reduction of the number of configurational states, thus

of the entropic cost of folding a polypeptide chain into its native state (Matsumura

et al., 1989). Moreover, disulphide bridges not only contribute to the energetics of

folding but, depending on their number and location, they can also contribute to

catalytic activity (Klink et al., 2000). Thus, knowledge or prediction of disulphide

bridges in a protein is important: it can provide essential insights into its struc-

ture, function, and evolution, as well as valuable long-ranged structural constraints

(Harrison and Sternberg, 1994) that can be incorporated into a protein structure

prediction pipeline. However, it is precisely because disulphide bridges link lin-

early distant portions of a protein that their prediction has remained a considerable

challenge. To address this challenge, here we develop and test new methods that

significantly improve the prediction of disulphide bridges.

AVITGACERDLQCGKGTCCAVSLWIKSVRVCTPVGTSGEDCHPASHKIPFSGQRKMHHTCPCAPNLACVQTSPKKFKCLSK

Figure 5.1: Structure (top) and disulphide bridge connectivity pattern (bottom) of
intestinal toxin 1, PDB code 1IMT. There are five disulphide bridges shown as thick
lines.
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5.1.2 Overview of Disulphide Connectivity Prediction

Only in recent years has the problem of predicting disulphide bridges in a system-

atic manner received sustained attention. (Fariselli and Casadio, 2001; Fariselli

et al., 2002; Klepeis and Floudas, 2003; Vullo and Frasconi, 2004). The prediction

of disulphide bridges can in fact be subdivided into four related prediction sub-

problems (Figure 5.1). First, only a minority of protein chains contain disulphide

bridges. Thus it is desirable to be able to classify protein chains into those contain-

ing disulphide bridges and those that are entirely devoid of disulphide bridges (chain

classification). Second, even in a chain that contains disulphide bridges, not all the

cysteines may be bonded. Thus the second problem is the classification of cysteine

residues into bonded and non-bonded (residue classification). Third, given a pair of

cysteines, one can ask whether they are linked or not by a disulphide bridge (bridge

classification). And fourth, the most important and challenging problem is to deter-

mine all the pairs of cysteines that are bonded to each other by a disulphide bridge

(connectivity prediction). Although these problems can be tackled separately, it is

clear that they are not independent and that “mixed” solutions can also be consid-

ered. Furthermore, tackling them sequentially and independently of each other may

not be always optimal. For instance, deciding in isolation whether a given cysteine

is bonded or not, may fail to take into consideration information about the bonding

state of other cysteines in the same sequence and the obvious global constraint that

the total number of intra-chain disulphide-bonded cysteines must be even. Finally,

it is worth noting that inter-chain disulphide bridges associated with quaternary

structure do occur also. However, they are considerably less frequent and very few

such examples can be found in the Protein Data Bank (PDB) (Berman et al., 2000).

Thus, in the current state of affairs, and consistently with all existing literature,

it is not unreasonable to focus exclusively on intra-chain disulphide bridges. Here
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we address all four problems, with a particular emphasis on the most challenging

problem of predicting intra-chain disulphide connectivity, directly or in combination

with the second and third problems.

None of the approaches published so far in the literature address all four prob-

lems. Published approaches to disulphide connectivity prediction use stochastic

global optimization (Fariselli and Casadio, 2001), combinatorial optimization (Klepeis

and Floudas, 2003) and machine learning techniques (Fariselli et al., 2002; Vullo

and Frasconi, 2004). The early work in Fariselli and Casadio (2001) provides a first,

fairly comprehensive, treatment of disulphide connectivity prediction by reducing

it to a matching problem in a complete weighted graph, where the vertices repre-

sent oxidized cysteines. Edge weights correspond to interaction strengths or contact

potentials between the corresponding pairs of cysteines. The weights are learned

using a simulated annealing approach. A candidate set of bridges is then derived by

finding the maximum weight perfect matching1. The prediction of which cysteines

are oxidized (residue classification) is not addressed in this work. In a subsequent

improvement (Fariselli et al., 2002), neural network predictions are used for labeling

edges with contact potentials, increasing the predictive power and reducing training

time. This method achieves good results in the simplest cases of chains containing

only 2 or 3 bridges.

The method in Vullo and Frasconi (2004) attempts to solve the connectivity pre-

diction problem using a different machine learning approach by modeling candidate

connectivity patterns as undirected graphs (see Fig.5.1, bottom). A recursive neural

network architecture (Frasconi et al., 1998) is trained to score candidate graphs by

their similarity with respect to the correct graph. The vertices of the graphs are

1A perfect matching of a graph (V, E) is a subset E ′ ⊆ E such that each vertex v ∈ V is met
by only one edge in E′.

61



labeled by fixed-size vectors corresponding to multiple alignment profiles in a local

window around each cysteine. During prediction, the score computed by the network

is used to exhaustively search the space of candidate graphs. This method yields

slight improvements over Fariselli et al. (2002) when tested on the same dataset.

Unfortunately, for computational reasons, the applicability of this method remains

limited because it too can only deal with sequences containing a small number of

bridges, in practice up to five.

A different approach to predicting disulphide bridge connectivity is reported in

Klepeis and Floudas (2003), where finding disulphide bridges is part of a more gen-

eral protocol aimed at predicting the topology of β-sheets in proteins. The approach

assumes hydrophobic rather than hydrogen interactions as the main driving force

of β-sheet formation. Residue-to-residue contacts (including Cys-Cys bridges) are

predicted by solving a series of integer linear programming problems in which cus-

tomized hydrophobic contact energies must be maximized. Model constraints define

allowable sheets and disulphide connectivity configurations. The most interesting

aspect of this approach is its ability to predict cysteine-cysteine contacts, without

assuming prior knowledge of the bonding state of the cysteines. This method, how-

ever, cannot be compared with the other approaches because the authors report

validation results on only two relatively short sequences with few bonds (2 and 3).

In contrast, Fariselli and Casadio (2001) and Vullo and Frasconi (2004) assess their

methods on a broad spectrum of sequences.

The simpler problem of predicting whether a given cysteine is bonded or not has

also been addressed using a variety of machine learning methods including neural

networks (NNs), hidden Markov models (HMMS), and support vector machines

(SVMs) (Fariselli et al., 1999; Fiser and Simon, 2000; Martelli et al., 2002; Frasconi

et al., 2002; Ceroni et al., 2003). For instance, SVMs and kernels methods are used
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in Ceroni et al. (2003) to predict in two stages whether a given protein contains

oxidized cysteines – in fact, whether all, none or a mixture of its cysteines are

oxidized – and subsequently to predict the oxidation state of each cysteine. The

best accuracies reported in the literature are around 85%.

We present an integrated, modular, approach to address all four problems. We

leverage evolutionary information in the form of profiles and curated training sets

in combination with kernel methods to address the chain classification problem. We

use two-dimensional graphical models and recursive neural networks to predict the

bonding probability of each pair of cysteines, leveraging in addition secondary struc-

ture and relative solvent accessibility information. These predictions can be derived

for all the cysteines in a given chain, or only for the subset of disulphide-bonded

cysteines, when pre-existing information about residue classification is available. Fi-

nally, we use graph matching methods to infer the disulphide bridge connectivity of

each protein chain, which in turn yields a solution for both the bridge and residue

classification problems, even in the case where the bonding state of individual cys-

teines is not known. Thus, the approach works for both situations where the bonded

state of each cysteine is known or unknown and, after training, produces predictions

that are rapid enough for genome-scale projects.

5.2 Methods

5.2.1 Data Preparation

In order to assess our methods, we used two existing data sets (SP 39 and SP41,

courtesy of Dr. A. Vullo) to compare our results with previously published results.

We also curated a third, larger, data set (SPX), to take advantage of recent growth

in the PDB (Protein Data Bank) (Berman et al., 2000).
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Previous Data Sets (SP39 and SP41)

SP39 is the set described and used in Fariselli et al. (2002); Vullo and Frasconi (2004)

compiled from the Swiss-Prot database (Bairoch and Apweiler, 2000) release no. 39

(October 2000). SP41 is the updated version, compiled with the same filtering

procedures as SP39, using the Swiss-Prot version 41.19 (August 2003). Specifically,

only chains whose structure is deposited in the PDB are retained. Protein chains

with disulphide bonds assigned tentatively or inferred by similarity are filtered out

yielding a data set comprising 966 chains, containing at least one, and up to 24,

disulphide bridges. Because our method is not limited by the number of disulphide

bonds, the entire set of chains is retained. This set contains a subset of 712 sequences

containing at least two disulphide bridges (K ≥ 2)–the case K = 1 being trivial

when the cysteine bonding state is known. By comparison, SP39 contains 446

chains only, with no chain having more than 5 bridges. Thus SP41 contains 266

additional sequences, and 112 of these have more than 10 oxidized cysteines.

In order to avoid biases during the assessment procedure and to perform k-fold

cross validation, SP41 is partitioned into ten different subsets, with the constraint

that sequence similarity between two different subsets be less or equal to 30%. This

is comparable to the criteria adopted in Vullo and Frasconi (2004); Fariselli and

Casadio (2001), where SP39 was split into four subsets. Sequence similarity is

derived by a procedure analogous to the one adopted for building the PDB non-

redundant selection of chains (Hobhom et al., 1992) by running an all-against-all

rigorous Smith-Waterman local pairwise alignment (Smith and Waterman, 1981),

using the BLOSUM65 scoring matrix with gap penalty 12 and gap extension 4.

Pairs of chains with a negative distance (Abagyan and Batalov, 1997), or with an

alignment length shorter than 30 residues, are considered unrelated. To address the
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chain classification problem, we augment the 966 positive sequences in SP41 with

a set of 506 negative sequences, containing no disulphide bridges, taken form PDB

Select (Hobohm and Sander, 1994).

New Dataset (SPX)

We downloaded all the proteins from the PDB on May 17, 2004. Some (26.8%) of

these proteins contain at least one disulphide bridge (6,827 out of 25,465). Among

these 6,827 proteins, 89% (6,058) contain disulphide bridges that are exclusively

intra-chain and these are retained for further processing (Fariselli et al., 1999;

Fariselli and Casadio, 2001; Vullo and Frasconi, 2004). These proteins containing

exclusively intra-chain disulfide bonds yield a total of 10,793 chains, after removal

of short sequences containing less than 12 amino acids. Among these 10,793 chains,

96% (10,378) have at least one intra-chain disulfide bond. The disulfide bond infor-

mation is extracted from the PDB files by analyzing SSBOND records (Westbrook

and Fitzgerald, 2003). To reduce over-representation of particular protein families,

we use UniqueProt (Mika and Rost, 2003), a protein redundancy reduction tool

based on the HSSP (Sander and Schneider, 1991) distance, to choose 1,018 repre-

sentative chains by setting the HSSP cut-off distance to 10. The HSSP distance is

a similarity measure which takes into account sequence length. An HSSP-distance

of 10 between two sequences of length 250 is roughly equivalent to 30% sequence

identity. To leverage and assess the role of secondary structure and solvent acces-

sibility information during prediction, we use DSSP (Kabsch and Sander, 1983) to

annotate secondary structure and solvent accessibility for all selected protein chains.

These sequences contain 5983 cysteines in total, 85% (5,082) of which are involved in

disulphide bridges. These sequences are randomly split into ten subsets of roughly

the same size. During each ten-fold cross validation experiment, nine subsets are
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used for training and the remaining subset is used for validation. Final results are

averaged across the ten cross validation experiments. To address the chain classi-

fication problem, we augment a subset of 897 positive sequences selected with an

even lower HSSP cutoff distance of 5 (roughly below 20% similarity) with a set of

1,650 negative sequences, containing no disulphide bridges, extracted from PDB and

redundancy-reduced using UniqueProt with a stringent HSSP cutoff distance of 0

(no similarity).

5.2.2 Kernel Methods for Chain Classification

Kernels methods (Cristianini and Shawe-Taylor, 2000; Müller et al., 2001; Schölkopf

and Smola, 2002) are an important class of flexible machine learning methods that

have proven useful for several problems in bioinformatics (Jaakkola et al., 2000;

Leslie et al., 2004; Liao and Noble, 2002; Ceroni et al., 2003; Schölkopf et al., 2004;

Lanckriet et al., 2004). The basic idea behind these methods is to try to retain the

elegance and simplicity of linear methods when dealing with nonlinear data, by em-

bedding the original data into a feature space, equipped with a dot product, where

linear methods can be applied to perform classification, regression, and other com-

putational tasks. In practice, a kernel approach really depends on two independent

modules: (1) a module for computing the kernel and the Gram matrix; and (2) a

module for computing the optimal manifold (usually a hyperplane in classification

problems) in feature space, typically using techniques from quadratic convex opti-

mization. Since relatively standard packages exist to cover the second module, here

for conciseness we focus on the description of the kernels and refer the readers to

Schölkopf and Smola (2002) for additional details about kernel methods. We use six

different kernels (Spectrum, Mismatch, Profile, Smith Waterman, Local Alignment,

and Fisher) to classify protein chains, according to whether they contain at least
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one disulphide bridge or not.

Spectrum Kernel

Spectrum kernels for sequences are derived by constructing, for each sequence x, the

feature vector φk(x) counting the occurrences of all possible substrings of length k

(Leslie et al., 2002). Similarity between spectral vectors can be computed by simple

scalar product, or further processed using Gaussian exponentials or other positive

convex functions (Schölkopf and Smola, 2002).

Mismatch Kernel

Mismatch kernels (Kuang et al., 2005) are a variation of spectrum kernels which

allows inexact matching of substrings. Specifically, mismatch kernels count co-

occurrences of substrings of length k, allowing up to m ≤ k mismatches, between

the two input sequences. Like spectrum kernels, mismatch kernels can be computed

efficiently by using trie data structures (suffix trees).

Profile Kernel

Profile kernels (Kuang et al., 2005) are another variation on mismatch kernels

which use a position-dependent mutation neighborhood for inexact matching of

subsequences of length k. The local neighborhood is defined using probabilistic

profiles, such as those produced by the PSI-BLAST algorithm, by aligning the se-

quences to the NR database. A given substring is in the local neighborhood if

its negative log probability, according to the profile, is smaller than some thresh-

old σ. Once the profiles have been derived, profile kernels can also be computed

efficiently using a trie data structure. In the simulations, for each sequence in

the SP41 or SPX dataset, profiles are derived using two iterations of PSI-BLAST
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(Altschul et al., 1997) against the NR database with default parameter settings.

Software for computing spectrum, mismatch, and profile kernels is available from

http://www1.cs.columbia.edu/compbio/string-kernels/.

Smith-Waterman Kernel

The SW kernel is an empirical kernel technique (Schölkopf and Smola, 2002) which

uses the E-values of a Smith-Waterman alignment score as a measure of similarity

and maps each sequence into a feature vector consisting of its SW scores with all

the input training sequences.

Local Alignment Kernel

The local alignment kernel is a variation on the SW kernel constructed to ensure

positivity conditions (Mercer kernel conditions Schölkopf and Smola (2002)) using

dynamic programming. It is described in detail in Saigo et al. (2004).

