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INTRODUCTION

Domain identification is an essential early step in many protein

analyses. Dividing a protein into structural or functional sub-

units is usually the first step in protein structure prediction and

can be an important part of functional and structural experi-

ments.1 Domain boundary prediction is also a vital part of the

target selection process in structural genomics.2

The task of predicting domain boundaries is far from simple,

particularly when there is no structural template on which to

base the prediction. Where there is no structural information,

predictions are based on multiple alignments along with 1D fea-

tures such as amino acid frequencies and predicted secondary

structure and solvent accessibility, often with the aid of neural

networks.

Even when there are structural templates domain prediction

can still be difficult. The largest potential pitfall associated with
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ABSTRACT

This paper details the assessment process and evalua-

tion results for the Critical Assessment of Protein

Structure Prediction (CASP7) domain prediction cat-

egory. Domain predictions were assessed using the

Normalized Domain Overlap score introduced in

CASP6 and the accuracy of prediction of domain

break points. The results of the analysis clearly dem-

onstrate that the best methods are able to make con-

sistently reliable predictions when the target has a

structural template, although they are less good when

the domain break occurs in a region not covered by a

template. The conditions of the experiment meant

that it was impossible to draw any conclusions about

domain prediction for free modeling targets and it

was also difficult to draw many distinctions between

the best groups. Two thirds of the targets submitted

were single domains and hence regarded as easy to

predict. Even those targets defined as having multiple

domains always had at least one domain with a sim-

ilar template structure.
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domain boundary prediction is domain definition itself.

Protein domains can be defined in a number of ways, as

compactly folded structures with their own hydrophobic

core,3 evolutionarily and functionally distinct entities4 or

sub-units that can fold independently into stable tertiary

structures.5 Often these three subdefinitions coincide,

making domain delimitation rather simple. Domain

boundary definitions become more difficult and subjec-

tive when these roles are less clear or when one of the

definitions is at odds with the others. The specific train-

ing of domain prediction methods may mean that they

are more inclined to predict one or other of these defini-

tions.

However, the format of the CASP7 experiment meant

that the prediction of independently folded stable struc-

tures could not be assessed. All the CASP7 targets were

submitted to the organizers because their structure was

in the process of being solved; the submitted target

sequences were identical (give or take the odd terminal

residue) to the sequences of the final solved structures.

There were further problems that predictors and asses-

sors faced (both in this CASP and in CASP6) relating to

the lack of suitable targets. While the number of noncan-

celled targets in the whole CASP experiment rose by 50%

in CASP7 to almost 100 targets, only multidomain tar-

gets are suitable for domain prediction evaluation. There

were only 17 such targets in CASP66 and while the num-

bers almost doubled in CASP7, there will still only 32

multiple domain targets. In addition there were no tar-

gets where the domain prediction could be considered to

be completely template-free—there was at least one do-

main in each of the multidomain targets that had a

structural template.

Targets were assigned domains for the structure evalu-

ation by the assessors as detailed elsewhere in this issue.7

However, it should be borne in mind that the domain

assignments used in the assessment of structure predic-

tion were not always the same as those used for the do-

main prediction assessment. The domain prediction

assessors changed domain definitions for several targets

and allowed alternative domain definitions for a number

of targets.

Here we present the assessment of the CASP7 domain

prediction category. We assessed predictions using two

separate scoring schemes and were able to show that a

number of groups were able to make better predictions

than the average. There were statistically significant dif-

ferences between the best groups and the rest of the pre-

dictors. The results of the assessment also allowed us to

propose strategies for the analysis of domain prediction

in the future.

METHODS

We analyzed the predictions with two separate scoring

schemes. The first was the Normalized Domain Overlap

scoring system that was introduced in the CASP6 domain

assessment.6 The advantage of this scoring scheme is that

it reduces the scoring of the prediction to a single nor-

malized score and it penalizes both under prediction and

over prediction of domains. It has one drawback in that

it does not explicitly recognize correct prediction of

interdomain linkers.

The other score used is a measure of accuracy of do-

main boundary prediction.

Normalized domain overlap

Normalized domain overlap was introduced in CASP6

and can be followed in more detail in the CASP6 assess-

ment paper.6 It is calculated as follows: Predicted and of-

ficial domains are compared and the number of residues

that overlap between predicted domains and linkers, and

defined domains and linkers are summed for each do-

main. For example a target structure that was split into

two domains and a linker in both target and prediction

would require a total of nine overlaps to be calculated.

In the example in Table I (a prediction for target

T0381) there are nine possible overlaps arising from the

domain definition and the prediction—both have two

domains and a linker. If there is more than one linker,

leader, or trailer in the assignment or prediction they are

treated together.

The total overlap score can be calculated from the ma-

trix. For each column and row (excepting the linkers)

each of the smaller scores are subtracted from the largest

score. For example in column D2, 67 and 18 are sub-

tracted from 91. No score is computed for the combined

linkers in either the definition or the prediction. The

total overlap score is the sum of all the column and row

subtotals from the defined and predicted domains, di-

vided by 2. The final score is shown in bold in the bot-

tom right-hand corner of Table I.

The normalized domain overlap (NDO) score is sim-

ply the total score divided by the number of residues in

the defined domains. When there is more than one

defined domain, scores are calculated for each of the do-

main definitions and the best score is taken as predictor

score for that target.

