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Abstract 
 

Predicting protein folding rate is useful for 

understanding protein folding process and guiding 

protein design. Here we developed a method, SeqRate, 

to predict both protein folding kinetic type (two-state 

versus multi-state) and real-value folding rate using 

features extracted from only protein sequence with 

support vector machines. On a standard benchmark 

dataset, the accuracy of folding kinetic type 

classification is 80%. The Pearson correlation 

coefficient and the mean absolute difference between 

predicted and experimental folding rates (sec
-1

) in the 

base-10 logarithmic scale are 0.81 and 0.79 for two-

state protein folders, and 0.80 and 0.68 for three-state 

protein folders.  SeqRate is the first sequence-based 

method for protein folding type classification and its 

accuracy of fold rate prediction is improved over 

previous sequence-based methods. Both the web server 

and software of predicting folding rate are publicly 

available at   

http://casp.rnet.missouri.edu/fold_rate/index.html.  

 

1. Introduction 
 

Protein folding is one of the most important 

problems in molecular biology. Two main aspects of 

the folding process concern the kinetic order and the 

rate constant. The kinetic order of the protein folding 

indicates whether the sequence reaches its native 

structure through intermediate states or not. The 

folding rate is inversely proportional to the time that 

the protein needs to collapse into its stable tertiary 

structure. Proteins have very different rates of folding. 

Some of them
 
fold within microseconds; some need an 

hour to fold.
 
Small proteins often (but far from always) 

fold faster than
 
the larger ones [1]. Many studies have 

been conducted to estimate protein folding rates based 

on either experimental protein structural information 

[2-4] or protein homology sequence searches using 

databases [5]. However, since only limited amount of 

experimental folding rates is available for database 

search and most proteins do not have solved 

experimental structures, prediction of folding rates 

based on sequence only is increasing important.  

Various theories and simulations suggest a 

surprising simple linear relation between the number of 

residues in a protein, its length L, and the rate at which 

it folds. It is in the form of 2

1)log(
C

f LCk  , where 
fk is 

the experimental folding rate, L is the length of the 

protein, and C1 and C2 are simple constants [1]. The 

correlation between folding rates and
 
protein sizes is 

stronger
 

for multi-state proteins that have folding 

intermediates, and weaker for two-state proteins that do
 

not have such intermediates [1]. It implies that protein 

length does not describe the transition rates of direct 

folding well. 

Baker and coworkers [6] found a strong correlation 

between the native topological complexity, defined by 

the parameter contact order (CO), which uses the 

information about the average sequence separation of 

all contacting residues in the native state of two-state 

proteins, and the folding rates of 12 two-state proteins. 

The correlation between protein-folding rates and their 

hierarchical structures (secondary structure and 

structural topology) suggests that hierarchical 

information could be one of the key features for 

determining folding rate. Although folding rates of 

proteins of both two kinetic pathways (i.e. two-state 

and multi-state folding) can be roughly predicted from 

the protein secondary structures [7], the prediction 

scheme should be adjusted to accommodate the 

differentiation of the two kinetic pathways to improve 

the accuracy [8]. 

In the past, various approaches have been designed 

to estimate the logarithm of the two-state folding rate 

starting from using structural information. Several 



methods based on correlation between the logarithm of 

the folding rate and structural predictors such as 

Contact Order (CO) [6], Long-range Contact Order 

(LRCO) [9] (contact between two residues that are 

close in space and far in the sequence), total contact 

distance [10], effective length of folding chain [7] have 

been developed. These methods require the tertiary 

structure topologies of a protein as input to predict its 

folding rate. Since the vast majority of proteins‟ tertiary 

structures are still not solved, it is important to design 

methods that can predict folding rate from protein 

sequence directly. Toward this goal, in the seminal 

work [11], Punta and Rost first showed LRCO had 

better correlation with folding rates than CO. Then they 

used  LRO values predicted from protein sequences for 

folding rate predictions and achieved 0.61 correlation 

between the predicted and true folding rates for a set of 

two-state folding proteins. 