Fisher Kernel

Fisher kernels are derived from probabilistic generative models of the data. Here we

train a protein HMM (Baldi and Brunak, 2001) on the positive examples using the

SAM software package available at www.cse.ucsc.edu/research/compbio/sam.html

(with local alignment option “SW 2” and Dirichlet prior option “recode3.20comp”)

The feature vector (Fisher score) is obtained from the derivatives of the likelihood

of a sequence with respect to the HMM parameters (see Jaakkola et al. (2000)

for details). It is obtained using the “get fisher scores” function of SAM with the

“fisher feature match” option which ensures that only matching states are consid-

ered for scoring. The Fisher scores are then fed into a Gaussian kernel.
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Kernel Combinations

Basic algebraic operations such as addition, multiplication, and exponentiation

preserve the positive properties of a kernel matrix and provide a mechanism for

combining information from different kernels. Here we experimented with con-

vex linear combinations of kernels, in particular with simple additivity where a

new kernel matrix K(x, y) = K1(x, y) + K2(x, y) is constructed using two normal-

ized kernel matrices K1 and K2 with the corresponding feature vector defined by

φ(x) = (φ1(x), φ2(x)). These kernel combinations did not seem to lead to significant

improvements and therefore are not discussed in detail.

5.2.3 Recursive Neural Networks to Predict Cysteine Pair-

ing Probabilities

To predict disulphide connectivity patterns, we use the 2D DAG-RNN (Directed

Acyclic Graph-Recursive Neural Network) approach described in (Baldi and Pollas-

tri, 2003), whereby a suitable Bayesian network is recast, for computational effec-

tiveness, in terms of recursive neural networks. Local conditional probability tables

in the underlying Bayesian network are replaced by deterministic relationships be-

tween a variable and its parent node variables. These functions are parameterized

by neural networks using appropriate weight sharing, as described below. Here the

underlying DAG for disulphide connectivity has 6 2D-layers: input, output, and four

hidden layers (Figure 5.2(a)). Vertical connections, within an (i, j) column, run from

input to hidden and output layers, and from hidden layers to output (Figure 5.2(b)).

In each one of the four hidden planes, square lattice connections are oriented to-

wards one of the four cardinal corners. Detailed motivation for these architectures

can be found in Baldi and Pollastri (2003) and a mathematical analysis of their
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Figure 5.2: (a) General layout of a DAG for processing two-dimensional objects such
as disulphide contacts, with nodes regularly arranged in one input plane, one output
plane, and four hidden planes. In each plane, nodes are arranged on a square lattice.
The hidden planes contain directed edges associated with the square lattices. All the
edges of the square lattice in each hidden plane are oriented towards one of the four
possible cardinal corners: NE, NW, SW, SE. Additional directed edges run vertically
within a vertical column from the input plane to each hidden plane, and from each
hidden plane to the output plane. (b) Connections within a vertical column (i, j) of
the DAG. Iij represents the input, Oij the output, and NEij represents the hidden
variable in the North-East hidden plane. Similarly for the other hidden variables.
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relationships to Bayesian networks in Baldi and Rosen-Zvi (2005). The essential

point is that they combine the flexibility of graphical models with the deterministic

propagation and learning speed of artificial neural networks. Unlike traditional neu-

ral networks with fixed-size input, these architectures can process inputs of variable

structure and length, and allow lateral propagation of contextual information over

considerable length scales.

In a disulphide contact map prediction, the (i, j) output represents the probabil-

ity of whether the i-th and j-th cysteines in the sequence are linked by a disulphide

bridge or not. This prediction depends directly on the (i, j) input and the four-

hidden units in the same column, associated with omni-directional contextual prop-

agation in the hidden planes. Hence, using weight sharing across different columns,

the model can be summarized by 5 distinct neural networks in the form


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








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SE
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(5.1)

where N denotes NN parameterization. In the simulations, these 5 NNs have a single

hidden layer containing 9 hidden units. The number of output units in each of the

four NNs associated with the four cardinal corners is also 9. Weights are initialized

randomly using a uniform distribution over the [-0.1,0.1] interval. Because of the

acyclic nature of the underlying graph, learning can proceed by gradient descent

(backpropagation). We use a stochastic form of gradient in the sense that training

examples are used online and in randomized order after each training epoch. The

learning rate is set to 0.008.
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The input information is based on the sequence itself or rather the corresponding

profile derived by multiple alignment methods to leverage evolutionary information,

possibly augmented by secondary structure and solvent accessibility information

derived from the PDB files with DSSP and/or the SCRATCH suite of predictors

available at: www.igb.uci.edu/servers/psss.html and described in Pollastri et al.

(2002b); Baldi and Pollastri (2003); Cheng et al. (2005a). For a sequence of length

N and containing M cysteines, the output layer contains M × M units. The input

and hidden layer can scale like N × N if the full sequence is used, or like M × M

if only fixed-size windows around each cysteine are used, as in the experiments

reported here. It is also possible to use 1D DAG-RNN to locally encode the input,

as described in Baldi and Pollastri (2003).

It is essential to remark that the same DAG-RNN approach can be trained

and applied in two different modes. In the first mode, we can assume that the

bonded state of the individual cysteines is known, for instance through the use of

a specialized predictor for residue classification. Then if the sequence contains M

cysteines, 2K (2K ≤ M) of which are intra-chain disulphide bonded, the prediction

of the connectivity can focus on the 2K bonded cysteines exclusively and ignore

the remaining M − 2K cysteines that are not bonded. In the second mode, we can

try to solve both prediction problems–residue and bridge classification–at the same

time by focusing on all cysteines in a given sequence. In both cases, the output

is an array of pairwise probabilities from which the overall disulphide connectivity

graph must be inferred. In the first case, the total number of bonds or edges in

the connectivity graph is known (K). In the second case, the total number of edges

must be inferred. In section 5.3, we show that sum of all probabilities across the

output array can be used to effectively estimate the number of disulphide contacts.
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5.2.4 Input Specifications

The results reported here are obtained using local windows of size 5 around each

cysteine, as in Vullo and Frasconi (2004). To improve prediction by exploiting

evolutionary information and conserved sequence patterns encoded in homologous

protein sequences, we derive position-specific profiles (also called Position Specific

Scoring Matrix) from multiple sequence alignments by aligning all proteins against

the NR database using PSI-BLAST (Altschul et al., 1997) according to the same

protocol for creating profiles described in Pollastri et al. (2002b). Gaps are treated

as if “-” corresponded to one additional amino acid. Thus the position-specific

profile for each position in a sequence is a real vector of length 21, representing the

probability of the 20 amino acids plus gap. For a window of 5 amino acids centered

around two cysteines, the profile-component of the input consists of 210 (21×5×2)

numbers. One extra input encodes the linear sequence separation between the two

cysteines. To study how secondary structure (SS) and solvent accessibility (SA)

information affect prediction accuracy, we also add SS and SA information to the

input in all four possible combinations.

5.2.5 Graph Matching to Derive Connectivity from Pairing

Probabilities

In the case where the bonded state of the cysteines is known, one has a graph

with 2K nodes, one for each cysteine. The weight associated with each edge is the

probability that the corresponding bridge exists, as computed by the predictor. The

problem is then to find a connectivity pattern with K edges, where each cysteine is

paired uniquely with another cysteine. This can be solved using Edmond’s maximum

weight matching algorithm (Edmonds, 1965), which has O(V 4) time complexity on
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a graph with V edges, or rather the faster O(V 3) implementation derived by Gabow

(Gabow, 1976), with linear O(V ) = O(K) space complexity beyond the storage of

the graph. Note that because the number of bonded cysteines in general is not very

large, it is also possible in many cases to use an exhaustive search of all possible

combinations. Indeed, the number of possible combinations is 1×3×5×. . .×(2K−1),

which in the case of 10 cysteines with 5 disulphide bridges result in only 945 possible

connectivity patterns.

The case where the bonded state of the cysteines is not known is slightly more

involved and the Gabow algorithm cannot be applied directly since the graph has

M nodes but only a subset of 2K < M nodes may participate in the final maximum

weighted matching. However, we can still use Gabow’s algorithm as follows. Assume

first that we can get a good estimate of the total number K of bonds. In general,

it is still not possible to try all
(

M
2K

)

possible subsets and run Gabow’s algorithm

on each one of them, but one can use a good heuristic approximation. If M is

even (M = 2R) we apply Gabow algorithm to the 2R nodes and then prune down

the final result by removing, from the final set of R edges, the R − K edges with

lowest probabilities. If M is odd, M = 2R + 1 we apply the same strategy as above

2R+1 times, each time removing one of the cysteines. We then select the matching

with K edges that has the highest probability. In practice this procedure gives

very good results although it is not guaranteed to find the global optimum and,

furthermore, it relies on a good estimate of the total number K of bonds. In the

results section, we show that the total number K of bonds can be estimated from

the sum of all the probabilities produced by the predictor using a simple regression

approach. Although this may seem surprising, we have observed similar effects in

contact map prediction, where the sum of the probabilities along a diagonal band

is closely related to the total number of contacts in that band.
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Alternatively, it is also possible to use a slightly different greedy algorithm to

derive the connectivity pattern using the estimate of the total number of bonds.

First, we order the edges in decreasing order of probabilities. Then we pick the edge

with the highest probability, followed by the edge with the next highest probability

that is not incident to the first edge, and so forth, until K edges have been selected.

Because this greedy procedure is not guaranteed to find the global optimum, it is

useful to repeat it L times. In each run i = 1, . . . , L, the first edge selected is the i-th

most probable edge. This is based on the observation that in practice the optimal

solution always contain one of the top L edges and, for L reasonably large, the

optimal connectivity pattern is usually found. We have compared this method with

Gabow’s algorithm in the case where the bonding state is known and observed that

when L = 6, this greedy heuristic yields results that are as good as those obtained

by Gabow’s algorithm which, in this case, is guaranteed to find a global optimum.

Thus the simulation results we report are derived using the greedy procedure with

L = 6. The advantage of the greedy algorithm is its low O(M 2 log M + LKM)

time complexity. This is because it takes O(M 2 log M) steps to sort all the pairing

probabilities, and at most O(KM) steps to derive a matching, starting from one of

the L most promising edges.

5.3 Results

5.3.1 Statistical Analysis

Basic statistics extracted from the larger SPX dataset are shown in Figures 5.3,

5.4, 5.5, and 5.6 and Table 5.1. Figure 5.3 provides the distribution of sequence

lengths. As the number of disulphide bridges in a protein chain increases, the

number of possible disulphide connectivity patterns increases exponentially. Thus,
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Figure 5.3: Distribution of sequence lengths in redundancy-reduced dataset (SPX)
of sequences containing disulphide bridges.

it is important to study the distribution of the number of bridges per protein and

investigate how connectivity prediction deteriorates with the number of bridges.

Figure 5.4 shows that most sequences have less than 5 disulphide bridges, but there

are exceptions, and a fraction of the sequences contains over 10 disulphide bridges.

In SPX, the average number of disulphide bridges per chain is 2.5, with a standard

deviation of 2.14. Figure 5.5 illustrates the distribution of disulphide bridge densities

measured by the number of bridges divided by the sequence length. Figure 5.6

shows the distribution of disulphide bridge lengths measured in terms of the number

of intervening amino acids. A very significant fraction of bridges is long-ranged

with lengths above 30, far exceeding the scale of local secondary structure. This is

the dual signature of the important stabilizing role of disulphide bridges and the

challenge they pose for prediction methods.

To analyze the relationship between disulphide bridges and secondary struc-
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Figure 5.4: Distribution of the number of disulfide bridges per sequence in the SPX
dataset

ture and relative solvent accessibility, we compute the empirical distribution of

secondary structure classes (Helix, Beta Strand, or Coil) and relative solvent ac-

cessibility classes (Exposed or Buried with respect to a 25% cutoff) for both bonded

and non-bonded cysteines (Table 5.1). We observe several statistical relationships

between the oxidized state of cysteines and their secondary structure and solvent

accessibility. For example, 30% of non-bonded cysteines are found in helices, versus

only 19% of bonded cysteines. About half of bonded cysteines (49%) are found in

coils, versus only 39% for non-bonded cysteines. Most cysteines tend to be buried,

however bonded cysteines have a slight tendency towards solvent exposure, com-

pared to non-bonded cysteines. The last two rows of Table 5.1 show slight pairing

biases. For instance, 13% of disulphide bridges are established between two beta

strands (EE) versus 10% if the secondary structure of the pairs were selected at ran-

dom (0.32× 0.32). Taken together, these statistics suggest that secondary structure
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Figure 5.5: Distribution of sequential density of disulfide bridges (number of bridges
divided by sequence length) in SPX.

information, and to a lesser extent solvent accessibility information, may be useful

for predicting disulphide bridges and worth incorporating in the inputs.

5.3.2 Protein Chain Classification

Results obtained on the problem of separating protein chains containing disulphide

bridges from those that do not contain any bridges using kernel methods are shown

in Tables 5.2 and 5.3 for the SP41 and the SPX datasets respectively. Each kernel

is assessed in terms of sensitivity, specificity, accuracy, and ROC score. The ROC

score is the normalized area under the curve relating true positives as a function

of false positives. Each performance metric is averaged across the ten folds. Over-

all the results are consistent across both datasets and confirm expected trends. In

general, the more complex and flexible kernels (e.g. profile, mismatch, Fisher) tend

to perform better than the simpler kernels (spectrum of fixed length) and combina-
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Figure 5.6: Distribution of disulphide bridge lengths in the SPX dataset

tions of spectrum (resp. mismatch) kernels outperform individual spectrum (resp.

mismatch) kernels. On the SP41 dataset, for instance, the profile kernel achieves

the best overall performance with accuracy of 85% and ROC score of 0.9. The su-

periority of more complex kernels is less pronounced on the SPX datasets and a few

other differences are observed between the two datasets, probably resulting from the

fact that SP41 has 966 positive examples and 506 negative examples, and SPX has

897 positive examples and 1,650 negative examples, with much greater variability

in the negative examples. In general, the results are weaker on the SPX datasets

and higher sensitivity is observed on SP41 versus higher specificity on SPX. On the

SPX dataset, the profile kernel is still among the best but is slightly outperformed

by the Fisher and combined-mismatch kernels. The combined mismatch kernel, for

instance, achieves 75% accuracy and 0.75 ROC score.
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Table 5.1: Statistics relating proportion of bonded and non-bonded cysteines in the SPX
dataset to secondary structure (SS) and relative solvent accessibility. H = helix, E=
strand, C =coil. The first two rows correspond to percentages of individual cysteines and
the last two rows to percentages of pairs of cysteines. Random values correspond to the
product of the individual frequencies.