Table I
The Domain Overlaps for a Prediction for Target TO381a

Linkers (77–89) D1 (17–76) D2 (90–265) Score

linker (157–174) 0 0 18 —
d1 (1–156) 13 60 67 26
d2 (175–265) 0 0 91 91
Score — 60 6 75.5

aBoth the prediction and target have two domains and a short linker. Each white

cell contains the number of overlapping residues between the predicted domain

and the actual domain definition. The predicted domain numbers are preceded by

lower case identifiers (rows), the defined domains by upper case identifiers (col-

umns). The calculation process is explained in the text.
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Domain boundary distance score

Simple domain boundary scores reward all predictions

that are within a certain cut-off of the correct domain

boundary. Under our scoring scheme all predictions

within 8 residues of the correct boundary will score, but

predictions that are closer to the correct domain bound-

ary would score more.

All distances between the predicted and correct do-

main boundaries are calculated. If the domain boundary

has a linker, the whole linker is regarded as the domain

boundary. In a fashion similar to the GDT scoring

scheme employed in the structure prediction category,

predictions are given one point for being within 1 resi-

due of each correct boundary, another point if they are

within two residues, a further point if they are within

three, and so on up to eight residues. A prediction two

residues away from the correct boundary would therefore

have 7 points.

The total score for each domain prediction is then cal-

culated as the sum of all predicted boundary scores di-

vided by eight and the total number of domain bounda-

ries. The number of domain boundaries comes from ei-

ther the target or the prediction, whichever is higher. In

this way over-prediction is penalized.

Domain assignment

Official domain definitions for the evaluation of struc-

ture prediction were made by eye by the assessor for the

high accuracy prediction category with input from three

other assessors.7

The domain definitions used in the domain prediction

category were not identical to those in the structural pre-

diction category. The domain prediction category included

the three assessor-cancelled targets (T0310, T0343, and

T0352) and while the structure prediction category defini-

tion was retained for the majority of the targets, for some

targets we felt that a different domain definition was more

suitable for the domain prediction category.

Domains were assigned for the domain prediction cat-

egory by visual inspection. Domain boundary decisions

were based on structural integrity, on whether each do-

main had a hydrophobic core, on whether the target had

internal symmetry, on evolutionary relationships inferred

from the LGA8 superpositions and sequence alignments,

and on the SCOP9 and CATH10 domain annotations

from those structural templates found by LGA.

A number of targets had no single straightforward do-

main definition. Where we felt that there was more than

one way to split the structure into domains, the target

was assigned up to four alternative definitions that were

equally valid. In all scoring schemes if a target had multi-

ple domain definitions, scores were calculated for each of

the alternative domain definitions and the best score was

used in the evaluation.

One drawback of allowing more than one domain def-

inition per target is that if one of the definitions is a sin-

gle domain, the target effectively becomes a single do-

main target. Single domain targets are much easier to

predict and it is much easier to score full marks with a

single domain target. Targets with single domains were

not used in the comparisons and for that reason we tried

to avoid assigning alternative single domain definitions

to official multidomain targets.

Three targets illustrate the domain definition strategy

of the assessors. In the structure prediction assessment

target T0291 was a single domain protein and target

T0292 was split into two domains, even though both

proteins belong to the same structural family. While there

were good reasons for not splitting T0291 in the struc-

ture prediction evaluation, the domain assessors felt that

the target was clearly a two-domain protein in the classi-

cal sense. We allowed the two-domain definition for both

targets, but the single domain alternative was not

allowed.

T0299 (Fig. 1) was clearly a two-domain protein, but

we allowed four alternative domain definitions. T0299 is

formed from two alpha-beta sandwich domains that are

joined by two decorative helices. The domains have

structural templates, but none of the templates have the

decorative helices. Hence it is unclear to which domain

the two helices belong. The four alternative domains

[Fig. 1(a–d)] allow four possible arrangements of the hel-

ices and domains, but penalize predictors if they predict

the domain boundaries in any other part of the decora-

tion.

It is important only to define linkers where it is clear

that the linking residues do not belong to one or other

of the domains. Target T0289 (Fig. 2) illustrates this very

well. It is clearly a two-domain protein. Between the two

domains are two long anti-parallel beta-strands that also

interact with the N-terminal. These two strands could be

regarded as linkers—they are present in very few of the

structurally similar parent structures—but they quite

clearly interact with the surface of domain 1. If they are

defined as linkers in an alternative definition, the predic-

tion of domain boundaries becomes an exercise in struc-

tural template detection because then it does not matter

where the linker is cut. For example the prediction in

Figure 2(b) would score full marks, even though it is

clearly not quite correct. In this case the linking strands

were defined as being part of domain 1 and there was no

alternative definition.

RESULTS

A total of 26 groups made predictions in CASP7.

Twelve groups were ‘‘human,’’ though three of these

groups predicted very few targets and their results do not

appear in this paper. Fourteen groups made server pre-
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dictions. There were 98 structures in the assessment, 30

had alternative domain definitions (see supplementary

Table I for the full details), and 31 targets were consid-

ered to be multiple domain for the purposes of the

assessment; that is none of the domains or alternatives

were single. The equivalent figures in CASP6 were 63 tar-

gets, 20 with alternatives and 17 multiple domain targets.