Most of folding rate prediction methods are 

knowledge-based approaches that build a function to 

map input predictors (e.g. contact order) to folding 

rates.  Traditionally these methods used only a single 

estimator, either CO, LRCO, or chain length to design 

linear models between these predictors and protein 

folding rates. Recently Huang et al. showed that the 

linear combination of several predictors, such as amino 

acid rigidity (R), composition vectors (CV), chain 

length (L), amino acid weight (W), degeneracy (D), 

and composition index (CI) can increase the correlation 

between predicted and actual two-state folding rates 

[8], although the relationship between some of these 

predictors and the folding rate may not be linear. 

Besides folding rate prediction, some studies also 

have been done to classify the proteins into different 

folding classes based on their secondary structures. 

Some classified folders into all- -class, all- -class 

and  / -class [12], and some even classified folders 

into 83 different classes. Interestingly, not much has 

been done to classify the proteins folders based on their 

binary folding kinetic mechanisms, such as two-state 

folders or multi-state folders. 

A few applications and web servers have been 

developed for protein rate predictions, such as FOLD-

RATE [13], and PPT-DB [5], but only one server K-

Fold [4] for fold kinetic classification. K-Fold needs an 

experimental structure as input to predict fold kinetic 

type.  

Here we developed a non-linear machine learning 

method (Support Vector Machine classification and 

regression) that can not only classify proteins into two-

state or multi-state folders, but also predict folding 

rates, using only the information extracted from the 

amino acid sequence of a protein, without any explicit 

knowledge of the experimental tertiary or secondary 

structures. We used a large set of features including 

protein sequence length, predicted LRCO, predicted 

long-range contact number (LRCN), predicted  -

helical content and  -sheet content and amino acid 

composition with non-linear SVM models for both 

protein binary kinetic classification and folding rates 

prediction. Some features such as secondary structure 

composition and amino acid composition are new. And 

our method of deriving LRCO and LRCN are based on 

predicted residue-residue contact probabilities instead 

of binary-value contacts used by previous work [11]. 

Our method performs favorably when compared to 

other sequence-based methods. We also developed a 

web server with name „SeqRate‟ for the method at our 

site: http://casp.rnet.missouri.edu/fold_rate/index.html. 

 

2. Material and methods 
 

2.1. Data sets 
 

We used the data set composed by Ivankov in 2004 

and also used in [11] that contains experimentally 

determined 24 multi-states folders and 37 two-state 

folders, and is referred to as “IvankovData”. The 

folding rate is in the unit of sec
-1

 and transformed in the 

base-10 logarithmic scale. Sequence and structural 

information of these proteins is obtained from the 

Protein Data Bank (PDB).  

 

2.2. Methods 
 

Our method for protein folding rates was developed 

based on an SVM. In this study we divide our protein 

rate prediction into two steps. First we use SVM 

classifier to classify folding types based on binary 

kinetic mechanism (two-state or multi-state), instead of 

using structural classes of all- -class, all- -class and 

 / -class. The second step of protein rate prediction 

is developing two separate SVM regression prediction 

models for two-state folders and multi-state folders, 

considering different folding behaviors between these 

two types. In this study, multiple input features derived 

from protein sequences were used in protein folding 

type classification and folding rate prediction. We also 

studied the impacts of using different input features, 

such as protein chain length and several protein 

topology features, on folding kinetic classification and 

rate prediction for two-state and multi-state folders. 

 

2.3. Input features 
 



Features, such as protein sequence length, long-

range contact order, long-range contact number,  -

helical content, -sheet content and amino acid 

compositions, used in SVM training models, are 

defined and discussed as follows. 

 

2.3.1. Protein sequence length. Protein sequence 

length has been shown to be a relevant factor for 

evaluating protein folding rates [7, 14], although it is 

insufficient to just use sequence length to determine the 

folding type. Smaller sequences usually tend to fold 

with simpler folding mechanism without any 

intermediate state like in multi-state proteins. 

 

2.3.2. Contact order (LRCO) and contact number 

(LRCN). LRCOs and LRCNs used in this study were 

both calculated based on contact map generated from 

the SCRATCH suite [3] using protein sequences as 

inputs. A protein contact map, a two-dimensional 

matrix, represents the distance information between 

every two residues‟ C-alpha atoms of a three-

dimensional protein structure. SCRATCH was used to 

predict the contact probability matrix P for the 

probabilities of any pair of residues contacting with 

each other, i.e. the likelihood that their distance is 

below a threshold. The distance threshold used here is 

8 Å and the sequence separation is at least 12 amino 

acids apart. An element Pij in the matrix is the 

predicted probability that residues i and j are in contact.  