Bonding state Num Helix Strand Coil Exposed Buried
Non-bonded Cys 901 0.30 0.31 0.39 0.15 0.85

Bonded Cys 5082 0.19 0.32 0.49 0.21 0.79

SS Pairs HH HE HC EE EC CC
Bonded Pairs 0.07 0.10 0.15 0.13 0.28 0.28
Random Pairs 0.04 0.12 0.19 0.10 0.31 0.24

5.3.3 Disulphide Bridge Classification and Connectivity Pre-

diction Assuming Knowledge of Bonded Cysteines

To compare with previous methods, most of which assume that the bonding state

of each cysteine is known, we first train and test 2D DAG-RNN architectures using

the SP39 dataset under the same assumption. Thus the output pairing probabilities

are predicted only for the cysteines known to participate in a disulphide bridge. The

precision percentages at the level of both individual pairs and entire connectivity

patterns are reported in Table 5.4 as a function of the number K of disulphide bridges

in the chain. In all but one case, the results are better than those previously reported

in the literature (Vullo and Frasconi, 2004; Fariselli et al., 2002). In some cases, the

results are substantially better. For instance, for 3 disulphide bridges (K = 3), the

precision reaches 0.61 and 0.51 at the pair and pattern levels respectively, whereas

the best results reported in the literature on the same dataset are 0.51 and 0.41.

Note that SP39 contains only sequences with 5 bridges or less and thus only results

for K <= 5 are reported here. The observed improvement in performance is likely

to result from the architectural differences between that approach described in Vullo

and Frasconi (2004) and the one introduced here.
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Table 5.2: Protein classification results using kernel methods on the SP41 dataset.
Top two accuracy and mean ROC scores are in bold face. Spectrum k=2,3,4,5)
corresponds to the sum of the four spectrum kernels from k=2 to k=5. Mis-
match(k=3,4,5,6, m=1) corresponds to the sum of the four mismatch kernels from
k=3 to k=6 while m=1 is kept unchanged. For the LA and SW kernels, alignments
are derived using the BLOSUM 62 matrix with gap open and extension penalties of
12 and 2 respectively. The scaling parameter β of the LA kernel is set to β = 0.5.

Kernel Sensitivity Specificity Accuracy meanROC
Spectrum(k=2) 0.78 0.60 0.72 0.76
Spectrum(k=3) 0.82 0.51 0.71 0.77
Spectrum(k=4) 0.88 0.36 0.70 0.77
Spectrum(k=5) 0.88 0.25 0.66 0.72
Spectrum(k=2,3,4,5) 0.85 0.69 0.80 0.85
Mismatch(k=3, m=1) 0.82 0.58 0.74 0.79
Mismatch(k=4, m=1) 0.86 0.58 0.76 0.83
Mismatch(k=5, m=1) 0.90 0.49 0.76 0.82
Mismatch(k=6, m=1) 0.93 0.08 0.64 0.76
Mismatch(k=3,4,5,6, m=1) 0.86 0.74 0.82 0.87
Fisher kernel 0.75 0.87 0.79 0.88
SW kernel 0.83 0.81 0.82 0.88
LA kernel 0.89 0.76 0.84 0.87
Profile kernel(k=6, σ=9.0) 0.87 0.82 0.85 0.90

5.3.4 Disulphide Connectivity Prediction from Scratch

In this set of experiments, we do not assume any knowledge regarding whether

individual cysteines are disulphide bonded or not and apply the 2D DAG-RNN

approach to predict pairing probabilities for all pairs of cysteines in each sequence.

Thus, for each chain we predict the number of disulphide bridges, and address the

residue and bridge classification problems, as well as the global connectivity problem.

Prediction of Cysteine Bonding States (Residue Classification)

Prediction of the bonding state of individual cysteines is assessed in Table 5.5 us-

ing the larger SPX dataset. Specificity and sensitivity of bonding state predictions
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Table 5.3: Protein classification results using kernel methods on the SPX dataset.
Top two accuracy and mean ROC scores are in bold face. Spectrum k=2,3,4,5)
corresponds to the sum of the four spectrum kernels from k=2 to k=5. Mis-
match(k=3,4,5,6, m=1) corresponds to the sum of the four mismatch kernels from
k=3 to k=6 while m=1 is kept unchanged. For the LA and SW kernels, alignments
are derived using the BLOSUM 62 matrix with gap open and extension penalties of
12 and 2 respectively. The scaling parameter β of the LA kernel is set to β = 0.5.

Kernel Sensitivity Specificity Accuracy meanROC
Spectrum(k=2) 0.63 0.68 0.66 0.71
Spectrum(k=3) 0.56 0.72 0.66 0.67
Spectrum(k=4) 0.39 0.86 0.70 0.66
Spectrum(k=5) 0.25 0.91 0.68 0.62
Spectrum(k=2,3,4,5) 0.54 0.83 0.73 0.74
Mismatch(k=3, m=1) 0.57 0.66 0.63 0.67
Mismatch(k=4, m=1) 0.57 0.77 0.70 0.71
Mismatch(k=5, m=1) 0.49 0.87 0.73 0.71
Mismatch(k=6, m=1) 0.25 0.94 0.70 0.66
Mismatch(k=3,4,5,6, m=1) 0.56 0.83 0.74 0.75
Fisher kernel 0.55 0.82 0.72 0.76
SW kernel 0.46 0.80 0.68 0.66
LA kernel 0.45 0.88 0.73 0.72
Profile kernel(k=6, σ=9.0) 0.49 0.86 0.73 0.71

are close to 87% and 89% in the absence of additional secondary structure or rela-

tive solvent accessibility information, with at best a small improvement when this

information is added.

Prediction of the Number of Disulphide Bridges

Analysis of the prediction results shows that there is a relationship between the sum

S(p) of all the probabilities in the graph (or the output layer of the 2D DAG-RNN)

and the total number of bonded cysteines. Using both SS and SA as inputs, the cor-

relation coefficient between 2K and S(p) is 0.89, the correlation coefficient between

2K and M is 0.87, and the correlation coefficient between 2K and
√

(S(p)) log M
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Figure 5.7: Predicted bond number is plotted against the true bond number using
both profiles, SS, and SA as inputs. With a total 1,018 protein chains in the SPX
dataset, the number of disulphide bridges of 71% of these sequences are predicted
correctly using 10-fold cross validation. Uniform random noise in the range of [0,0.5]
is added to both the true bond number and the predicted bond number to improve
readability.
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Table 5.4: Disulphide connectivity prediction with 2D DAG-RNN assuming the cysteine
bonding state is known derived on the SP39 dataset for comparison purposes. Last row
reports performance on all test chains. Asterisque indicates level of precision exceeding
best previously reported results given in parentheses (Vullo and Frasconi, 2004).

K Pair Precision Pattern Precision
2 0.74* (0.73) 0.74* (0.73)
3 0.61* (0.51) 0.51* (0.41)
4 0.44* (0.37) 0.27* (0.24)
5 0.41* (0.30) 0.11 (0.13)

2 . . . 5 0.56* (0.49) 0.49* (0.44)

Table 5.5: Cysteine bonding state sensitivity and specificity with different combinations
of secondary structure and solvent accessibility information on the SPX dataset. SS =
secondary structure; SA = solvent accessibility; PSS = predicted secondary structure;
PSA = predicted solvent accessibility.

no SS no SA SS SA SS and SA PSS and PSA
Bond. State Sens. 0.886 0.883 0.884 0.894 0.889
Bond. State Spec. 0.876 0.878 0.872 0.878 0.879

is 0.94, where M is the total number of cysteines in the sequence being considered.

Thus, we estimate the total number of bonded cysteines using this linear regression

approach and rounding off the result, making sure that the total number of bonded

cysteines is even and does not exceed the total number of cysteines in the sequence.

Figure 5.7 represents the plot of predicted bond numbers against true bond numbers

on the SPX dataset. As shown in the plot, the bond number prediction is rather

accurate for most K > 1 cases, with few exceptions for very large K (K > 20).

For K = 1, the method tends to over-predict the number of bridges. Table 5.6

reports the accuracy for predicting the number of bridges. The total number of

disulphide bridges in 68% chains is correctly predicted with no additional inputs,

with a standard error (mean square root of residuals) of 1.06. With true SS and

SA input information the performance reaches 71% of correct predictions, with a
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Table 5.6: Prediction accuracy for the number of disulphide bridges on the SPX
dataset

no SS no SA SS SA SS and SA PSS and PSA
Accuracy (num. of bridges) 0.68 0.68 0.67 0.71 0.68
Mean square root of residual 1.06 1.05 1.09 1.04 1.05

standard error of 1.04. In more than 94% of the cases, the predicted number of

bridges is within one from the correct value. With predicted SS and SA there is no

noticeable improvement (68% accuracy).

Prediction of Disulphide Bridges (Bridge Classification)

Table 5.7 reports the specificity and sensitivity for the prediction of individual

bridges. The sensitivity for chains with one disulphide bridge is around 71 %, while

the specificity is around 47%. Both specificity and sensitivity for chains with two

or three disulphide bridges using true SA and SS information in the inputs fall in

the range of 62-67%. The specificity and sensitivity for chains with four disulphide

bridges using true SA and SS information are 55% and 50% respectively.

When the number of disulphide bridges increases in chains, the performance de-

creases in general. The overall specificity and sensitivity using four different input

schemes are around 51-55%. The variation of the performance for chains with many

disulphide bridges (K > 6) is large because there are very few such examples in

the dataset. Thus, we should take the accuracy for large disulfide bridge number

beyond six cautiously. The results also show that secondary structure information

improve prediction accuracy of disulphide bridges by two percentage points on aver-

age. Solvent accessibility alone does not help much, but when used in combination

with secondary structure the best results are achieved in most cases. Predicted SS
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Table 5.7: Specificity and sensitivity for the disulphide bridge classification problem
derived on the SPX dataset, as a function of the number K of bridges in the chain from
1 to 26, and with different combinations of input information.

no SS no SA SS SA SS and SA PSS and PSA
K Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
1 0.71 0.47 0.71 0.47 0.70 0.46 0.71 0.48 0.71 0.48
2 0.59 0.59 0.63 0.63 0.59 0.59 0.63 0.63 0.59 0.60
3 0.59 0.65 0.61 0.67 0.58 0.64 0.62 0.67 0.55 0.61
4 0.44 0.49 0.48 0.53 0.46 0.52 0.50 0.55 0.44 0.48
5 0.33 0.37 0.33 0.37 0.31 0.35 0.37 0.41 0.32 0.35
6 0.24 0.28 0.32 0.37 0.29 0.34 0.29 0.33 0.32 0.36
7 0.26 0.31 0.30 0.36 0.21 0.25 0.31 0.36 0.29 0.32
8 0.16 0.18 0.21 0.25 0.26 0.30 0.30 0.32 0.20 0.22
9 0.50 0.59 0.56 0.64 0.55 0.63 0.61 0.71 0.44 0.52
10 0.4 0.43 0.27 0.29 0.40 0.43 0.37 0.40 0.33 0.36
12 0.38 0.44 0.54 0.61 0.46 0.58 0.50 0.55 0.38 0.39
14 0.71 0.83 0.50 0.54 0.42 0.50 0.57 0.62 0.79 0.85
16 0.19 0.20 0.19 0.20 0.31 0.33 0.22 0.23 0.13 0.13
17 0.35 0.40 0.41 0.47 0.38 0.43 0.35 0.40 0.53 0.60
25 0.08 0.13 0.24 0.40 0.28 0.47 0.24 0.40 0.32 0.53
26 0.38 0.67 0.31 0.53 0.23 0.40 0.42 0.73 0.31 051

Overall 0.52 0.51 0.54 0.53 0.52 0.51 0.55 0.54 0.52 0.51

and SA do not seem to help.

Table 5.8 reports the results of disulphide bridge classification on the SP41

dataset. On this dataset, only sequence information and profiles are used in the

RNN input. While the accuracy on the SP41 dataset is lower than that on the SPX

dataset, it follows the same pattern and in general deteriorates with the number of

bridges.

Prediction of Disulphide Bridge Connectivity Patterns

It is very difficult to correctly predict the entire disulphide connectivity pattern

because the number of connectivity patterns increases exponentially with K. Not
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Table 5.8: Prediction of disulphide bridges with 2D DAG-RNN on all the cysteines,
without assuming knowledge of the bonding state on the SP41 dataset.

K 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19
Sens. .74 .61 .54 .52 .33 .27 .36 .27 .23 .30 .34 .17 .27 .11 .22 .06 .11
Spec. .39 .51 .45 .59 .42 .34 .55 .41 .35 .45 .47 .23 .50 .13 .33 .09 .20

Table 5.9: The prediction accuracy of disulphide bridge connectivity on the SPX
dataset

Bridge Num no SS no SA SS SA SS and SA PSS and PSA
1 0.58 0.60 0.58 0.59 0.59
2 0.55 0.58 0.55 0.59 0.56
3 0.50 0.53 0.50 0.54 0.47
4 0.27 0.33 0.28 0.34 0.22

Overall(1-26) 0.48 0.50 0.48 0.51 0.48

knowing the bonding states of individual cysteines makes the prediction even harder.

Table 5.9 reports the pattern prediction accuracy for K between 1 and 4, and the

overall accuracy for all the chains in the SPX dataset. The overall accuracy with

no additional input information is 48% and reaches 51% using true SS and SA as

inputs. Thus for about half of all the chains, we can predict the entire pattern

of disulphide bridges correctly. Consistently with our other experiments and with

recent results in (Ferre and Clote, 2005), using true SS and SA information slightly

improves performance, however predicted SS or SA information seems too noisy at

this stage to be helpful.

5.4 Conclusion

We have presented a framework for disulphide bridge predictions that addresses

all four sub-problems in this area: chain classification, residue classification, bridge
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Table 5.10: Performance comparison of the disulphide prediction pipeline (residue and
bridge classification) with and without the initial chain classification step. The F measure
here is defined by the harmonic mean of sensitivity and specificity, F= 2 × sens. × spec.
/(sens. + spec.).

Residue Bridge
Sens. Spec. F Sens. Spec. F

Without Chain Classification 0.89 0.39 0.54 0.55 0.24 0.33
With Chain Classification 0.52 0.77 0.62 0.32 0.48 0.38

classification, and connectivity prediction. Table 5.10 summarizes the motivation

for the initial chain classification step, by comparing overall results on residue and

bridge classification derived with and without the chain classification step. In all

cases, as expected, the chain classification step increases the specificity but reduces

the sensitivity. The tradeoff, assessed by the F measure of information retrieval, is

in favor of having the chain classification step (F=0.62 versus F = 0.54 for residue

classification, and F= 0.38 versus F= 0.33 for bridge classification). Thus retain-

ing the chain classification step in the overall pipeline is justified both in terms of

overall performance, and because the classification can be of biological interest too.

Furthermore, our Web server reports the results of each prediction stage separately.