Initial comparisons of the mean NDO scores for all 98

targets confirmed our suspicions that most of the targets

were not adding anything to the evaluation. For the vast

majority of the single domain targets virtually all the pre-

dictors had high NDO scores (Fig. 3). For 10 single do-

main targets every predictor has perfect scores.

It was clear that the evaluation should be based on a

subset of targets and the most obvious subset to consider

would be the multiple domain targets (as in CASP6). We

did also carry out an assessment based on what we con-

sidered were the ‘‘hard targets,’’ a subset of 24 targets for

which the mean NDO scores were less than 80%. This

group included one single domain protein, T0287, a free

modeling target with no sequence homologs that seemed

to cause predictors some difficulties, but excluded seven

easy multiple domain targets. The subset of hard targets

was chosen because a number of the multiple domain

targets in this issue of CASP seemed particularly easy

and we felt they were only contributing noise to the

comparison. The predictions for the hard subset were

subjected to the same assessments as those of the multi-

ple domain subset. There was little difference between

the two sets of results. The results for the ‘‘hard’’ subset

can be seen in supplementary Figure 1.

Nine groups have slightly better mean NDO scores

than the others over all the targets. The same 9 groups

stand out when mean NDO scores are compared over

the subset of multiple domain targets [Fig. 4(a)], but the

differences are far more pronounced. The groups DP105,

DP136, DP497, DP556, DP581, and DP722 have slightly

better predictions than groups DP091, DP229, and

DP686. These results were repeated when the compari-

sons were made with the Z-scores of each prediction in

order to account for possible differences in the difficulties

of each target (see supplementary Fig. 2).

Domain boundary distance scores

Predictions were also evaluated by accuracy of domain

boundary placement for multiple domain targets. Here a

Figure 1
Alternative domain definitions for T0299. Here we show the four alternative (and equally valid) domain definitions for target T0299 (a–d). Domain 1 is in blue, domain

2 in red and the differences in the definitions are in the linking helices. Part (e) shows a good prediction for this domain, but one in which the prediction for domain

2 is encroaching into the official domain 1. Pymol was used to generate Figures 1, 2, 6 and 7. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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similar pattern emerges. Figure 4(b) shows the domain

boundary prediction scores for the subset of multiple do-

main targets and the same six groups (DP722, DP581,

DP105, DP497, DP136, and DP556) have slightly better

mean domain boundary distance scores than groups

DP091, DP229 and DP686.

Sensitivity and accuracy of domain
boundary prediction

The domain boundary distance score combines the ac-

curacy and sensitivity of domain boundary prediction

into a single score. However, it is also useful to look at

domain boundary prediction from the separate perspec-

tives of accuracy (fraction of predicted boundaries that

are correct) and sensitivity (fraction of ‘‘true’’ boundaries

that are correctly predicted). Viewing both measures is

necessary because it allows one to avoid placing too

much emphasis on over-predicting boundaries to obtain

completeness at the expense of accuracy, or under-pre-

dicting boundaries to obtain accuracy without sufficiently

obtaining the domain edges. Since exact agreement

between the residues predicted as the boundary and the

‘‘true’’ boundary is unusual, the measures should be

viewed over a range of distances from the true boundary.

Sensitivity and accuracy for the best performing predic-

tors is shown in Figure 5. It is clear that there are differ-

ences between predictors, with some groups erring

towards over-predicting boundaries and others towards

under-predicting boundaries.

Statistical comparisons

Groups were compared head-to-head over common

subsets of predicted targets. We carried out paired t-tests

between each pair of groups over common targets using

both the NDO and domain boundary prediction scores

Figure 2
(a) Domain definition for T0289. Target T0289 has just a single domain

definition. Domain 1 is in blue, domain 2 in red. The long comb-over sheet at

the top if the structure does not have a template, but the sheet was defined as

part of domain 1 as it in contact with the domain 1 for much of its length. In

(b) we show one of the better predictions, but where the lack of a template to

model the comb-over means that most of the strand is predicted as being part of

domain 2. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 3
Mean NDO scores for the targets. Single domain targets are in dark blue,

multiple domain targets are in light orange—it is clear that the multiple

domain targets are much more difficult to predict. The arrow shows where we

split the targets into the hard and easy subsets. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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and the P values from these comparisons are shown in

Table II. The results of the domain boundary score com-

parison shows that five groups (DP136, DP497, DP556,

DP581, and DP722) have significantly better scores than

the other groups. Group DP105 is an exception—they

predicted just less than half the multiple domain tar-

gets—so they had fewer common targets and it was diffi-

cult for differences to be significant. Predictors DP091

and DP229 have significantly better domain boundary

scores than all but the six groups already mentioned and

group DP686. The results from the comparison of NDO

scores are similar, but the distinctions between the

groups are a bit more blurred.

Best scoring groups

The groups with the best predictions can be divided

into two groups: those methods that are built to make

template-based domain predictions and those groups

that can make hybrid template-based/ab initio predic-

tions.

The purely template-based methods were the Lee

Group (DP556), Andante (DP105), and Ginzu (DP581).