As in [9], only long range contacts (i.e. sequence 

separation of |i-j| ≥ 12) were used to derive contact 

order and contact number. 

The LRCN is defined as the expected number of 

long-rage contacts in a protein. So far, most methods 

first derive a binary contact map from a probability 

contact map according to a probability threshold and 

then count the numbers of contacts [11]. Here, we 

introduce a modified method to directly calculate 

contact number from contact probability map and it is 

further normalized by the power of sequence length. 

Then the contact number is defined as following 

LRCN = 
c

ji

ij

L

P
 12||                                                        (1) 

where Pij is the contact probability of residue i and j, 

which should be no more then 8 Å away and at least 12 

sequence separation apart;  L (sequence length) to the 

power of c is used to normalize contact number. c is set 

to 1 as in [11]. 

Different from LRCO (Long-range Contact Order) 

calculation based on binary contacts in [11], we 

calculated contact order from contact probabilities as 

following 

LRCO = 
c

ji

ij

L

jiP



12||

|)|*(

                                       (2) 

where Pij is the probability of residues i and j within 8 

Å when at least 12 sequence separation apart; L 

(sequence length) to the power of c is used to 

normalize contact order. Just as the calculation in 

LRCN, probabilistic real values of contacts are used in 

the formula. c is set to 2 as in [11]. 

 

2.3.3. Secondary structure composition. Rose and 

collaborators [15] observed that folding rates correlate 

well with the overall secondary structure composition 

in three states (helix, strand, coil) assigned from 3D 

coordinates. So we used the predicted percentages of 

helix, sheet and coil contents of a protein as additional 

inputs for folding rate prediction. Secondary structures 

were predicted by SCRATCH [3]. 

 

2.3.4. Amino acid composition. Amino acid 

composition has been shown to be relevant to protein 

folding types and a good indicator for folding type 

identification [16]. The basic assumption is that if 

certain amino acids are optimal for protein structure, 

natural selection should have acted over evolutionary 

time to increase the frequency of these amino acids. 

Therefore, proteins with different amino acid 

composition would have different folding rates and 

folding types. In 2007, Ma and his colleagues 

demonstrated some of contents of amino acids differed 

between two-state and multi-state folders in a 

significant level of p<0.01 [17]. Here we use the each 

amino acid occurrence frequency in the protein 

sequence as amino acid composition. Then, each of 20 

amino acid compositions is used as one input feature 

for SVM. 

 

3. Results and discussion 
 

3.1. Effectiveness of each feature in folding 

rate prediction 
 

In order to test the effectiveness of each individual 

feature, we used each feature as input to predict folding 

rate separately through SVM regression. The default 

parameter settings were used for SVM regression since 

comparisons were within feature set. Two different 

measures were applied to evaluate the performance of 

the results. One is Pearson correlation coefficient 

between predicted rates and experimental rates. The 

other measure is mean absolute difference (MAD), 

which measures how much predicted values deviate 

from real values. The correlation coefficient and MAD 



were calculated for two-state and multi-state proteins 

separately. Each feature-specific SVM prediction 

model was trained using leave-one-out procedure and 

used to predict the folding rate on the left-out protein. 

Table 1 demonstrates the general trend of 

understanding, which is protein sequence length has 

more than two times higher correlation values with 

multi-state folders than two-state folders, and protein 

topologies (e.g. secondary structure information) have 

almost twice correlation values with two-state folders 

as with multi-state folders. These strongly kinetically 

biased features support the need of separate prediction 

models for different folding kinetic. 
 

Table 1. Correlation between predicted folding 

rates and experimental folding rates using 

sequence length and other estimated predictors on 

IvankovData training data. 
L = protein sequence length, LRCO = estimated long-
range contact order, CO = estimated contact order in 
[15], LRCN = estimated long-range contact number. 
First line of values is from two-state folding rates and 
second line of values is from multi-state folding rates. 