Beyond the chain classification step, the prediction pipeline we have described

presents several advantages over other approaches. First, assuming knowledge of cys-

teine bonding states, the method outperforms existing approaches on the same vali-

dation data. Second, the method can easily cope with chains containing an arbitrary

number of bonded cysteines, overcoming the limitation of previous approaches which

restrict predictions to chains containing at most 10 oxidized cysteines (K = 5). As

an added bonus, larger training and testing sets can now be used. Third, the method

proposed can deal with ab initio predictions and, in particular, it does not require

preexisting knowledge or prediction of cysteine bonding states. Good specificity and
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sensitivity on connectivity predictions are achieved even when the bonding state of

individual cysteines is not known. Equally important, for previous methods that

rely on predicting the cysteine bonding state first, false predictions are fatal. Once

a false prediction has been made at the residue level, the corresponding disulphide

bridges cannot be recovered (false negative) or eliminated (false positive) during

subsequent bridge classification, or connectivity prediction. When used in ab initio

mode, the method presented here delays the prediction of the bonding state by first

predicting the total number of disulphide bridges in a cooperative, robust fashion,

and then globally predicting the overall connectivity from which cysteine bonding

states are trivially inferred. The same fundamental idea of combining pairing prob-

abilities with graph matching algorithms to enforce global constraints has now been

expanded and applied to the problem of beta-sheet topology prediction (Cheng and

Baldi, 2005). Fourth, the method can leverage true secondary structure and relative

solvent accessibility information. Results demonstrate the role secondary structure

and solvent accessibility can play in disulphide bridge prediction. Overall, inclusion

of SS and SA information leads to small, but noticeable improvements in the range

of one percent. This is demonstrated by appropriately encoding the corresponding

information in the input layer of the architecture. Predicted SS or SA information,

however, is currently not accurate enough to improve performance and therefore

is not retained in our implementation. Finally, while training can take days, once

trained predictions can be carried on a proteomic or protein engineering scale to

sift through large numbers of proteins. The resulting disulphide bridge prediction

server DIpro is available through: http://www.igb.uci.edu/servers/psss.html.
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Chapter 6

Three-Stage Prediction of Protein

Beta-Sheets by Neural Networks,

Alignments, and Graph

Algorithms

6.1 Introduction

Beta-sheets are a fundamental component of protein architectures–more than 75% of

all protein domains in the Protein Data Bank (Berman et al., 2000) contain β-sheets

(Zhang and Kim, 2000). β-sheets are formed by the pairing of multiple β-strands

held together by characteristic patterns of hydrogen bonds running in parallel or

anti-parallel fashion (Figure 6.1). These patterns, which are essential for β-sheet

and protein stability (Smith and Regan, 1997), involve interactions between residues

that are often separated by large distances along the primary sequence.

The β-sheet topology or architecture of a protein, i.e. the pairing organiza-
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tion of all the β-strands contained in a given protein, is essential for understanding

its structure (Zhang and Kim, 2000). Prediction of β-sheet topology from amino

acid sequence is very useful not only for predicting tertiary structure (Zaremba and

Gregoret, 1999; Steward and Thornton, 2002; Ruczinski et al., 2002; Rost et al.,

2003), but also for elucidating folding pathways (Merkel and Regan, 2000; Mandel-

Gutfreund et al., 2001), and designing new proteins (Smith and Regan, 1995, 1997;

Kortemme et al., 1998; Kuhlman et al., 2003). Many experimental and theoret-
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Figure 6.1: Illustration of inter-strand β-residue pairs and hydrogen-bonding pattern
in parallel and antiparallel β-strands. Arrows show the amide (N) to carbonyl (C)
direction of β-strands. Hydrogen bonds are represented by hatched blocks.

ical studies have been conducted to better understand the formation and stabil-

ity of β-sheets. For instance, Minor and Kim (1994) report that intrinsic β-sheet

propensities of different amino acids contribute to the local structure and stability

of β-sheets and that the magnitude and order of β-sheet propensities depend on the

local sequence and structural context. Statistical studies (Lifson and Sander, 1980;

Wouters and Curmi, 1995) reveal nonrandom distribution and pairing preferences
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of residue pairs in aligned β-strands while evolutionary conservation of β-residue in-

teractions suggests also that pairing preferences depend on structural context such

as solvent accessibility (Zaremba and Gregoret, 1999). Clearly, favorable side-chain

interactions between residue pairs contribute to β-sheet stability (Smith and Re-

gan, 1995; Hutchinson et al., 1998). However, the evolutionary pressure to maintain

complementarity between pairs on neighboring strands appear to be weak (Mandel-

Gutfreund et al., 2001) and the overall pairing preferences are not very strong and

appear to be modulated by the local environment to a high-degree.

Several methods, mostly statistical data-driven approaches, have been proposed

to predict topological features of β-sheets with moderate accuracy (Rost et al., 2003).

An early method (Hubbard, 1994) uses a statistical potential approach to predict

β-strand alignments with an accuracy level of about 35-45%. Asogawa (1997) pro-

poses to use pairwise statistical potentials of β-residue pairs to improve β-sheet

secondary structure prediction by considering clusters of β-residue contacts. Pair-

wise statistical potentials are used also in Zhu and Braun (1999) to identify up to

35% of native strand alignments from alternative strand alignments. In Baldi et al.

(2000), elaborate neural networks are used to improve the prediction accuracy of

inter-strand β-residue contacts, but the method is not extended to the prediction

of strand pairings, strand alignments, and β-sheet topologies. Using an information

theoretic approach, Steward and Thornton (2002) report an accuracy of 45-48% for

strand alignments in β-triplets, and 31-37% for any native strand alignments. While

encouraging, all these approaches seem to leave room for major improvements.

In particular, these approaches fail to exploit systematically the global covaria-

tion and constraints characteristic of β-sheet architectures. Instead of treating each

pair of β-residues or β-strands independently of each other, as previous methods do,

one ought to leverage β-sheet constraints such as the fact that each β residue has at
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most two partners, that neighboring β-residues in a strand are paired sequentially

in parallel or anti-parallel fashion with another strand, and that each β-strand has

at least one partner strand and rarely more than two or three partner strands.

Here we develop a novel modular approach for predicting inter-strand β-residue

pairings, β-strand pairings, β-strand alignments, and β-sheet topology altogether

from scratch by integrating both local and global constraints in three steps. First,

2D-Recursive Neural Networks(2D-RNN)(Baldi and Pollastri, 2003) are trained to

predict pairing probabilities of inter-strand β-residue pairs using profile, secondary

structure, and relative solvent accessibility information. Second, dynamic program-

ming techniques are applied to these probabilities to derive pairing pseudo-energies

and alignments between all pairs of β strands. Third, weighted graph matching algo-

rithms are used to optimize the global β-sheet architecture of the protein satisfying

the β-strand pairing constraints. While inter-chain β-sheets play an important role

in protein-protein interactions and complex formation (Dou et al., 2004), it is worth

noting that here, consistently with the available literature, we focus exclusively on

the already-challenging prediction of intra-chain β-sheets. However, we believe that

the methods developed here can be adapted to the problem of predicting both intra-

and inter-chain β-sheets and training datasets for the latter are available through

the ICBS database (Dou et al., 2004).

6.2 Materials and Methods

6.2.1 Data

The dataset is extracted from the Protein Data Bank of May 2004. Only structures

determined by X-ray diffraction and having resolution better than 2.5 Å are retained.

Chains containing unknown or non-standard amino acids, backbone interruptions,
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or whose length is less than 50 amino acids are excluded. DSSP (Kabsch and Sander,

1983) is used to assign secondary structure and relative solvent accessibility values

to each residue. Residues with secondary structure E (extended strand) and B

(isolated β-bridge) are considered β-residues. Each β-residue may have 0, 1 or 2

partners according to DSSP. A consistency check is used to remove chains containing

non-consistent β-residue pair assignments (ei, ej), whereby ei pairs with ej , but ej

does not pairs with ei according to DSSP. A filtering procedure is used to select

the chains that contain 10-100 β-residues, of which 90% must have at least one

partner. The redundancy in the dataset is reduced by the UniqueProt (Mika and

Rost, 2003) with a HSSP threshold of 0, which corresponds to sequence identity of

roughly 15-20%.

The final dataset contains 916 chains corresponding to 187,516 residues. Of

these, 26% (48,996) are β-residues participating in 31,638 inter-strand residue pairs.

The dataset has 10,745 β-strands with an average length of 4.6 residues and 8,172 β-

strand pairs, including 4,519 antiparallel pairs, 2,214 parallel pairs, and 1,439 pairs

involving isolated β-bridges. These strand pairs form 2,533 β-sheets. The average

sequence separation between residue pairs and strand pairs is 43 and 40 respectively.

Sequence separation histograms are displayed in Figures 6.2a and 6.2b. Figures 6.2c

and 6.2d show that the number of inter-strand residue pairs or strand pairs has a

strong correlation with the number of β-residues or strands in the chain, as expected.

To leverage evolutionary information, PSI-BLAST (Altschul et al., 1997) is used

to generate profiles by aligning all chains against the Non-Redundant (NR) database,

as in Pollastri et al. (2002b). Finally the dataset is evenly and randomly split

into 10 folds to perform 10-fold cross-validation studies. The final dataset (Be-

taSheet916) and the splitted folds are available through http://www.igb.uci.edu/

servers/psss.html.
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Figure 6.2: (a) Amino acid separation between β-residue pairs (Mean = 43, Mini-
mum = 3, Maximum = 626, Standard deviation = 49). (b) Amino acid separation
between β-strand pairs (Mean = 40, Minimum = 2, Maximum = 626, Standard
deviation = 54). (c) Scatterplot of number of β-residue pairs (y) versus number of
β-residues (x) per chain. The correlation coefficient is 0.98. Linear regression given
by: y = 0.66x−0.65. (d) Scatterplot of number of β-strand pairs(y) versus number
of β-strands (x) per chain. The correlation coefficient is 0.97. Linear regression
given by: y = 0.74x + 0.27.
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6.2.2 Prediction of β-residue pairs using 2D-RNNs

Like contact map prediction (Fariselli et al., 2001; Pollastri and Baldi, 2002; Shao

and Bystroff, 2003; MacCallum, 2004; Punta and Rost, 2005), we treat prediction

of inter-strand residue pairing as a binary classification problem on a 2D grid. For

each chain, our input is a 2D square matrix I, where the size of I is equal to the

number of β-residues in the chain and each entry Ii,j is a vector of dimension 251

encoding the local context information of β-residues (ei,ej), as well as their separa-

tion. Specifically, we use a local window of size 5 around ei and ej. Each position in

the window corresponds to a vector of length 25 with 20 positions for the amino acid

profile, 3 positions for the secondary structure (Helix, Sheet, Coil), and 2 positions

for the relative solvent accessibility (buried or exposed at 25% threshold). The two

windows correspond to 250=25×5×2 entries. One additional entry represents the

sequence separation between ei and ej .

The training target is a binary matrix T, whereby each Ti,j equals 1 or 0 de-

pending on whether β-residue ei and ej are paired or not. Figure 6.3 and 6.4 show

protein 1VJG in the PDB and its corresponding target matrix which nicely displays

the constraints and directions (parallel or antiparallel) of strand pairing. Neural

networks or other machine learning methods can be trained on the data set to learn

a mapping from the input matrix I onto an output matrix O, whereby Oi,j is the

predicted probability that ei and ej are paired. The goal is to make the output

matrix O as close as possible to the target matrix T. The standard approach with

feed-forward neural networks is to treat each pair (ei,ej) independently and to learn

a mapping from a series of independent (Ii,j , Ti,j) examples (Baldi et al., 2000).

This simplified approach, however, does not explicitly leverage covariations and in-

teractions between β-residue pairs and might not effectively enforce the constraints
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Figure 6.3: Protein 1VJG is an α/β protein with 7 strands. Strands 1, 2, 3, 6, and
7 form a parallel β-sheet. Strands 4 and 5 form an antiparallel β-sheet. The parallel
β-sheet forms the hydrophobic core and is surrounded by tightly packed α-helices.

of β-residue and strand pairings. Here we use a two-dimensional recursive neural

network architecture to exploit covariations and constraints between β-residue pairs

globally. This 2D-RNN architecture, previously used in contact map prediction, is

described in detail in Baldi and Pollastri (2003) and in chapter 5. Under this ar-

chitecture, the output Oi,j depends on the entire input matrix I instead of Ii,j only.

As for feed-forward neural networks, learning in a 2D-RNN is implemented using

gradient descent. In the simulations, the outputs of five models are averaged in an

ensemble to produce the predicted probability matrix O. Finally, it is important to

notice that because our approach is modular, it is not constrained in any way to the

use of recursive or even feedforward neural networks–the output of any algorithm

that produces an estimate of the pairing probabilities Oij can be used as input for

the second and third steps described below.

Because I and T are presented to the 2D-RNN as a whole during training, the

network can identify pairing constraints encoded in these matrices beyond the local

environment of each residue. As a result, by thresholding the values of the output
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Figure 6.4: Inter-strand β-residue pairing map of protein 1VJG. The seven strands
are ordered along the vertical and horizontal axis. Alternating colors (black and
green) are used to distinguish adjacent strands in sequence order. The three numbers
associated with each strand on the left are strand number and its starting and ending
position along the chain. The map is symmetric. Each blue square represents a
native β-residue pairing. A line segment parallel to the main diagonal corresponds
to the alignment of a parallel strand pair. A line segment perpendicular to the main
diagonal corresponds to the alignment of an antiparallel strand pair. Each row or
column has at most two blue squares reflecting the constraint that one residue has
at most two partners.

O, the predicted inter-strand residue pairs tend to form line segments parallel or

perpendicular to the main diagonal, which correspond to parallel or antiparallel

strand pairs. This suggests that aggregate prediction of β-residue pairings can be

used to predict β-strand pairings, pairing directions, and alignments. Figure 6.5

shows the predicted inter-strand residue pairs of 1VJG with a 0.15 threshold. The

predicted map recalls most β-residue pairs and satisfies pairing constraints with

few violations. It is worth noting that post-prediction inferences can be used to

further enforce some constraints and retrieve some of the missing residue pairs. The

predicted inter-strand β-residue map can be used directly to infer β-strand pairs.
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One simple approach we tested is to consider two strand paired if any two of their

residues are predicted to be paired. In isolation, however, such an approach cannot

be optimal since it disregards global constraints on the number of partners a strand

can have (see Section 2.4).

Figure 6.5: Predicted β-residue pairing map of 1VJG. Upper triangle (blue) is the
true map and lower triangle (red) is the predicted map. The predicted pairs form
three segments parallel to the main diagonal corresponding to the true parallel
strand pair (1,2), (1,3),and (3,6). Two residue pairs in the true antiparallel strand
pair (4,5) are also recalled. One out of two residue pairs in the parallel strand (6,7)
is correctly predicted. There are two false positives in strand pair (1,3) and (3,6).
For instance, one residue in strand 3 is wrongly predicted as having two partners in
strand 1. This error can be detected by checking pairing constraints: a residue can
have up to two partners in total, and at most one partner in any single strand. A
few residue pairs between strand 1 and 2, which are missing in the predicted map,
can be inferred once strands 1 and 2 are predicted to pair.

6.2.3 Pseudo-energy for β-strand alignment

For each pair of strands, we can define an optimal alignment and an overall alignment

score using dynamic programming techniques in parallel and anti-parallel directions

with local scores or penalties derived from the matrix O of residue-pairing prob-
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abilities. Additional intra-strand gap penalties corresponding to β-bulges, as well

as penalties for gaps at the end of the strands, can be introduced. The penalty

for the bulges can be derived from their frequency. Because β-bulges tend to be

isolated and rare (only 14% of paired strands contain a bulge, and 90% of these

contain only a single bulge), to a first-order-approximation here we do not allow

bulges in the alignments by setting the bulge penalty to infinity. This is also con-

sistent with previous studies (Hubbard, 1994; Zhu and Braun, 1999; Steward and

Thornton, 2002). Gaps at the edges of the strands are allowed but are not penalized

(penalty =0). Under these assumptions, we can simply search exhaustively through

all possible alignments by “sliding” one strand along the other, in both parallel and

anti-parallel fashion. Assuming in addition that two paired strands must have at

least one residue pairing, two strands with length m ≥ 2 and n ≥ 2 have 2(m+n−1)

possible alignments, counting parallel and antiparallel directions. If one strand is

an isolated bridge ( m = 1 or n = 1), then there are max(m,n) possible alignments.