The groups using hybrid methods were FoldPro/DomPro

(DP136), Ma-Opus-Dom (DP229 and DP091), Rosetta-

DOM (DP497), and DP_Hybrid (DP722). DP136,

DP581, DP497, and DP229 were all server groups. Five

of the methods are described in more detail by their

authors in this paper.

It was no surprise that the top predictors were tem-

plate-based or hybrid methods because all the free mod-

eling targets (the more difficult targets) were single

domains or part of multiple domains in which the pre-

diction could be made by subtracting the template-based

domain(s) of the target. A few template-based targets,

such as T0321 or T0356, were more difficult to predict

because templates were harder to find. There were some

outstanding predictions for these targets such as the

predictions from DP581 and DP229 for target T0301

(Fig. 6) and from DP310 for T0356 (Fig. 7). Single do-

Figure 4
Mean NDO and domain boundary scores for each group. In (a) the mean NDO

scores for each group over the subset of multiple domain targets. In (b) the

mean domain boundary scores for each group over the subset of multiple

domain targets. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 5
Accuracy and sensitivity of multi-domain target predictions. Accuracy of domain

prediction is shown in (a), sensitivity shown in (b) predicting groups are color-

coded. Accuracy and sensitivity are measured at distance tolerance intervals of

one to eight residues from the ‘‘true’’ boundary. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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main predictions for the free modeling target T0296 were

also impressive given that the protein has more than 500

residues and that no structure prediction group detected

a structure.

Group reports

Domain prediction group 136 (DOMpro)

Inspired by the success of hybrid prediction

approaches11 in the CASP6 experiment, we developed a

hybrid domain predictor for CASP7, integrating tem-

plate-based structure prediction, domain parsing, and

ab initio domain prediction.

First, the FOLDpro module of the SCRATCH suite12

is used to extract pairwise similarity features for the tar-

get and all the templates in a fold recognition library of

about 10,000 proteins. The similarity features are fed

into a support vector machine (SVM)13 to evaluate the

structural relevance of each template and rank the tem-

plates accordingly. PSI-BLAST14 searches of the whole

PDB15 are included to improve the model quality for

easy targets.

If the SVM score of the top-ranked template is greater

than a threshold, FOLDpro uses PSI-BLAST and

COACH16 to generate alignments for easy targets and

hard targets respectively. The top-ranked template-

target alignments are fed into Modeller17 to generate

model structures. Finally DOMpro uses PDP18 to parse

the model into domains. If the assigned domains do not

cover the entire sequence, DOMpro assigns uncovered

regions to the closest adjacent domain.

If the SVM score is less than the threshold, DOMpro

proceeds with ab initio domain prediction.19 DOMpro

tries to predict whether or not a residue is in a boundary

region (at most 20 residues away from a real domain

boundary) using one-dimensional recurrent neural net-

works20 in conjunction with profiles, along with pre-

dicted secondary structure and solvent accessibility. The

protein is cut into domains according to those positions

predicted to be in boundary regions.

The evaluation of DOMpro in CASP7 provides valuable

insights. For template-based domain prediction, our

experiments show that domain-parsing tools, such as PDP,

are quite effective at decomposing predicted models into

domains. They are robust to model inaccuracies, as long as

the coarse topology of the structure is predicted correctly.

Figure 8(a) shows a perfect example (T0323), where DOM-

pro predicts the exact domain boundaries, despite the 2.9

Å RMSD between the model and the true structure.

However, as previous observations have shown,22 PDP

may disregard secondary structure elements in cutting

proteins, as shown in Figure 8(b) (T0318) and may en-

counter difficulties with complex and ambiguous

domains. Domain ambiguity is common—there are alter-

native domain definitions for about one third of CASP7

targets. In ambiguous cases PDP tends to ‘‘over cut’’ into

multiple domains.22

Our results show that combining template-based 3D

structure prediction and domain parsing techniques is an

Table II
P Values for the Paired t-tests for NOD Scores and Domain Boundary Scoresa

aThe paired t-test P values for the NDO scores shown in the bottom left half of the table. The paired t-test P values for the domain boundary scores are shown top

right. Significant differences between groups over common sets of predictions are shown with a white background; where there are no significant differences the cells are

shaded in dark grey with white font. The lighter shades of grey show where the P values either side of the limit are close to the cut-off for significance (0.05).
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effective approach where overall coarse topology can be

predicted.

For ab initio domain prediction, the neural network

approach using profiles and predicted structural features

can make useful predictions. DOMpro correctly predicts

ab initio the large T0296 target as a single domain,

although it fails to predict the two domains of T0347.

Overall, in CASP7 DOMpro does well on the majority of

the ab initio targets. However, the performance is likely

to be an overestimate since there are only 12 relatively

small ab initio targets.

As previous research19,23,24 and CASP6 have shown,

the accuracy of ab initio domain prediction methods for

multidomain proteins is still low, significantly lower than

for template-based methods. Thus, it is important to fur-

ther improve the accuracy of ab initio domain prediction.

Since protein domains are largely shaped by gene recom-

bination events, such as gene fusion, fission, domain

swapping, and exon exchange (see T0379 for a likely

example of fusion), leveraging these evolutionary gene

recombination signals, embedded in the multiple

sequence alignment of a protein or even in its gene struc-

ture, may help improve ab initio domain prediction.