 
L 

 
LRCO 

 
CO 

 
LRCN 

 -

helical 
content 

 -

sheet 
content 

 
Coil 

content 

-0.32 0.72 0.61 0.68 -0.51 0.57 0.13 
-0.80 0.46 0.33 0.55 -0.18 0.11 0.05 

 

LRCO yields the best performance with correlation 

0.72 for two-state proteins while protein sequence 

length demonstrates the best negative correlation of 0.8 

for multi-state proteins. For both two-state and multi-

state folders, LRCO was preferred over CO since it has 

higher correlations in both folding kinetics. On multi-

state proteins contact number performs the second best 

with correlation 0.55. Note that the correlation using 

estimated LRCO on two-state proteins is 0.72, higher 

than CO has, which is 0.61 reported in [11]  on the 

same data set, indicating that LRCO calculated from 

contact probability map in our method may be more 

informative than that derived from binary contact map 

used in [11]. 

Coil content has low correlations, 0.13 and 0.05, 

with both two-state folders and multi-state folders 

respectively; therefore it is not used in building either 

folding rate prediction model. Also  -helical content 

and  -sheet content have low correlation values of -

0.18 and 0.11, respectively in multi-state folders, 

therefore both features are not included for the multi-

state folding rate prediction model. Actually by 

including  -helical content and  -sheet content as 

features, the prediction results have shown no changes, 

neither increasing nor decreasing accuracies. 

One feature needed to be mentioned here and is not 

shown on Table 1 is amino acid composition, which is 

a set of 20 amino acid frequency values. It has shown 

to be a relevant feature for deciding folding kinetic 

[16]. It was included as one of our classification 

features, but it has shown weak correlations with 

folding rates of both folding kinetic orders in our 

results. Our tests have indicated the overall correlations 

of amino acid compositions with the folding rates are 

only around 0.3. Therefore, this feature is not used for 

SVM regression rate prediction model in order to avoid 

over-fitting. 

 

3.2. Sequence-based folding kinetic type 

classification 
 

Protein sequence length and protein topologies are 

both favorable folding rate determination factors for 

two folding types. Protein sequence length is a good 

predictor in multi-state folder rate prediction, but not in 

two-state folders. And protein topologies have better 

correlations with two-state folding rates than multi-

state folding rates. We built an SVM classification 

model based on sequence length, estimated LRCO and 

CN,  -helical content,  -sheet content and 20 

frequency values of amino acid compositions. As in 

other multivariate statistical models, the performances 

of the SVM for classification depend on the 

combination of several parameters. In general, the 

SVM classification involves two classes of parameters: 

the parameter C for the tradeoff between training error 

and margin size and kernel function parameters such as 

inverse of variance γ for Gaussian kernel. To maximize 

the performance, we performed the parameter 

optimization using a grid search approach within a 

limited range. The classification model is trained and 

tested using leave-one-out cross-validation (LOOCV). 

Figure 1 shows the profile of classification accuracy 

vs. the variations of parameters C and γ. The prediction 

accuracy profile peaked at (C, γ) = (1, 0.25). The best 

classification accuracy of using Gaussian kernel 

function is 80%, which is higher than any of other 

classifiers in the literature.  

We have used other kernel functions, namely linear, 

sigmoid and polynomial functions on SVM model for 

the same data set. The accuracy of those three kernels 

were 62%, 50% and 72%, respectively.  

 

3.3. Sequence-based fold rate prediction using 

multiple features and non-linear SVM 

regression 
 

 



 
Figure 1. Classification accuracy surface VS. 

variations of parameters C and γ. 

 

We selected four input features including LRCO, 

CN,  -helical content, and  -sheet content with 

SVM regression to predict two-state folding rates. 

Besides two parameters C and γ used for SVM 

classification, SVM regression requires additional 

important parameter ε (regulate regression tube width) 

for performance optimization. Due to the intensive 

computational nature of grid search algorithm in high 

dimensions, we performed the tuning of parameter set 

(C, γ, ε) heuristically. We first obtained the optimal 

parameter values for C and γ with the fixed value of ε = 

0.1 (default SVM value), then searched for the best 

value for ε. With the same procedure we did for SVM 

classification, we obtained the optimal parameter set of 

(C, γ, ε) = (8, 0.125, 0.1) for constructing prediction 

model. 