Without considering β-bulges, one alignment can be uniquely specified by its di-

rection (parallel, antiparallel, or isolated bridge) and by one inter-strand residue

pair.

To discriminate native alignments from alternative ones, the binding pseudo-

energy W (A[Er, Es]) of each alignment A of each pair of strands Er and Es can

be computed by adding the pseudo-energies of each pair of residues i and j in the

alignment, derived from the pairing probabilities Oij, or their logarithm log Oij.

The binding pseudo-energy Wrs of a pair of strands can then be defined by taking

the maximum over all their possible alignments: Wrs = maxA W (A[Er, Es]). For

any pair of strands r and s in a given protein chain, the pseudo-energy is used to

identify the best putative alignment, i.e. the one with maximal pseudo-energy Wrs,

between these two strands. Figure 6.6a shows the resulting pseudo-energy matrix
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W = (Wrs) for the best alignments between all strand pairs of protein 1VJG. Note

how the native strand pairs tend to have higher energy scores suggesting that the

pseudo-energy can be used effectively to score and rank strand pairs.

6.2.4 Prediction of β-strand pairs and β-sheet topology us-

ing graph algorithms

Unlike previous methods (Hubbard, 1994; Zhu and Braun, 1999; Steward and Thorn-

ton, 2002) which treat strand pairs independently of each other, here prediction of

strand pairing and alignment takes into account additional physical constrains char-

acteristic of β-sheet architectures. To illustrate β-sheet topology and its constraints,

we use schematic diagrams (similar to Branden and Tooze (1999)) where β-strands

are represented by rectangles of length proportional to the length of the strand.

Figure 6.7 shows the diagram of 1VJG. Lines with arrows connect adjacent strands

in sequence order from the N to the C terminus. Such schematic diagrams readily

reveal several pairing constraints for β-sheet architectures. First, each strand has

two edges available for pairing with other strands and, as a result, a β-residue can

have at most two partners. It is important to note that this does not imply that a

strand can pair at most with two other strands, since a long strand may pair with

several short strands on either side. Second, one strand can only pair with one side

of another strand sequentially in parallel or antiparallel fashion. If two strands pair

with the same side of another strand, no overlap is allowed. Third, all strands must

have at least one strand partner (ignoring inter-chain pairings) and we impose the

additional condition that they should have at most three strand partners. This con-

dition is not absolute but it is very reasonable since 98.6% of strands have 1, 2, or 3

partners in the large non-redundant dataset. We let C denote all these constraints.
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With these constraints in mind, we develop graph matching algorithms to in-

fer strand pairings and overall β-sheet architecture from the matrix W of pseudo-

energies of the best alignments of all strands pairs in a given chain. This pseudo-

energy matrix defines a completely connected and weighted Strand Pairing Graph

(SPG), where vertices represent strands, edges represent possible pairing relations,

and weights optimal pairing energies. The fully connected SPG of course does not

satisfy the set of constraints C. To predict the β-sheet topology, the goal is to prune

the complete SPG to derive the true SPG (Figure 6.8), where β-sheets appear as

maximal connected components. These components are to be derived by maximizing

the global pseudo-energy while satisfying all the strand pairing constraints above,

that is by maximizing
∑

S Wrs taken over all subsets S of edges that satisfy C. The

global pseudo-energy of an architecture is the sum of the pseudo-energies of each of

its β-sheets, and the pseudo-energy of a β-sheet is the sum of the pseudo-energies of

all the strand pairs it comprises. To address this constrained optimization problem,

we first use a greedy heuristic approach (see box).

Start with a complete SPG with weight matrix W. Order all the edges
according to the weights into a list L.
∅ → S. S is the set of chosen edges.
Repeat

Remove one edge e with maximum weight from L.
If both vertices of e are not in S, add e into S.
If both vertices of e are in S, discard e.
If one vertex of e is in S, align the strand of the vertex

with the strand of another vertex not in S using
their best alignment. If the pair and its alignment
satisfy the strand pairing constraints C, add e into S.
Otherwise discard e.

Until all vertices in G appear in S once.

The greedy algorithm has time complexity O(N 2 log N), where N is the number

of strands. After converging, the edges and vertices in S constitute a spanning sub-
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(b)Assembly process of beta−sheets of 1VJG using graph algorithm
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Figure 6.6: (a) Predicted pseudo-energy matrix W of the best alignments of all
strand pairs of protein 1VJG. Red numbers denote the pseudo-energy of the align-
ments of true strand pairs. (b) β-sheet assembly process. It takes five steps to
assemble seven strands into two β-sheets using the energy matrix in (a). In step
1-4, the strand pair with maximum energy is added. In step 5, pair(2,3) has higher
energy than pair(6,7). But it is not chosen because strand 2 and 3 have already
been selected in previous steps.

graph G∗ of G. Connected components in G∗ are in 1:1 correspondence with the

protein β-sheets and provide the global predicted β-sheet architecture. Figure 6.6

illustrates how the algorithm assembles the strands of protein 1VJG.

By treating β-sheets as spanning trees of complete SPGs, a variant of the well-

known algorithm for finding Minimum/Maximum Spanning Tree (MST) (Even,

1979), Kruskal’s algorithm (Kruskal, 1956), is also used to predict β-sheets (trees)

with maximum pseudo-energy. The only difference between this constrained-MST

algorithm with the previous greedy algorithm is that it does not always discard edge
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Figure 6.7: Schematic diagram of β-sheet topology of protein 1VJG. (a) Unpaired
strands in sequence order. (b) Paired strands in each β-sheet are aligned side by
side. This diagram includes two β-sheets consisting of strand 1,2,3,6,7 and strand
4,5 respectively.

e when its adjacent vertices are already in the set S. Instead, it adds e into L if

its two vertices belong to two disconnected components and the alignment satisfies

the strand pairing constraints. Not surprisingly this algorithm tends to choose more

strand pairs (edges) than the greedy graph algorithm. It is worth noting that both

the greedy and constrained-MST algorithms as described do not allow for cycles and

all the components they produce are trees. This approximation is not entirely cor-

rect in the case of circular β-sheets, such as β-barrels. To handle β-barrels, we are

currently modifying these algorithms to allow up to one cycle in each component.

6.2.5 Strand pairing prediction benchmark

Pairs of sequentially adjacent strands account for about 50% of total strand pairs.

A naive algorithm that pairs all adjacent strands can be used as a baseline for

the evaluation of more sophisticated strand pairing algorithms. More generally, to
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Figure 6.8: Strand pairing graph of protein 1VJG. (a) The complete SPG. Red
edges denote true strand pairs. (b) The true SPG. Two components (1,2,3,6,7) and
(4,5) correspond to two β-sheets. The weights are the pseudo-energy of the best
alignments of strand pairs.

investigate the question of how linearly adjacent strands are connected in β-sheets

we define the pairing distance between two strands as the length of the shortest

path joining them in the true SPG. A distance of 1 means that the two strands are

paired. A distance of 2 means that the two strands pair with a common third strand,

and so forth. The absence of a path between two strands (denoted here by distance

= -1) indicates that the two strands belong to two different β-sheets. Figure 6.9

provides the histogram of pairing distances between sequentially adjacent strands,

obtained using Dijkstra’s shortest path algorithm (Dijkstra, 1959). The probabilities

of adjacent strands being paired (distance = 1) and of adjacent strands being in

different β-sheets (distance = -1) are comparable and close to 41%.

6.3 Results and Discussion

The performance of β-residue pairing prediction is assessed using a variety of stan-

dard measures including: area under ROC curve, True Positive Rate [TPR =

TP/(TP+FN)] at 5% False Positive Rate [FPR = FP/(FP+TN)], specificity [TP/(TP+FP)],

sensitivity [TP/(TP+FN)], and correlation coefficient [(TP×TN-FP×FN) / ( (TP+FN)
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Figure 6.9: Histogram of pairing distances between linearly adjacent strands. 41% of
them (red bar) are not connected (distance = -1); 42% of them are paired (distance
= 1); 17% of them have pairing distance greater than 1.

(TP+FP) (TN+FN) (TN+FP)) 1/2], and compared with predictions associated with

the base-line and with a a general-purpose contact map predictor. At the break-

even point where the total number of predicted β-residue pairs is equal to the true

number of β-residue pairs, the specificity and sensitivity of inter-strand β-residue

pairings are equal to 41% with a correlation coefficient of 0.4. The accuracy of the

base-line predictor (the number of true β-residue pairs / total number of inter-strand

β-residue pairs) is 2.3%. Thus the improvement factor, i.e. the ratio between the

accuracy (specificity or sensitivity) of our method over the base-line (Fariselli et al.,

2001), is 17.8. To the best of our knowledge, only one method in the literature (Baldi

et al., 2000) reports quantitive evaluation of β-residue pairing prediction. However,

it only reports specificity without mentioning the corresponding sensitivity, thus a
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direct comparison cannot be made. However, we can compare the β-residue pairing

predictor with a general-purpose contact map predictor (Pollastri and Baldi, 2002)

focusing exclusively on β-residue pairings. We use a pre-trained 8Å contact map

predictor (CMAPpro) to predict contacts for all chains in the same dataset. To

make the comparison even more stringent, we do not take into consideration any

homology between the current dataset and the dataset used to train CMAPpro.

We then extract the contact probabilities for β-residue pairings from the full pre-

dicted contact map and evaluate them using the same measures. At the break-even

point, the specificity and sensitivity of CMAPpro are equal to 27% and the corre-

lation coefficient is 0.26. Thus our method improves the specificity and sensitivity

of CMAPpro restricted to β-residues by 14%. The area under the ROC curve for

the beta-pairing predictor is 0.86 versus 0.80 for CMAPpro (Figure 6.10). At 5%

FPR, TPR for the beta-pairing predictor is 58% versus 42% for CMAPpro. Thus

the specialized β-residue pairing predictor significantly improves the predictions of

our general-purpose contact map predictor restricted to β-strands, consistently with

previous expectations (e.g. Rost et al. (2003)).

The correlation coefficients of strand pairing by the greedy and constrained-MST

graph algorithms are virtually identical (0.502 and 0.503 respectively). The speci-

ficity and sensitivity of strand pairing using the greedy graph algorithm are 59% and

54% respectively. In contrast, the specificity and sensitivity of the naive algorithm

that always pairs sequentially adjacent strands are 42% and 50% respectively. Thus,

around similar operating regimes, the greedy graph algorithm yields improvements

of 17% in specificity and 4% in sensitivity over the naive algorithm. The smaller

improvement in sensitivity is still very significant because 16% of correctly predicted

strand pairs are non-adjacent strand pairs. The constrained-MST graph algorithm

has specificity and sensitivity of 53% and 59% respectively. Its sensitivity is 9%
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Figure 6.10: ROC curve of prediction of inter-strand β-residue pairs using the β-
residue pairing predictor and CMAPpro.

higher than the naive algorithm and 20% of correctly predicted strand pairs are

non-adjacent strand pairs.

Using the pseudo-energy to align strand predicted to be paired by the greedy

graph algorithm, pairing directions (parallel, antiparallel, or isolated bridge) of 93%

of the correctly predicted strand pairs are correctly identified, 72 % of which are

correctly aligned (71% of parallel pairs, 69% of antiparallel pairs, 88% of strand pairs

involving isolated bridges). The constrained-MST graph algorithm yields similar

results.

To further evaluate the ability of the pseudo-energy to discriminate true align-

ments from false alignments, we use it to align all native strand pairs. Pairing

directions of 84% native pairs are correctly predicted. Considering only parallel and

antiparallel pairs, the pairing directions of 82% of these pairs are predicted correctly,
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which yields a 15% improvement over the 67% precision achieved by the trivial al-

gorithm which labels all pairs as being antiparallel. Among all strand pairs with

correctly predicted directions, 66% of them are aligned correctly (66% of parallel

pairs, 63% of antiparallel pairs, 72% of isolated bridges). In comparison, on differ-

ent datasets, the statistical potential approach in Hubbard (1994) aligns 35-45% of

strand pairs correctly, when pairing directions are correctly predicted. If we assume

all pairing directions are known, as some previous methods do (Zhu and Braun, 1999;

Steward and Thornton, 2002), then 61% of all native parallel pairs and 60% of all

native antiparallel pairs are aligned correctly. The pseudo-energy approach based

on pairwise potentials in Zhu and Braun (1999) discriminates 35% of native align-

ments from alternative alignments, assuming pairing directions are known. Thus

on a larger albeit different dataset, the accuracy of the method presented here is

significantly higher than previous approaches. Assuming that pairing direction and

position of one strand is known, the information theoretic approach of Steward and

Thornton (2002), which aligns the known strand with all sub-sequences in a ±10 off-

set around another strand to identify the best alignment, achieves precisions of 48%

and 45% for parallel and antiparallel pairs in strand triplets, and 37% and 31% for

arbitrary parallel and antiparallel pairs respectively. Since our methods assume that

the position of the two β-strands under consideration is known–in a purely ab initio

setting, this would have to be predicted (Rost and Sander, 1993b,a; Jones, 1999b;

Pollastri et al., 2002b)– the alignment accuracy of our methods can not be compared

directly with the information theoretic approach. However, our results show that

it is easier to align parallel strand pairs than antiparallel ones, which agrees with

the observations derived using the information theoretic approach. Figure 6.11 and

6.12 show the histograms of alignment offsets of all parallel and antiparallel pairs

where paring directions are correctly predicted. No simple metric is yet avail-
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Figure 6.11: Histogram of alignment offsets of antiparallel strand pairs. A perfect
alignment corresponds to a 0 offset.

able for evaluating the prediction of β-sheet topologies. Here we report the strand

pairing precision of predicted β-sheets, i.e. the proportion of correctly predicted

strand pairs in each β-sheet. Using the greedy graph algorithm, for instance, 51%

of predicted β-sheets have β-strand pairing precision greater than 60%.

6.4 Conclusion

We have proposed a new ab initio modular approach to the problem of predicting

and assembling β-sheets. The method is modular in the sense that alternative al-

gorithms can be “plugged in” for each one of its stages, for instance in order to

predict residue pairing probabilities. Starting from β-residue pairing probabilities,

the method provides an integrated prediction of β-sheet architectures by predict-
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Figure 6.12: Histogram of alignment offsets of parallel strand pairs. A perfect
alignment corresponds to a 0 offset.

ing β-strand pairs, β-strand alignments, and β-sheets assembly. The pseudo-energy

derived from pairing probabilities of β-residue pairs can rather accurately predict β-

strand alignments and score β-strand pairs. The greedy and constrained-MST graph

algorithms are able to predict strand pair and β-sheet topology from pseudo-energy

matrices by globally optimizing the pseudo-energy of β-sheets. While the perfor-

mance of, for instance, β-strand alignment appears significantly improved over pre-

vious statistical data-driven approaches, it is clear that even further improvements

should be possible in each one of the three stages. For instance, in the first step,

more information about the inter-strand sequence can be included (Punta and Rost,

2005). In the second step, gap penalties for β-bulges can be taken into account. In

the third step, graph algorithms that allow cycles ought to recover cyclic β-sheets.