Domain prediction group 556–LEE

We present a domain prediction procedure based on

predicted 3D models. The procedure includes five steps:

fold recognition, multiple sequence alignment, 3D mod-

eling, prediction assessment, and domain parsing.

The first step is to prepare several sets of templates by

fold recognition. To collect fold candidates, we consid-

ered top scoring templates from the meta-server 3D-

Jury25 and an in-house method called FoldFinder (Joo

Figure 6
Two outstanding predictions for T0301. In (a) one of the two alternative definitions of target T0301. In (c) the prediction from group DP581. T0301 is a target that

should have been difficult to predict. Note that this is a non-continuous domain and that while one of the domain boundaries is predicted perfectly the other boundary

overlaps into domain 1. NDO score of 90. In (b) the other alternative definition for target T0301. In (d) the prediction from group DP229 corresponding to this

definition. Again note one of the domain boundaries is predicted perfectly, while the other boundary overlaps into domain 1. NDO score of 96. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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et al., in preparation). FoldFinder is a profile-profile

alignment method utilizing predicted secondary struc-

ture. We used a fold database of 17,930 protein chains

from PISCES26 at the 99% sequence identity level. With

these templates we performed structural clustering, which

typically led to 2 to 3 sets.

The second step is to generate multiple sequence/struc-

ture alignments for each template set with MSACSA (Joo

et al., submitted for publication). Since model backbones

are mainly determined by these alignments, this was the

most crucial step in our domain prediction. A unique

feature was that we applied a rigorous global optimiza-

tion method to a score function by using conformational

space annealing (CSA,27) in contrast to the usual heuris-

tic (progressive) alignment methods popular in the litera-

ture. The score function is an in-house consistency-based

one. It gives a higher score for alignments that are more

consistent with the pair-wise restraint library generated

from profile-profile alignments between the query

sequence and template sequences and structure-structure

alignments between templates. The top scoring alignment

from each list was used for 3D modeling.

Modeling was carried out with Modeller17 after opti-

mizing Modeller energy using CSA. For each multiple

alignment, 100 models were generated and all of them

were used for the list selection procedure.

We selected the winning list (if one existed) by assess-

ing the average quality of the 100 3D models of each list

with an in-house neural-network-based procedure. To

select models for domain parsing, we applied a clustering

method to find the central models of the 2-3 largest clus-

Figure 7
Outstanding prediction for T0356. In (a) one of the three alternative definitions

of target T0356. In (b) the prediction from group DP310. This prediction is

especially good because T0356 is the nearest thing that CASP7 has to a multiple

domain free modeling target. There was a structural parent for one of the three

structure prediction category domains, but only 9 predictors found the template.

Figure 8
Two examples of template-based domain prediction. (a) A perfect example

(T0323). PDP cuts the predicted model into two alpha helical domains (see the

virtual line), exactly as in the official domain definition. Domain 1 (left)

consists of two non-continuous segments (1–33 and 150–217). Domain 2 spans

residues 34 to 149. (b) A non-perfect example (T0318). T0318 has two a/b
domains, extending from position 1 to 155 and from 156 to 490, respectively.

PDP cuts the model in the middle (at residue 169), which is within the long

alpha helix. However, a human expert would smartly choose to cut at the end of

the helix, avoiding breaking the helix. Figures rendered using Molscript21).

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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ters from the winning list. The best scoring models in

terms of the Modeller energy and/or DFIRE28 energy

were also selected. Typically, the central model of the

largest cluster served as model 1. When there were com-

peting lists, we used all of them to select 5 models.

The neural network was quite successful at selecting

the winning list. The network consists of 5 input nodes,

3 hidden nodes, and 1 output. Inputs are the Modeller

energy, DFIRE energy, and the consistencies of a model

with 3 predicted properties (secondary structure, solvent

accessibility, and hydrophobicity). Details will be pub-

lished elsewhere. The network was trained so that the

output predicts the TM-score of a model. For training

and testing, 1,600 models for 6 early-released CASP7 tar-

gets were used and 511 cross-validations were applied.

PDP and visual inspection were used for domain pars-

ing the 3D models. When the results did not agree, the

prediction was chosen by visual inspection. We also con-

sulted the output of PPRODO29 especially for the hard

targets. PPRODO is a sequence-based domain prediction

method.

Obviously the quality of the prediction of domains

depends on the quality of the models. For our method

we found that NDO-scores were greater than 0.9 for a

model with TM-scores30 greater than 0.6. However, there

were two exceptions, T0321 and T0341. In the case of

T0321 (a hard TBM target), our NDO-score was high,

0.936, although TM-score of our model was quite low,

0.225. The templates used were two domain proteins

with similar structures. Although the templates were not

good for 3D modeling, the domain boundary was cor-

rectly positioned and the success is mainly due to the

results of the multiple sequence alignment.

For T0341, although the 3D model quality was rela-

tively high with TM-score 0.84, the NDO-score was only

0.77. PDP defined the first domain as 1-46, 179-259 and,

although the position 47 breaks a beta-sheet pair in the

middle, we thought it could be acceptable as a proper

domain boundary at the time of domain prediction. The

official definition of the first domain covers residues 7-

74, 179-259 and includes the whole beta-sheet pair.