Five different sets of training and testing data were 

generated. Each one was generated by randomly 

selecting 10% for testing and 90% for training from 

IvankovData. Then five different SVM prediction 

models using optimal parameter set was trained using 

leave-one-out cross-validation (LOOCV) and predicted 

on the test data sets. The average correlation and MAD 

are 0.81 and 0.78, respectively, from five test sets. The 

results are substantially better than the linear 

combination of multiple features, indicating the 

relationship between the features and folding rates is 

probably non-linear. 

For multi-state folder rate prediction, one extra 

feature, protein sequence length, besides four other 

features used for two-state folders, was included for the 

SVM regression to predict multi-state folder‟s rate. 

Our multi-feature SVM-regression method is 

compared with or better than other sequence-based 

methods in Table 2. Our method not only has better 

correlation between predicted rates and experimental 

rates than all the sequence-based method except 

FOLD-RATE, but also has smaller MAD (mean 

average difference) values between predicted and real 

rates than all the sequence-based methods. FOLD-

RATE has obtained the highest 0.91 correlation 

between predicted and experimental rates, but its mean 

absolute difference between predicted and 

experimental values is around 1.1, which is much 

higher than our method. The reason could be due to 

FOLD-RATE breaks proteins into structural classes for 

individual training, which largely decrease the number 

of proteins per structural class, resulting in high 

correlation but high variance between predicted and 

real values. K-Fold uses experimental structure 

information to predict folding rates and classify folding 

types.  Its accuracy for folding type classification is 

0.81. Our novel sequence-based method has the fold 

type classification accuracy of 0.80, which is very close 

to that of K-fold. 

To study how the integration of fold type 

classification and fold rate prediction would affect the 

results, we investigated a few cases. Chromosomal 

protein Ubiquitin (PDB ID: 1UBQ) has a sequence 

length of 76 amino acids and experimental folding rate 

of 7.3 (in natural-base logarithm scale) in the unit of 

sec
-1

. It has been used by many researchers as multi-

state folder [7,11], but later it was shown 

experimentally to be a two-state folder [5]. Assuming 

1UBQ as multi-state folder, we used the multi-state 

prediction model and obtained fold rate of 3.97. But 

after being correctly classified into two-state using our 

SVM classification model, a value of 6.21 was 

obtained, which is much close to the experimental rate. 

DNA-binding protein Engrailed Homeodomain (PDB 

ID: 1ENH) is another example of such a case. It has a 

sequence length of 16 and folding rate of 10.5 (in 

natural-base logarithm scale) in the unit of sec
-1

. 

Assuming it was as multi-state [18], then the predicted 

folding rate would be 2.55. However, our classification 

model has classified 1ENH as a two-state folder and we 

used two-state prediction model to predict the folding 

rate as 10.05. 1ENH has been shown and used as two-

state folder in later literatures [7,11]. These examples 

demonstrated that our folding type classifier can help 

correct errors in manual folding type classifications. 

 

4. Conclusion 
 

We have developed a new protein fold rate 

prediction method (SeqRate) using Support Vector 

Machine regression with a set of features derived from 

protein sequences only. As the first method that can 

predict protein folding kinetic types from protein 

sequences, it achieved the accuracy comparable to the 



methods based on experimental structures. The 

accuracy of fold rate prediction of the method was also 

improved over previous sequence-based prediction 

methods. SeqRate is a fast and robust method suitable 

for large-scale protein folding rate prediction.  

 
Table 2. Comparison among different folding rate 

prediction methods. 
Method 1: Effective length method [7] 
Method 2: LRCO method [11] 
Method 3: FOLD-RATE [13] 
Method 4: K-Fold [4] 
Method 5: Our multi-predictor SVM (two-state) 
Method 6: Our multi-predictor SVM (multi-state) 
Method-Type means if the method is using 
experimental structural data (structure) or using only 
sequence data (sequence). Correlation here means the 
correlation value between predicted rates and 
experimental rates. MAD is mean absolute difference 
between predicted rates and experimental rates.  
 

 
 
Method 

 
Method 

Type 

Fold 
kinetic 

Classify 
Accuracy 

 
 

Correlation 

 
 

MAD 

1 sequence NA 0.70 0.96 
2 sequence NA 0.61 0.81 
3 sequence NA 0.91 1.1 
4 structure 81% 0.74 0.75 
5 sequence 80% 0.81 0.79 
6 sequence 80% 0.80 0.68 
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