Furthermore, constrained optimization of the binding pseudo-energy derived here
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is at best an approximation that will need to be refined to include other packing

constraints associated with other secondary structure elements.

β-sheets have remained one of the main stumbling blocks of protein structure

prediction over the years. Thus new methods for the accurate prediction of β-sheets

may lead to noticeable improvements in the study of protein structure and folding,

and in protein design. Our results suggests that the methods presented here can

be combined with contact map prediction to generate more accurate contact maps,

which in turn can be used in fold recognition and 3D reconstruction. Accurate β-

residue and β-strand pairings may also provide strong constraints for improving ab

initio sampling of tertiary structures and derive energy terms to help select near

native structures from decoys.
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Chapter 7

A Machine Learning Information

Retrieval Approach to Protein

Fold Recognition

7.1 Introduction

The key step of template-based protein structure prediction approaches (compara-

tive modeling and fold recognition) is to recognize proteins that have similar tertiary

structures. This task becomes very challenging when there is little sequence simi-

larity between the query and the template protein. Several alignment methods have

been used to try to identify fold similarity, using sequence information, structural

information, or both. Instead of developing a new specialized alignment method for

fold recognition (Shi et al., 2001; Xu et al., 2003b; Zhou and Zhou, 2004), or integrat-

ing existing fold recognition servers (Lundstrm et al., 2001; Fischer, 2003; Ginalski

et al., 2003a), here we propose a machine learning information retrieval approach

that leverages features extracted using existing, general-purpose, alignment tools
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as well as protein structure prediction program and combines them using support

vector machines to rank all the templates.

7.1.1 Classical Approaches to Fold Recognition

Alignment methods for fold recognition include sequence-sequence, sequence-profile

(or profile-sequence), profile-profile, and sequence-structure methods.

Sequence-sequence alignment methods (Needleman and Wunsch, 1970; Smith and

Waterman, 1981; Dayhoff et al., 1983; Pearson and Lipman, 1988; Altschul et al.,

1990; Henikoff and Henikoff, 1992; Vingron and Waterman, 1994) are effective at

detecting homologs with significant sequence identity (>40%).

Sequence-profile (or profile-sequence) alignment methods (Baldi et al., 1994;

Krogh et al., 1994; Hughey and Krogh, 1996; Altschul et al., 1997; Bailey and Grib-

skov, 1997; Karplus et al., 1998; Eddy, 1998; Park et al., 1998; Koretke et al., 2001;

Gough et al., 2001) are more sensitive at detecting distant homologs with lower se-

quence identity (> 20%). Profiles can correspond to simple multiple alignments, to

position specific scoring matrices (PSSMs), or to hidden Markov models (HMMs).

Profile-profile alignment approaches (Thompson et al., 1994; Rychlewski et al.,

2000; Notredame et al., 2000; Yona and Levitt, 2002; Madera and Gough, 2002;

Mitelman et al., 2003; Ginalski et al., 2003b; Sadreyev and Grishin, 2003; Edgar

and Sjolander, 2003, 2004; Ohlson et al., 2004; Wallner et al., 2004; Wang and Dun-

brack, 2004; Marti-Renom et al., 2004; Söding, 2005) are even more sensitive at

detecting distant homologs and compatible structures, and often achieve even bet-

ter performance than sequence-structure alignment methods that leverage template

structural information (Rychlewski et al., 2000).

Sequence-structure alignment methods (or threading) (Bowie et al., 1991; Jones

et al., 1992; Godzik et al., 1992; Bryant and Lawrence, 1993; Abagyan et al., 1994;
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Murzin and Bateman, 1997; Xu et al., 1998; Jones, 1999a; Panchenko et al., 2000;

David et al., 2000; Shi et al., 2001; Skolnick and Kihara, 2001; Xu et al., 2003b;

Kim et al., 2003) align query sequences with template structures and compute com-

patibility scores according to structural environment fitness and contact potentials.

These methods are particularly useful for detecting proteins with similar folds but

no recognizable evolutionary relationship.

The separation between sequence-based and structure-based methods, however,

is becoming blurred as new methods are developed that combine both kinds of in-

formation together. Combining both sequence and structure information has been

shown to improve both fold recognition (Elofsson et al., 1996; Jaroszewski et al.,

1998; Al-Lazikani et al., 1998; Fischer, 2000; Kelley et al., 2000; Panchenko et al.,

2000; Shan et al., 2001; Tang et al., 2003; Pettitt et al., 2005) and alignment quality

(Thompson et al., 1994; Al-Lazikani et al., 1998; Domingues et al., 2000; Notredame

et al., 2000; Griffiths-Jones and Bateman, 2002; Tang et al., 2003; O’Sullivan et al.,

2004). Even the sequence-derived predicted secondary structure can be used to in-

crease the sensitivity of fold recognition (Rost and O’Donoghue, 1997; Jones, 1999a;

Ginalski et al., 2003b; Xu et al., 2003b; Zhou and Zhou, 2004).

In fold recognition, different alignment tools are often used independently to

search protein databases for similar structures. Previous research (Jaroszewski et al.,

1998; Lindahl and Elofsson, 2000; Shan et al., 2001; Ohsen et al., 2003; Wallner

et al., 2004) has shown that these alignment methods are complementary and can

find different correct templates. But combining these methods is difficult (Lindahl

and Elofsson, 2000). Meta or jury approaches (Lundstrm et al., 2001; Fischer, 2003;

Ginalski et al., 2003a; Juan et al., 2003; Wallner et al., 2004) collect the predicted

models from external fold recognition predictors and derive predictions based on a

small set of returned candidates. This popular, hierarchical approach increases the
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reach of fold recognition. However, it relies on the availability of external predictors

and cannot recover true positive templates discarded prematurely by individual

predictors.

7.1.2 A Machine Learning Information Retrieval Approach

to Fold Recognition

Statistical machine learning methods provide powerful means for integrating dis-

parate features in pattern recognition. So far, however, machine learning integration

of features has been used in this area primarily for coarse homology detection, such

as protein structure/fold classification (Jaakkola et al., 2000; Leslie et al., 2002).

Classifying proteins into a few categories or even dozens of families, superfamilies,

and folds, however, does not provide the specific templates required for template-

based structure modeling. Furthermore, current classification methods are not likely

to scale up to the thousands of families, superfamilies, and folds already present in

current protein classification databases, such as SCOP (Murzin et al., 1995). Fold

recognition is different from protein classification–it is fundamentally a retrieval

problem, very much like finding a document or a Web page (Rocchio, 1966; Page

et al., 1998). Given a query protein, the objective of fold recognition is rather to

rank all possible templates according to their structural relevance, like Google and

other search engines rank Web pages associated with a user’s query.

Machine learning methods (such as binary classifiers) have been used also in

threading approaches (Jones, 1999a; Xu et al., 2003b) to combine multiple scores

produced by threading into a single scores to rank the templates. Here we gener-

alize this idea and derive a broad machine learning framework for the fold recog-

nition/retrieval problem. The framework integrates a variety of similarity features
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and feature extraction tools, including standard alignment tools. However, unlike

meta approaches, it does not require any preexisting fold recognition programs or

servers.

Consistently with the major trend in machine learning towards kernel meth-

ods (Schölkopf and Smola, 2002), we first focus on the computation of a variety

of similarity measures between query-template pairs. Instead of extracting features

and analyzing individual sequences, we focus exclusively on pairs of sequences and

use a variety of complementary alignment tools to align the query protein with the

template proteins, rather than to search the database of templates. The alignment

scores for query-template pairs are used as similarity measures. Furthermore, based

on alignments (e.g. profile-profile) between query and template, we further extract

pairwise structural compatibility features by checking the predicted secondary struc-

ture, solvent accessibility, contact map, and beta-strand pairings of the query protein

against the tertiary structure of the template protein. Second, these alignment and

structural similarity scores as well as other sequence and structural features derived

using 3 standard similarity measures (cosine, correlation, and Gaussian kernel) are

fed into support vector machines (SVMs) (Vapnik, 1998) to learn a relevance func-

tion to evaluate whether the query and template belong to the same fold. Finally,

the continuous output scores produced by the SVMs are used to rank the templates

with respect to the query. The top-ranked templates can be used to model the

structure of the query.
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7.2 Methods

7.2.1 Feature Extraction

We extract five categories of pairwise features (similarity scores) for each query-

template pair associated with sequence or family information, sequence alignment,

sequence-profile (or profile-sequence) alignment, profile-profile alignment, and struc-

ture (Table 7.1).

Sequence/family information features. To compare the sequences of query

and template proteins, we compute their single amino acid (monomer) and ordered

pair of amino acids (dimer) compositions. The composition vectors x and y of the

query and template are compared and transformed into six similarity scores using

the cosine ( x·y
|x||y|

), correlation (
∑

i(xi−x̄)(yi−ȳ)√
∑

i(xi−x̄)2
∑

i(yi−ȳ)2
), and Gaussian kernel (e−||x−y||2)

respectively. We apply the same techniques to the monomer and dimer residue com-

position vectors of the family of sequences associated with the query and the tem-

plate to extract another set of six similarity measures, to measure the family com-

position similarity. The sequences for both query and template families are derived

from multiple sequence alignments generated by searching the NCBI non-redundant

sequence database (NR release 1.21, 28-Apr-2003) using PSI-BLAST(Altschul et al.,

1997). The e-value (-e option) threshold for inclusion in the profile is set to 0.001;

the cut-off threshold (-h option) for building iterative profiles is set to e − 10; and

the number of iteration (-j option) is set to 3. Thus the sequence/family information

feature subset includes 12 (6+6) pairwise features in total.

Sequence-sequence alignment features. Two sequence alignment tools,

PALIGN (Ohlson et al., 2004) and CLUSTALW (Thompson et al., 1994), are used

to extract pairwise features associated with sequence alignment scores. PALIGN

uses local alignment methods and produces a score and an e-value. The score is di-
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vided by the length of the query to remove any length bias. CLUSTALW generates

a global sequence alignment score between the query and the template. This score

is also normalize by the length of the query sequence. Thus the sequence alignment

feature subset includes 3 pairwise features.

Sequence-profile (or profile-sequence) alignment features. We use three

different profile-sequence alignment tools (PSI-BLAST, HMMER-hhmsearch (Eddy,

1998), and IMPALA (Schaffer et al., 1999)) to extract profile-sequence alignment

features between the query profile and the template sequence. The profiles (or

multiple alignments) for queries are generated by searching the NR database using

PSI-BLAST, as described above. Identical sequences in the multiple alignments are

removed. No sophisticated weighting scheme is used. The multiple alignments are

used by all profile alignment tools directly, or as the basis for building customized

profiles. For instance, the HMM models in HMMER are built from the multiple

alignments by using the hmmbuild and hmmcalibrate tools of HMMER. Note that,

instead of using these tools to search sequence databases, we use them to align

individual query profiles against individual template sequences to extract pairwise

features. The alignment score normalized by the query length, the logarithm of the

e-value, and the alignment length normalized by the query length from the most

significant PSI-BLAST and IMPALA local alignment are used as features. The

alignment scores, normalized by the length of the query sequence, and the logarithm

of the e-value produced by hmmsearch alignments are used as features too. Thus

the profile-sequence alignment tools generate 8 pairwise features.

For sequence-profile alignments, we use RPS-BLAST in the PSI-BLAST pack-

age and hmmpfam in the HMMER package to align the query sequence with the

template profiles. The template profiles are generated in the same way as the query

profiles. In this way, RPS-BLAST generates 3 features similar to PSI-BLAST. The
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logarithm of the e-value produced by hmmfam is also used as one feature. Thus the

subset of profile-sequence (or sequence-profile) alignment features includes 12 (8 +

4) pairwise features in total.

Profile-profile alignment features. We use five profile-profile alignment tools

including CLUSTALW, COACH of LOBSTER (Edgar and Sjolander, 2004), COM-

PASS (Sadreyev and Grishin, 2003), HHSearch (Söding, 2005), and PRC (Profile

Compiler by M. Madera, http://supfam.org/PRC) to align query and template pro-

files. The global alignments produced by CLUSTALW and LOBSTER and the most

significant local alignments produced by COMPASS, PRC, and HHSearch are used

to extract the pairwise features. Specifically, CLUSTALW aligns query multiple

alignments with template multiple alignments. COACH aligns query HMMs with

template HMMs built from the multiple alignments produced by LOBSTER. HH-

Search also aligns query HMMs with template HMMs generated from the multiple

alignments using the hhmake function of HHSearch. The alignment scores produced

by CLUSTALW and HHSearch are normalized by query length and used as pairwise

features. The alignment scores produced by LOBSTER are not used directly as fea-

tures because their dependence on template length would introduce a bias toward

long templates.

PRC, an HMM profile-profile alignment tool, is used with two different kinds

of profiles: HMM models built by HMMER and chk profiles built by PSI-BLAST.

In each case, PRC produces 3 scores (co-emission, simple, and reverse), which are

normalized by query length. COMPASS, which uses internally a log-odds ratio

score and a sophisticated sequence weighting scheme, is used to align query mul-

tiple alignments with template multiple alignments. The Smith-Waterman local

alignment score normalized by query length and the logarithm of the e-value from

the COMPASS alignments are used also as pairwise features. Thus the subset of
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profile-profile alignment features includes 10 pairwise features in total.

Structural features. Based on the global profile-profile alignment between

query and template obtained with LOBSTER, we use predicted 1D and 2D struc-

tural features including secondary structure (3-class: alpha, beta, loop), relative

solvent accessibility (2-class: exposed or buried at 25% threshold), contact proba-

bility map at 8Å and 12Å, and beta-sheet residue pairing probability map to eval-

uate the compatibility between query and template structures. These structural

features for query proteins are predicted using the SCRATCH suite (Pollastri et al.

(2002a,b); Pollastri and Baldi (2002); Cheng et al. (2005a); Cheng and Baldi (2005),

http://www.igb.uci.edu/servers/psss.html).

The predicted secondary structure (SS) and relative solvent accessibility (RSA)

of the query residues are compared with the nearly exact SS and RSA of the aligned

residues in the template structure. The fractions of correct matches for both SS (as

in (Jones, 1999a; Xu et al., 2003b)) and RSA are used as two pairwise features. The

SS and RSA composition (helix, strand, coil, exposed, and buried) are transformed

into four similarity scores by cosine, correlation, Gaussian kernel, and dot product.

So this 1D structural feature subset has 6 features in total.

For the aligned residues of the template which have sequence separation > 5

and are in contact at 8Å threshold (resp. 12Å), we compute the average contact

probability of their counterparts in the predicted 8Å (resp. 12Å) contact probability

map of the query. The underlying assumption is that the counterparts of the contact

residues in the template should have high contact probability in the query contact

map if the query and template share similar structure. Similarly, for each paired

beta-strand residues in the template structures, we compute the average pairing

probability of their beta-strand counterparts in the predicted beta-strand paring

probability map of the query, assuming that two proteins will share similar beta-
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sheet topology if they belong to the same fold.