Domain prediction groups DP497 (RosettaDOM),
DP581 (Ginzu), and DP722 (DP_Hybrid)

We investigated the efficacy of several approaches for

domain prediction using the Robetta31 server (http://

robetta.org/). These methods have been previously

described in CASP6.11

‘‘RosettaDOM’’ is based on the Rosetta32 method for

de novo tertiary structure prediction, and produces a

400-member decoy ensemble. Boundary consensus is

sought using Taylor’s structure-based domain parsing

method.33 Increased frequency of boundaries within a

sliding window (smoothed in the same fashion as Snap-

DRAGON,34) is used to assign domain boundaries.

Although Rosetta is unlikely to produce atomic-resolu-

tion models, it may accurately predict coarse structural

features such as domains.

The ‘‘Ginzu’’ method determines boundaries based on

the best available information. It begins by scanning for

PDB15 homologs with PSI-BLAST,14 before searching

remaining regions for remote homologs with fold-recog-

nition servers (3D-Jury-A125 in CASP7), scanning for

domain sequence families with Pfam,35 and finally look-

ing for conserved sequence blocks within the PSI-BLAST

multiple sequence alignment (MSA). Domain boundaries

within regions that have PDB homologs are determined

using a consensus structure-based domain parser (based

on Taylor’s method). Boundaries between regions with

PDB and/or protein family assignments are determined

using sequence edges and low-occupied positions in the

MSA and take into account loop regions predicted by

PSIPRED.36

For targets with PDB homologs the first model sub-

mitted for Ginzu came from ‘‘Ginzu_HM.’’ This method

parses the model built by Robetta as well as PSI-BLAST

detectable PDB homologs to make consensus structure-

based boundary assignments. Domains are resolved from

structure-structure alignments, while attempting to avoid

introducing boundaries into helices and strands.

‘‘Ginzu_TP,’’ returned as model 2, does not parse the

Robetta model directly, rather it consensus parses the

parent PDB structure along with PSI-BLAST-detectable

PDB homologs. The domain structure of the target is

inferred from the K*Sync alignment37 between the target

sequence and the parent PDB. ‘‘’’Ginzu_SEQ’’ was only

applied to those targets without a detectable homolog or

Pfam family (when it was returned as model 1), or to

low confidence fold-recognition hits (when it was

returned as model 3). It uses sequence information from

the MSA to develop a boundary preference function.

Note that Ginzu (group DP581) was always represented

by model 1 in the assessment.

The ‘‘DP_Hybrid’’ predictor did not participate as a

server group in CASP7 but was fully automated. It makes

domain boundary predictions by taking advantage of the

correspondence between weak signals from RosettaDOM

and Ginzu_SEQ. For remote targets Ginzu and Rosetta-

DOM often do not arrive at strongly predicted boundaries,

but may suggest several candidate boundaries with confi-

dences below the method thresholds. Agreement between

the sequence-based and structure based domain prediction

methods increases the confidence of a boundary predic-

tion. DP_Hybrid combines the boundary confidence func-

tions from the two methods and reports boundaries when

the combined function is above the threshold, either from

a strong prediction by one method or when weaker pre-

dictions from different methods are in agreement.

For regions with PSI-BLAST detectable homologs,

both DP_Hybrid and RosettaDOM return the Ginzu_HM

prediction.
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An examination of single domain predictions (Table III)

reveals that Ginzu_HM is a bit more aggressive than

Ginzu_TP in recommending domain boundaries. This is

likely a consequence of using the entire model for pars-

ing; long loops that project incorrectly may appear as

separate domains to the structure-based parser. Overall,

the methods are fairly good at discerning single domain

targets, but this result is probably due to the shorter

length of most single domain targets. While trends

should be viewed with caution given the small sample

sizes (in particular for the remote multidomain targets,

for which there are only 6 targets), it does appear that

the homology-based methods Ginzu_HM and Ginzu_TP

are less conservative in predicting single domains than

Ginzu_SEQ and RosettaDOM. Encouragingly, the

DP_Hybrid method appears to recover correct predic-

tions from the misleading boundaries suggested by Gin-

zu_HM for the remote single domain targets.

The performance of Ginzu_HM and Ginzu_TP in pre-

dicting internal boundaries for multiple domain targets

in the PSI-BLAST regime (21 multiple domain targets

with 34 internal boundaries) is shown in Figure 9 and

reveals an interesting finding. Ginzu_HM (37 predicted

boundaries, 29 of which are correct at �10 residues)

does worse than Ginzu_TP (36 predicted boundaries, 32

correct at �10 residues). This trend is reversed in the

Remote regime (only 6 targets with 11 internal bounda-

ries), where Ginzu_HM (11 predicted boundaries, 6 cor-

rect at �10 residues) is better in terms of both specificity

and sensitivity than Ginzu_TP (11 predicted boundaries,

4 correct at �10 residues). It may be that the Robetta

homology models aid prediction in the Remote regime,

while the model was detrimental in the PSI-BLAST re-

gime, in keeping with our Robetta results in the tem-

plate-based tertiary structure prediction part of CASP7.

Assessors note: these results are borne out by the assess-

ment—Ginzu, DP581, was the only one of the top 9

groups to show a marked improvement when the groups

were compared over their best models instead of the first

models.

Other trends appear in Figure 9. RosettaDOM (just 4

boundaries predicted in the Remote regime, 2 correct at

�10 residues) tends to under-predict boundaries, and

therefore has reasonable specificity but poor sensitivity.

Ginzu_SEQ (3 predictions, 1 correct at �10 residues),

applied to the low-confidence 3D-Jury targets (4 targets

with 8 official internal boundaries), does not fare well,

but DP_Hybrid (9 predictions, 5 correct at �10 residues,

4 of which are still correct at �1 residue) exhibits a good

balance between the conservative predictions of Ginzu_

SEQ and RosettaDOM and the aggressive predictions of

Ginzu_HM.

Comparison of the different approaches of Ginzu_HM,

Ginzu_TP, Ginzu_SEQ, RosettaDOM, and DP_Hybrid

supports the common sense approach of using the best

available method for a given difficulty regime. Consensus

structure-based parsing of the parent structure and

homologs is sufficient in the PSI-BLAST regime and

when a confident PDB homolog is detected by fold rec-

ognition, consensus structure-based parsing of the best

possible model is superior. Hybrid approaches that find

agreement between low-confidence fold recognition and

de novo models and sequence-derived signals tend to

yield the most stable solutions for the most remote tar-

gets.

CASP6/CASP7 comparisons

CASP6 was the first CASP experiment in which do-

main prediction was assessed as a separate category; so it

is important to measure progress in domain prediction.

It is clear that the mean NDO scores for the targets in

CASP7 are higher than those of CASP6, but the compari-

son between the two experiments is not that straightfor-

ward because the difficulty of predicting the domain

boundaries for each target needs to be taken into consid-

eration and the CASP7 targets may have been easier to

predict.

First CASP6 and CASP7 targets have to be ranked in

terms of prediction difficulty. Prediction difficulty

depends on a number of factors. One of the most impor-

tant factors is whether a template can be found to model

the structure, but other factors such as the length of the

protein, the similarity to known structures, the compact-

Table III
Single Domain Prediction for Ginzu, RosettaDOM, and DP_Hybrid

Method

Single domain targets Multiple domain targets

NPa Predictedb as single NPa Predictedb as single

PSI-BLAST regimec

Ginzu_HM 41 80.5% 21 0%
Ginzu_TP 41 85.4% 21 0%
Remote regimed

Ginzu_HM 14 57.1% 6 0%
Ginzu_TP 14 92.9% 6 16.7%
Ginzu_SEQ 23 95.7% 4 25.0%
RosettaDOM 27 92.6% 6 33.3%
DP_Hybrid 26 92.3% 6 0%

Analysis of over- and under-prediction of single domain targets by the groups

Ginzu (DP581), RosettaDOM (DP497), and DP_Hybrid (DP722). Single and mul-

tiple domain targets were taken from the structure prediction evaluation as

defined by the assessors.7 Difficulty regimes were defined as those targets for

which confident PDB homologs were detected (‘‘PSI-BLAST’’ regime) or were not

detected (‘‘Remote’’ regime) with the Robetta implementation of PDB-BLAST.
aNumber of predicted targets attempted by each method within each category.
bPercentage of predicted targets (‘‘NP’’) that were predicted as a single domain.
cThere were 41 single domain and 21 multiple domain targets in the PSI-BLAST

regime.
dThere were 27 single domain and 6 multiple domain targets in the Remote re-

gime. Ginzu_SEQ was not used in the PSI-BLAST regime and RosettaDOM and

DP_Hybird used the Ginzu_HM predictions for these targets. All methods pre-

dicted in the Remote regime, but Ginzu_SEQ did not predict targets T0301 and

T0321.
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ness of the domains in the structure and whether the

domains are continuous or non-continuous. The number

of domains in each structure is also a factor and of

course single domains are easiest to predict—the mean

NDO score of the best 10 predictors for those targets

defined as single domains in CASP6 was 96.55, while the

mean for the best 10 predictors for single domain targets

in CASP7 was an incredible 99.98.

We also generated domain predictions from the target

structures using the protein structure domain-parsing

program PDP. The NDO scores were calculated for each

of the domains parsed with PDP as if the program were

just another predictor. We used the PDP NDO scores in

two ways, first as a means of assessing the difficulty of

predicting domains for a target structure and second as a

control to allow us to compare prediction groups in

CASP6 and CASP7.

Target difficulty ranking were calculated for the 17

CASP6 and 31 CASP7 multiple domain targets. Targets

were ranked by the percentage identity to the nearest

structural template, by their PDP NDO scores and by a

crude domain difficulty ranking that took into account

the number of domains in the protein and whether the

domains were continuous or non-continuous (non-con-

tinuous domains in general are harder to predict). The

final target difficulty ranking was simply the mean of the

Figure 9
Boundary prediction for multiple domain targets by Ginzu, RosettaDOM, and DP_Hybrid. The ‘‘specificity’’ and ‘‘sensitivity’’ of boundary predictions for multiple

domain targets by Ginzu_HM (blue line), Ginzu_TP (red line), Ginzu_SEQ (dashed yellow line), RosettaDOM (dashed green line), and DP_Hybrid (dashed black line).