Moreover, we compute the contact order (sum of sequence separation of contacts)

and contact number (number of contacts) for each aligned residue in both query and

templates. This information is easy to derive for the template sequences since their

tertiary structure is known. For the query sequence, we let the contact order for

residue i to be
∑

|i−j|>5 Cij|i − j|, where Cij is the predicted contact probability

for residues i and j. The contact number for residue i in the query is defined as

the sum of the contact probabilities
∑

|i−j|>5 Cij. The contact order and contact

number vectors of the aligned residues are not used directly as features. Instead,

they are compared and transformed into pairwise similarity scores using the cosine

and correlation functions. For both the 8Å and 12Å contact maps, 8 pairwise

features of contact order and contact number are extracted. So the 2D structural

feature subset has 11 features in total. Thus the entire 1D and 2D structural feature

subset has 17 features in total.

The entire feature set contains 54 pairwise features measuring query-template

similarity (Table 7.1). Initially we used a larger set of 74 features (not shown) that

included also non-pairwise features, such as the proportion of helices and strands

in each chain. Information gain analysis (see Results) and experiments led us to

remove the 20 least informative or most biased features to optimize performance. All

the alignment tools for extracting pairwise features are run with default parameters,

except the e-value thresholds (-e option) of PSI-BLAST, RPS-BLAST, and IMPALA

which are set to larger values (100,50,20 respectively), to ensure that alignments

between sequences with very little similarity are generated in most cases. If no

features are generated by these tools, the corresponding similarity features are set

to 0.
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Table 7.1: Features used in fold recognition. cos/corr/Gauss denote cosine, corre-
lation, and Gaussian kernel functions. SS and RSA represent secondary structure
and relative solvent accessibility respectively.

Category Feature Method Num

Seq&Family Info. Seq monomer compo cos/corr/Gauss 3
Seq dimer compo cos/corr/Gauss 3
Fam monomer compo cos/corr/Gauss 3
Fam dimer compo cos/corr/Gauss 3

Seq-Seq Align. Local alignment PALIGN 2
Global alignment CLUSTALW 1

Seq-Prof Align. Prof vs. seq PSI-BLAST 3
Prof vs. seq IMPALA 3
Prof vs. seq HHMER 2
Seq vs. prof RPS-BLAST 3
Seq vs. prof HMMER 1

Prof-Prof Align. Multiple alignment CLUSTALW 1
PSSM COMPASS 2
HMM prof PRC 6
HMM prof HHSearch 1

Structural Info. SS&RSA match ratio 2
SS&RSA compo cos/corr/Gauss 4
Contact probability average 2
Residue contact order cos/corr 4
Residue contact num cos/corr 4
Beta-sheet pair prob. average 1

Total - - 54
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7.2.2 Fold Recognition with Support Vector Machines (SVMs)

Each feature vector associated with a pair of proteins in a given training set corre-

spond to a positive or negative example, depending on whether the two proteins are

in the same fold or not. These feature vectors in turn can be used to train a binary

classifier. Here we train SVMs and learn an optimal decision function f(x) to classify

an input feature vector x into two categories (f(x) > 0: same fold; f(x) < 0: differ-

ent fold). The decision function f(x) =
∑

xi∈S αiyiK(x, xi) + b is a weighted linear

combination of the similarities K(xi, x) between the input feature vector x and the

feature vectors xi in the training dataset S. Here K is a user-defined kernel function

that measures the similarity between the feature vectors xi and x corresponding in

general to four proteins. αi is the weight assigned to the training feature vector

xi and yi is the corresponding label (+1:positive, -1:negative). All protein pairs in

the same fold are labeled as positive examples, and the remaining ones as negative

examples. We use SVM-light (Joachims, 1999) to learn the SVM parameters. The

continuous value f(x) is indicative of how likely the corresponding sequences are

in the same fold, and therefore it is used to evaluate the structural relevance and

rank all the templates for a given query. We tested polynomial, tanh, and Gaussian

radial basis kernels (RBF: e−γ||x−y||2). We report the results obtained with the RBF

kernel which worked best for this task, with γ = 0.015. Preliminary tests indicated

that the results are robust with respect to γ. All other SVM parameters are set to

their default values. A thorough parameter optimization may help further improve

the accuracy.
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7.2.3 Training and Benchmarking

To compare the performance of our method with other well-established methods,

we use the large benchmark dataset (Lindahl and Elofsson, 2000) derived from the

SCOP (Murzin et al., 1995) database. The Lindahl’s dataset includes 976 proteins.

The pairwise sequence identity is <= 40%. We extract a feature vector for all

976×975 distinct pairs. In this dataset, 555 sequences have at least one match at

the family level, 434 sequences have at least one match at the superfamily level, and

321 sequences have at least one match at the fold level.

We split all protein pairs evenly into 10 subsets for 10-fold cross validation pur-

poses. All the query-template pairs associated with the same query protein are put

into the same subset. Nine subsets are used for training and the remaining subset

is used for validation. The pairs in the training dataset that use queries in the test

dataset as templates are removed. The procedure is repeated 10 times and the sen-

sitivity/specificity results are computed across the 10 experiments. Training takes

about 3 days for a single data-split on a single node with dual Pentium processors,

hence 3 days for the entire 10-fold cross-validation experiment using 10 nodes in a

cluster. Using the same evaluation procedure as in Lindahl and Elofsson (2000); Shi

et al. (2001); Zhou and Zhou (2004), we evaluate the sensitivity by taking the top 1

or the top 5 templates in the ranking associated with each test query. Furthermore,

as in Lindahl and Elofsson (2000); Shi et al. (2001), we also evaluate the performance

of our method for all positive matches using specificity-sensitivity plots.

7.3 Results

Table 7.2 lists the 20 top features ranked using the information gain measure (Yang

and Pedersen, 1997). The table shows that profile-profile alignment features are
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the most informative. For instance, the alignment features of HHSearch, COM-

PASS, and PRC are ranked first, second, and third respectively. Thus profile-profile

alignment methods have the strongest discriminative power in fold recognition, con-

sistently with previous studies (Rychlewski et al., 2000; Wallner et al., 2004; Ohlson

et al., 2004). Profile-sequence (or sequence-profile) alignment features and some

structural features based on the LOBSTER alignment between queries and tem-

plates have also strong discriminative power according to the information gain mea-

sure. For instance, the e-values of HMMer pfam and HMMer search are ranked

fifth and seventh respectively. Our results, confirm also the importance of predicted

structural features. The dot product of secondary structure and solvent accessibility

composition vectors, and the secondary structure match ratio, rank sixth and eighth

respectively.

Other profile-sequence (or sequence-profile) alignment features such as PSI-BLAST,

IMPALA, BLAST and structural features such as the cosine of the residue contact

number lead also to significant information gains. On the other hand, compared

with other local profile-profile alignment scores, the CLUSTALW global profile-

profile alignment score carries a lesser weight. This suggest that CLUSTALW is

optimized for alignment, but not for direct fold recognition, which is consistent with

previous results (Marti-Renom et al., 2004). Since the pairwise sequence identity in

the dataset is less than 40%, sequence alignment and sequence/family information

features have a lesser, albeit still noticeable, impact.

We evaluate the performance of our FOLDpro method against 11 other fold

recognition methods. The 11 other methods are: PSI-BLAST, HMMER, SAM-T98

(Karplus et al., 1998), BLASTLINK, SSEARCH, SSHMM (Hargbo and Elofsson,

1999), THREADER (Jones et al., 1992), FUGUE (Shi et al., 2001), RAPTOR (Xu

et al., 2003b), SPARKS (Zhou and Zhou, 2004), and SP3 (Zhou and Zhou, 2005).
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Table 7.2: Twenty top-ranked features using information gain

Feature Information Gain
HHSearch score 0.0375
COMPASS evalue 0.0370
PRC reverse score on chk profile 0.0354
PRC reverse score on HMM profile 0.0341
HMMer pfam evalue 0.0287
Dot product of SS and RSA vectors 0.0266
HMMer search evalue 0.0264
SS match ratio 0.0263
Correlation of SS and RSA vectors 0.0263
PRC simple score on HMM profile 0.0248
Cosine of SS and RSA vectors 0.0246
Gaussian kernel on SS and RSA vectors 0.0237
COMPASS score 0.0235
PRC coemis score on HMM profile 0.0220
PSI-BLAST evalue 0.0205
IMPALA evalue 0.0181
RPS-BLAST evalue 0.0180
SA match ratio 0.0154
Cosine of residue contact num (8Å) 0.0150
HMMer search score 0.0142
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SPARKS, for instance, was one of the top predictors during the sixth edition of

the CASP evaluation (Moult et al., 2005). The results for PSI-BLAST, HMMER,

SAM-T98, BLASTLINK, SSEARCH, SSHMM, and THREADER are taken from

Lindahl and Elofsson (2000). The results for the other methods are taken from the

corresponding articles. One caveat is that the sequence databases used to generate

the profiles are being updated continuously, and so are some of the methods. Thus

the comparative analysis is only meant to provide a broad, rough assessment of

performance rather than a precise and stable ranking.

Table 7.3 shows the sensitivity of FOLDpro and the other methods at the family,

superfamily, and fold levels, for the top 1 and top 5 predictions respectively. Here

sensitivity is defined by the percentage of query proteins (with at least one possible

hit) having at least one correct template ranked 1st, or within the top 5 (Lindahl

and Elofsson, 2000). It shows that in almost all situations the performance of

FOLDpro is better than that of other well-established methods such as SPARKS,

SP3, FUGUE, and RAPTOR.

Specifically, at the family level, the sensitivity of FOLDpro for the top 1 or 5

predictions is 85.0% and 89.9%, about 2-4% higher than FUGUE, SPARKS, and

SP3, and significantly higher than all other methods. At the superfamily level, the

sensitivity of FOLDpro for the top 1 or 5 predictions is 55.5% and 70.0%, slightly

higher than SPARKS and SP3, and significantly higher than all other methods. At

the fold level, the sensitivity of FOLDpro for the top 1 predictions is 26.5%, about

2% lower than SP3, 1-3% higher than RAPTOR and SPARKS, and significantly

higher than all other methods. For the top 5 predictions, at the fold level, the

sensitivity of FOLDpro is 48.3%, about 0.6-3% higher than RAPTOR, SPARKS,

and SP3, and significantly higher than all other methods

The performance of FOLDpro is significantly better than pure sequence- or
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Table 7.3: The sensitivity of 12 methods on the Lindahl’s benchmark dataset at the
family, superfamily, and fold levels.* denotes the best results.

Family (%) Superfamily (%) Fold (%)
Method Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST 71.2 72.3 27.4 27.9 4.0 4.7
HMMER 67.7 73.5 20.7 31.3 4.4 14.6
SAM-T98 70.1 75.4 28.3 38.9 3.4 18.7
BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5
SSEARCH 68.6 75.5 20.7 32.5 5.6 15.6
SSHMM 63.1 71.7 18.4 31.6 6.9 24.0
THREADER 49.2 58.9 10.8 24.7 14.6 37.7
FUGUE 82.2 85.8 41.9 53.2 12.5 26.8
RAPTOR 75.2 77.8 39.3 50.0 25.4 45.1
SPARKS 81.6 88.1 52.5 69.1 24.3 47.7
SP3 81.6 86.8 55.3 67.7 28.7* 47.4
FOLDpro 85.0* 89.9* 55.5* 70.0* 26.5 48.3*

profile-based approaches, such as PSI-BLAST, HMMER, SAM-T98, and BLASTLINK.

It is also significantly better than threading approaches, such as THREADER, in all

3 categories. For example, compared to PSI-BLAST, FOLDpro is about 14%, 28%,

and 23% more sensitive at recognizing members of the same family, superfamily,

and fold, respectively, using the top 1 predictions; using the top 5 predictions, these

improvements are 18%, 42%, and 44% respectively.

As in Lindahl and Elofsson (2000), we also compare the performance of FOLDpro

using specificity-sensitivity plots (Figures 7.1, 7.2, 7.3), to better assess the trade-

offs between specificity and sensitivity, using the Lindahl’s dataset. We compute the

sensitivity and specificity of FOLDpro for different thresholds applied to the SVM

scores. Specificity is defined as the percentage of predicted positives (above thresh-

old) that are true positives (in the same family, superfamily, or fold). Sensitivity

is defined as the percentage of true positives that are predicted as positives (above

threshold). The advantage of the specificity-sensitivity plots is that they measure
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the ability of a method to reliably identify all positive matches in the dataset beyond

the top hits. Sensitivity-specificity results for 7 of the 11 methods above were kindly

provided by Dr. Elofsson (http://www.sbc.su.se/∼arne/protein-id/).

In the family category (Figure 7.1), FOLDpro consistently outperforms all other

methods by more than 10% for almost all specificity values. However, like SAM-

T98, the sensitivity of FOLDpro drops rapidly when the specificity is close to 1.

This suggests that some false positives may be receiving very high scores. How-

ever, after manually inspecting the dozen of “false positives” with high scores,

some of them turn out to be true positives that were misclassified in the origi-

nal dataset. For instance, the pair (1XZL,3TGL) belongs to the same superfamily

and fold (alpha/beta-Hydrolases) in the latest SCOP 1.69 release, while 1XZL was

wrongly classified into another fold (Flavodoxin-like) in the Lindahl’s dataset based

on the old SCOP 1.37 release. This shows that FOLDpro is capable of correcting

some human annotation errors and that “false positives” with high scores must be

verified carefully. Although these wrongly classified pairs with high scores lead one

to slightly under-estimate the performance of FOLDpro, we did not attempt to cor-

rect them in the evaluation, due to their small effect and to maintain consistency

with previous evaluations.

At the superfamily level (Figure 7.2), FOLDpro has more than twice the sen-

sitivity of the second best method for almost all specificity levels. For instance,

at 50% specificity, the sensitivity of FOLDpro is 30%, about 20% higher than the

second best method, PSI-BLAST. At the fold level (Figure 7.3), fold recognition re-

mains challenging for all methods. However, FOLDpro’s performance is significantly

better than all other methods, including the second best method THREADER, a

threading method specifically designed for this purpose. For instance, at 5% speci-

ficity, FOLDpro achieves sensitivity of 28%, about 23% higher than THREADER,
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while the sensitivity of all other methods is close to 0.
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Figure 7.1: Specificity-sensitivity plot at the family level

The specificity-sensitivity plots show that FOLDpro significantly outperforms a

variety of different methods in all categories, indicating that the integration of com-

plementary alignment tools and sequence and structural information can improve

fold recognition across the board.

7.4 Discussion

We have presented a general information retrieval framework for the fold recognition

problem that leverages similarity methods at two fundamental levels. Rather than

directly classifying individual proteins, we first consider pairs of proteins and de-

rive a set of pairwise features (feature vector) consisting of many different similarity

scores (e.g. profile-profile alignment scores). We then apply supervised classification

methods (e.g., SVM) to these feature vectors to learn a relevance function to mea-

131



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Se
ns

iti
vi

ty

Specificity

Superfamily

FOLDpro
SSEARCH

HMMER
PSI-BLAST

THREADER
SSHMM

BLASTLINK
SAM-T98

Figure 7.2: Specificity-sensitivity plot at the superfamily level

sure whether or not the query-template pairs are structurally relevant (same versus

different fold). For a given query, the continuous relevance values are used to rank

the templates.