Correct boundaries are defined as being within a sequence deviation tolerance (x-axis) of the assessor-defined boundary. Targets are separated into difficulty regimes, with

easy targets (‘‘PSI-BLAST regime’’) defined as those with a confident PDB homolog detected by Robetta using PDB-BLAST and harder targets (‘‘Remote’’ regime) as those

without a PSI-BLAST detectable PDB homolog. The Remote regime comprised just targets T0299, T0301, T0321, T0347, T0356, and T0372. In the PSI-BLAST regime

Ginzu_SEQ was not used, while RosettaDOM and DP_Hybrid used Ginzu_HM predictions. Ginzu_SEQ did not predict targets T0347, T0301 and T0321 in the Remote

regime. The domain definitions used for the figures were the first alternative domains defined by the domain category assessors. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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three sets of rankings. With the CASP6 and CASP7 tar-

gets ranked in this way we were able to plot the NDO

scores for each target against target difficulty ranking

(Fig. 10). The plot shows quite convincingly that the

higher scores obtained in CASP7 were not just a conse-

quence of the targets being easier to predict.

We also used the PDP parsed domain as a control to

compare the groups in each experiment. PDP was

regarded as just another predictor and the NDO scores

for the PDP parsed domains were compared to the NDO

scores of each of the predictors in both competitions.

Groups and the PDP parsed domains were compared

head to head using paired t-tests. The results for the two

experiments can be seen in Figure 11.

In CASP7 there were six groups (DP722, DP581,

DP497, DP136, DP556, and DP105) that could not be

distinguished statistically from PDP, one of the best

structural parsing programs, while in CASP6 just two

groups had P values that were not statistically significant.

However, the P values for the two best CASP6 groups

were very low, almost borderline for significance. These

two CASP6 groups (DP353 and DP421) were groups

DP581 and DP497 in CASP7. The fact that there are 6

groups with scores statistically similar to PDP in CASP7

(even though there were almost twice as many multiple

domain targets in CASP7) is further confirmation of the

general improvement in domain prediction between the

two CASP experiments.

CONCLUSIONS

Domain prediction was added as a new assessment cat-

egory in CASP6 and it is clear that there has been a gen-

eral improvement in prediction since the first experi-

ment. However, it is not clear how much of this

improvement is due to real advances in methods and

how much stems from groups converging on a set of reli-

able methods. It is also possible that some of the

improvement may be down to predictors adapting to the

scoring scheme used for CASP6 and again in CASP7.

This assessment has shown that a number of groups

seem to be able to make reliable, good quality template-

based domain predictions. Where it is possible to build a

model of the target structure, a robust domain-parsing

program such as PDP will usually be able to make a

good approximation of the domain boundaries. And as

usual the better the alignment and model, the more

accurate the domain boundary predictions tend to be.

Although the standard of domain boundary prediction

was generally quite high, even the best-scoring prediction

methods struggled to predict the exact domain bounda-

ries for some of the harder multidomain targets, particu-

larly those targets with noncontinuous domains and

those targets where domain boundaries fell in regions

that had to be modeled ab initio (for example targets

T0299, T0289).

Figure 10
CASP6 and CASP7 compared. Mean NDO scores for each target from CASP6

and CASP7. NDO scores are the mean of the best 10 predictors for each target.

Scores are plotted against target rank as explained in the text and regression

lines have been plotted on the figure for the sets of scores from each experiment.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 11
Paired t-tests between PDP and predicting groups from CASP6 and CASP7. The

chart shows the P values from the paired t-tests for NDO scores between each of

the CASP6 and CASP7 participating groups and the ‘‘PDP predictor". The PDP

predictor was simply the domains predicted from the structure-based domain

predictor, PDP. The P value 0.05 is the cut-off for significance for the

comparisons and is marked by a horizontal line. Groups with p-values higher

than the line are not significantly different from the PDP predictor. In CASP6

two groups have P values that are very close to the limit for significance, but six

predicting groups in CASP7 have P values that suggest that there is no

statistical difference between their predictions and those of the structure-based

domain parser. It should be noted that there are two CASP6 groups with higher

P values that do not appear in the chart, but these groups made predictions for

just 2 and 6 multiple domain targets. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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The inclusion of domain prediction in the CASP

experiment has shown that the best template-based do-

main prediction methods are of a high standard. How-

ever, it has also become obvious that CASP is not the

best format for the evaluation of domain prediction.

There were few free modeling targets in the experiments

and no difficult multidomain free modeling targets at all.

We were not able to evaluate the standard of ab initio

domain prediction in this CASP.

The targets submitted to CASP for structure prediction

are not sufficiently challenging for ab initio domain pre-

diction and there are unlikely to be large numbers of dif-

ficult to predict targets in future CASP experiments.

Many of the target proteins came from structural

genomics projects and it seems that structural genomics

projects have a tendency to select single domain proteins.

The CASP domain prediction category might have a

future if it concentrates wholly on template-based predic-

tions, but at the same time the best template-based

methods have shown that they have already reached a

high standard and can compete with the best structural

parsing methods.

Where there is room for improvement appears to be

in ab initio prediction, although even this statement is

difficult to justify with evidence because there have been

so few difficult multidomain targets in the last two CASP

experiments. The infrequency with which difficult multi-

domain targets are deposited in the PDB means that it

would make much more sense to carry out any future

blind testing of ab initio domain prediction servers in a

continuous format similar to the rolling assessments that

were implemented in the EVA38 and LiveBench39 experi-

ments.
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