The learning process involves measuring the similarity between pairs of feature

vectors associated with four proteins, which differs from the two-protein comparison

of traditional classification approaches. From the standpoint of using structural

information in fold recognition, our approach differs also from traditional threading

approaches, which use structural information to produce alignments and compute

statistical contact potentials to evaluate sequence-structure fitness. In contrast, our

approach employs sequence-based profile-profile alignment tools to align a query

against the possible templates, without using structural information. Then, based on

these alignments, it checks the predicted secondary structure, solvent accessibility,

contact probability map, and beta-sheet pairings of the query against the template

structures to evaluate fitness.
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Figure 7.3: Specificity-sensitivity plot at the fold level

The approach used in FOLDpro has several advantages in terms of integration,

scalability, simplicity, reliability, and performance. First the approach readily in-

tegrates complementary streams of information, from alignment to structure, and

additional features can easily be added. It is worth pointing out this integrative

approach is slower than some individual alignment methods such as PSI-BLAST.

However, it can scan a fold library with about 10,000 templates in a few hours, for

an average-size query protein, on a server with two Pentium processors. Second,

most features can readily be derived using publicly available tools. This is simpler

than trying to develop a new, specialized, alignment tool for fold recognition as in

SPARKS, SP3, FUGUE, and RAPTOR, which usually requires a lot of expertise.

Third, our approach can be included in a meta-server but, unlike a meta-server, it

is self-contained and does not rely on external fold-recognition servers. Unlike meta

servers, this approach produces a full ranking of all the templates and does not dis-

card any templates early on during the recognition process. Finally, the approach
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delivers state-of-the-art performance on current benchmarking datasets. And while

fold recognition remains a challenging problem, the approach provides clear avenues

of exploration to improve the performance, such as adding new features to the fea-

ture vector, enlarging the training set, using different machine learning tools to learn

the relevance function, and leveraging ensembles.
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Chapter 8

Protein Bioinformatics Software

and Servers

8.1 Introduction

Publicly available bioinformatics web servers and software allow researchers from

around the world to apply tools developed in other laboratories to their own data and

fully automated systems provide a framework for high-throughput proteomics and

protein engineering projects. We have developed a software suite (SCRATCH) for

protein bioinformatics, to predict protein tertiary structure and structural features.

A number of bioinformatics tools in the suite are available to the scientific commu-

nity in the form of web servers or dowloadable packages (www.igb.uci.edu/servers/psss.html).

The SCRATCH software suite includes predictors for secondary structure, rela-

tive solvent accessibility, disordered regions, domains, disulfide bridges, single point

mutation stability, residue contacts, and tertiary structure. The user simply pro-

vides an amino acid sequence and selects the desired predictions, then submits to

the server. Results are emailed to the user. Most predictors can also be downloaded
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for local use from the SCRATCH web site.

8.2 Protein Bioinformatics Software and Servers

The SCRATCH suite combines machine learning methods, graph algorithms, evo-

lutionary information in the form of profiles, fragment libraries extracted from the

Protein Data Bank (PDB) (Berman et al., 2000), and energy functions to predict

protein structural features and tertiary structures. The suite includes the following

main modules:

• SSpro (Pollastri et al., 2002b; Cheng et al., 2005a): three class secondary

structure prediction.

• ACCpro (Pollastri et al., 2002a; Cheng et al., 2005a): relative solvent accessi-

bility prediction.

• DOMpro (Cheng et al., 2005d): domain boundary prediction.

• DISpro (Cheng et al., 2005c): disordered region prediction.

• MUpro (Cheng et al., 2006a): prediction of the stability change of a single

amino acid mutation.

• CMAPpro (Pollastri and Baldi, 2002; Cheng et al., 2005a) : residue-residue

contact map prediction.

• DIpro (Baldi et al., 2005; Cheng et al., 2006b): disulfide bridge prediction.

• BETApro (Cheng and Baldi, 2005): beta-sheet architecture prediction.

• FOLDpro (Cheng and Baldi, 2006): template-based tertiary structure predic-

tion.
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• 3Dpro (Cheng et al., 2005a; Cheng and Baldi, 2006): template-based and ab

initio tertiary structure prediction.

SSpro, ACCpro, DOMpro, DISpro, and MUpro are 1D predictors to predict 1-

dimensional structural features. CMAPpro, DIpro, and BETApro are 2D predictors

to predict 2-dimensional structural features. 3Dpro and FOLDpro are 3D predictors

to predict 3-dimensional (tertiary) structure.

All 1D and 2D predictors are trained in a supervised fashion using curated, non-

redundant, datasets extracted from the PDB. SSpro, ACCpro, DISpro and DOMpro

use ensembles of one-dimensional recursive neural network (1D-RNN) architectures

(Baldi and Pollastri, 2003). MUpro uses feed-forward neural networks and SVMs to

predict mutation stability changes from protein sequences or structures.

CMAPpro and DIpro predictors use ensembles of 2D-RNN architectures (Pollas-

tri and Baldi, 2002; Baldi and Pollastri, 2003). In addition to the standard 2D-RNN

architectures to predict the entire contact map in one step, a variant architecture of

CMAPpro is used to predict contacts from low-sequence separation to high-sequence

separation step by step. The predicted contact maps at lower sequence separation

are used as inputs for the prediction of contact maps at higher sequence separation.

The raw output of CMAPpro is a matrix of contact probabilities for all residue pairs.

DIpro also uses support vector machines (SVMs) to discriminate proteins with disul-

fide bonds from proteins without disulfide bonds, and graph matching algorithms

to pair the cysteines. BETApro uses 2D-RNN, alignment, and graph algorithms

to predict protein β-residue pairings, β-strand pairings, and β-sheet architecture in

three stages.

All 1D and 2D predictors except for MUpro, directly leverage evolutionary in-

formation in the form of input profiles derived using PSI-BLAST (Altschul et al.,

1997) to include all homologous proteins (Pemberton and Jones, 1999; Przybylski
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and Rost, 2002). In addition, for SSpro and ACCpro, very high levels of local ho-

mology to known structures are used either directly or in combination with the

prediction output to improve accuracy. Whenever possible and useful, predictors

leverage the output of the other predictors. For instance, DOMpro uses the outputs

of SSpro and ACCpro to improve domain boundary prediction.

We use both ab-initio and template-based methods (FOLDpro) for tertiary struc-

ture prediction. FOLDpro makes structure prediction in three steps. First, it uses

a machine learning information retrieval approach to rank template proteins for the

query protein, integrating a variety of similarity features including sequence/family

information, sequence-sequence alignment, sequence-profile (profile-sequence) align-

ment, profile-profile alignment, and structural features. Second, it generates profile-

profile alignments between the query protein and the top ranked template proteins.

Multiple templates are used to improve both the alignment and the structure mod-

eling if necessary. Third, based on the query-template alignments and 3D structures

of the templates, Modeller (Sali and Blundell, 1993) is used to generate structure

models for the query protein. Five models are generated for the query. The models

ranked higher are generated based on the templates ranked higher. So they are

presumably, but not always, better than the models ranked lower.

In addition to template-based component FOLDpro, 3Dpro includes an ab-initio

component, which combines the use of predicted structural features (Pollastri et al.,

2002b,a; Pollastri and Baldi, 2002; Cheng et al., 2005a), a fragment library (Simons

et al., 1997), and energy terms derived from the PDB statistics. The structural

features used are secondary structure, relative solvent accessibility, and a residue

level contact map at a distance cut-off of 12 Å. The predicted structural features

are used in the energy function. We include a contact-map energy term (Vendruscolo

et al., 1997) based on a binary map derived from the matrix of contact probabilities
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predicted by CMAPpro. To select the contacts, we use a variable, band-dependent,

threshold determined by estimating the total number of contacts in a band from the

sum of all the predicted contact probabilities in that band. During the search of

conformational space using simulated annealing, many models are produced using

different seeds randomly. The single model with the lowest score is returned as the

prediction.

8.3 Inputs, Outputs, and Performance

The standalone predictors except for MUpro take as input a sequence in the FASTA

format and produce the predicted structural features or structures in self-explanatory

format. MUpro requires additional information including mutation position, original

residue, and substitute residue.

The input to the server is provided by the user through a simple HTML form.

The user must enter an email address for the results to be sent to and the single

letter code for an amino acid sequence. The user may also enter a name for the

submission. The user may select multiple predictions for the same submission.

MUpro is the exception to this simple input format. Input for MUpro is the single

letter code for an amino acid sequence, single mutation site, and a new residue to

use for replacement. The user may also provide a structure file in the PDB format,

but the field is optional. The MUpro prediction results are displayed directly in the

browser shortly after submission.

The predictions of all predictors except for MUpro are returned to the email ad-

dress provided by the user. Here we describe the output of the individual predictors.

• SSpro: helix, strand, coil (loop).

• ACCpro: exposed, buried.
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• DISpro: O ordered, D disordered.

• DOMpro: First and last residue of each domain.

• MUpro: In the classification mode, it predicts whether the protein stability

is predicted to be increased or decreased by the mutation, and a confidence

score. A score near 0 means unchanged stability. Score near -1 means high

confidence in decreased stability. Score near +1 means high confidence in

increased stability. In the regression model, it returns the real-value energy

change (44G).

• DIpro: Two class prediction of whether or not the target has disulfide bonds.

Predicted bonding state of each cysteine in the protein. Predicted cysteine

pairs.

• BETApro: β-residue pairing probabilities, β-strand pairing energy matrix, β-

sheet number and architecture. The images of β-residue pairings and β-sheet

pairings are also returned.

• CMAPpro: The contact map predictions are included as an attachment to

the the returned email. Predictions come as attached raw files, with extension

contact map.8a and contact map.12a, for thresholds of 8 and 12Å, respectively.

If the query is N amino acids long the files are composed of N lines, each

containing N space-separated real numbers. The j-th number on line i-th

represents the estimated probability that amino acids i and j are in contact

(i.e. of their Cα atoms being closer than the threshold).

• FOLDpro: Outputs include the top 10 ranked templates with their ranking

scores and the predicted 3D structures in PDB format. The ranking scores

are generated by Support Vector Machine algorithms. A positive score usually
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indicates the query and template are significantly related. The higher the

score, the more significant the match is. The PDB files and their corresponding

alignment files used to generate the structures are attached with the returned

email. The alignment files are in the PIR format.

• 3Dpro: Models generated by FOLDpro have the same format as described

above. The predicted ab-initio model is a PDB file. The PDB file contains

only the carbon alpha trace. To obtain an all-atom model a user may use other

software to add the backbone, such as MaxSprout (Holm and Sander, 1991),

and side chains, such as MaxSprout and SCWRL (Canutescu et al., 2003).

The predictors in the SCRATCH suite produce the state of the art results in

general and have been widely used by the scientific community. The SCRATCH

system has handled 300 000 jobs since March 2000, including submissions from

more than 90 countries. The standalone predictors has been downloaded more than

3500 times since August 2005. Here is a brief summary of the performance of the

SCRATCH predictors.

The three class per-amino acid accuracy (Q3) of SSpro 4.0 is 78% (Cheng et al.,

2005a). SSpro 4.0 has been extensively evaluated on EVA and has been consistently

ranked as one of the top secondary structure prediction servers (Eyrich et al., 2001).

The accuracy of ACCpro 4.0 is 78% at the 25% exposure threshold. The prediction

accuracies are based on targets where template homology is not used directly, and

both systems perform better when template homology can be applied. DOMpro

predicts the correct number of domains 69% of the times and it was ranked among

the top ab-initio domain predictors in the Critical Assessment of Fully Automated

Structure Prediction 4 (CAFASP-4)(Fischer et al., 1999; Saini and Fischer, 2005).

The precision and recall of disordered regions of DISpro are 75.4 and 38.8%,
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respectively. For DIpro, the prediction accuracy of cysteine bonding states is 87%

(Baldi et al., 2005). The average disulfide bond prediction accuracy of DIpro is

53% (Baldi et al., 2005). The accuracy of mutation stability prediction of MUpro is

84%. On a test set of proteins with length <100, CMAPpro predicted contacts with

49% accuracy and non-contacts with 96% accuracy (Pollastri and Baldi, 2002). To

our best knowledge, BETApro is the only method existing so far that can predict

all aspects of β-sheet structure: β-residue pairings, β-strand pairings, and β-sheet

architecture.

FOLDpro is a template-based 3D structure predictor. It is most appropriate

to use with targets having suitable structural templates. Compared to 11 other

fold recognition methods, FOLDpro yields the best results in almost all standard

categories on a comprehensive benchmark dataset (Cheng and Baldi, 2006). Using

predictions of the top-ranked template, the sensitivity is about 85%, 56%, and 27%

at the family, superfamily, and fold levels respectively. Using the 5 top-ranked

templates, the sensitivity increases to 90%, 70%, and 48%.

3Dpro is a combination of FOLDpro and an ab initio predictor. For targets

without good structural templates, 3Dpro use the ab-initio predictor. The ab-initio

structure prediction methods are evaluated by the Critical Assessment of Structure

Prediction (CASP) experiments held every two years (Moult et al., 2003). CASP

evaluates predictions in three broad categories: CM, fold recognition (FR) and new

fold (NF). The easiest targets to predict are categorized as CM-easy, while the

hardest are categorized as NF. There is a continuous spectrum of difficulty and

these categories blur at the edges as do the methods that work best on different

types of targets. We took part in the most recent experiment, CASP6 (for com-

plete results see http://predictioncenter.llnl.gov/). Our ab-initio tertiary structure

predictor baldi-group-server performed well on hard targets (those in the NF and
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FR/A categories) compared with other fully automated predictors.

8.4 Software Structure and System Training

All standalone software packages are packed in the similar format including a con-

figuration (installation) script, a bin sub-directory of Linux shell scripts of launching

the applications, a script sub-directory of the Perl source files, a server sub-directory

of binary executables complied from C++ code, sub-directories of third party tools

such as PSI-BLAST, an optional data sub-directory of local databases, a test sub-

directory of test examples, and a model sub-directory of the pre-trained models for

neural networks and support vector machines.

DISpro, DOMpro, SSpro, and ACCpro use 1D-RNN neural network architec-

tures. The models are trained by setting the number of hidden units to 15 and the

number of output units to 9 for both forward and backward neural networks. The

learning rate is set to 0.001. DIpro and BETApro use 2D-RNN architectures. The

models are trained by setting the number of hidden units to 9 and the number of

output units to 9 for all four hidden planes. The learning rate is set to 0.008. The

stochastic learning process is applied for both 1D-RNN and 2D-RNN in the sense

that the training examples are randomly shuffled in each epoch.

MUpro and FOLDpro use support vector machine to train models. Both systems

use Gaussian kernel. The detailed parameter settings are described in Chapter 2 and

Chapter 7, respectively. The generalized performance of these systems is estimated

using 10-fold cross validation.
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