
 
Abstract—A single amino acid mutation can have a significant 
impact on the stability of protein structure. Thus, the prediction of 
protein stability change induced by single site mutations is critical 
and useful for studying protein function and structure. Here, we 
presented a new deep learning network with the dropout technique 
for predicting protein stability changes upon single amino acid 
substitution. While using only protein sequence as input, the overall 
prediction accuracy of the method on a standard benchmark is >85%, 
which is higher than existing sequence-based methods and is 
comparable to the methods that use not only protein sequence but 
also tertiary structure, pH value and temperature. The results 
demonstrate that deep learning is a promising technique for protein 
stability prediction. The good performance of this sequence-based 
method makes it a valuable tool for predicting the impact of 
mutations on most proteins whose experimental structures are not 
available. Both the downloadable software package and the user-
friendly web server (DNpro) that implement the method for 
predicting protein stability changes induced by amino acid mutations 
are freely available for the community to use.  

Keywords—Bioinformatics, deep learning, protein stability 
prediction, biological data mining. 

INTRODUCTION 
Single site amino acid mutations may have a significant 

impact on the stability of the structure of a protein. Since 
experimental determination of the stability change caused by 
mutations on proteins is time consuming and costly, 
computational prediction of the stability change induced by 
single-site mutations is useful for screening a large number of 
mutations for studying the structure and function of proteins. 
It can be used for protein engineering, protein design, 
mutagenesis analysis, and the study of the relationship 
between phenotypes and genotypes.  

Recently, a variety of methods based on physical 
potentials [6, 7, 8, 9, 10], statistical potentials [11, 12, 13, 14, 
15, 32, 36, 37], empirical potentials [16, 17, 18, 19, 20], 
machine learning [1, 2, 21, 25, 26] and combined approaches 
[31, 33, 34] have been developed to predict protein structure 
stability upon single-site amino acid mutation. The physical 
potential approaches, statistical potential approaches, and 
empirical potential approaches aim to approximate either the 
physical or pseudo-physical energy based on physical 
principles or their statistical approximation. Machine learning 
methods are data-driven knowledge-based methods that learn 

a function from the data to map the input information 
regarding a protein and its mutation to the energy change 
without the need of approximating the physics underlying 
mutation stability. This data-driven formulation of the 
problem makes it possible to apply a large array of machine 
learning methods to tackle the problem. Therefore, a wide 
range of machine learning methods has been applied to the 
same problem. E Capriotti et al., 2004 [2] presented a neural 
network for predicting protein thermodynamic stability with 
respect to native structure; J Cheng et al., 2006 [1] developed 
MUpro, a support vector machine with radial basis kernel to 
improve mutation stability prediction; iPTREE based on C4.5 
decision tree revealed temperature is an important factor in 
mutation stability prediction [35]; R Casadio et al., 1995 [25] 
proved a radial basis function neural network can predict the 
free energy changes induced by mutations; M Masso et al., 
2008 [31] combined random forest, regression tree and ada-
boost on C4.5 decision tree with statistical potential approach 
to predict protein stability change. This array of machine 
learning tools with reasonable prediction accuracy are widely 
used by the community, which demonstrates the effectiveness 
of machine learning methods for protein stability prediction.  

In addition to exploring various methods to further 
improve the accuracy of mutation stability prediction, 
reducing the amount of information required to make accurate 
prediction is also important for making the prediction methods 
generally applicable to any proteins that may not have the 
information required by existing methods. Many previous 
machine learning methods [2, 21, 25, 26, 31, 35] need 
sequence, solvent accessibility, pH value, temperature or 
tertiary structure information to make good predictions, which 
limits their use only to a small portion of proteins whose such 
information are available. J Cheng et al., 2006 [1] introduced a 
method encoding only sequence and mutation residue 
information, whose accuracy is comparable to existing 
methods. Following this direction, we design a new method 
based on cutting-edge deep learning networks to further 
improve protein stability changes upon single-site mutations 
using only protein sequence information.  

Deep learning [22, 23, 24, 28] is the latest development in 
the field of machine learning, which has shown good 
performance in many complex machine learning tasks such as 
image processing, speech recognition, and protein structure 
prediction. Like traditional neural networks, deep learning 
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networks [22, 23, 24, 28] consists of multi-layer of nodes and 
the nodes between adjacent layers are fully connected. 
However, different from discriminative back-propagation 
supervised learning in neural networks, the weights between 
adjacent layers of deep learning networks can be learned 
mostly by un-supervised stochastic gradient descent or 
divergence-convergence algorithms in order to maximize the 
likelihood of input data. Therefore, deep learning networks 
can be trained on the almost unlimited amount of unlabeled 
data even though the labeled data can still be used to tune the 
weights of deep learning networks via back-propagation when 
available. This fundamental new training scheme helps avoid 
the vanishing gradient problem in traditional back-propagation 
and enables deep learning to use a large number of layers of 
nodes (i.e. deep networks) for complex learning tasks in 
contrast to typical two-layer or three-layer architecture used 
by traditional neural networks. And the deep architecture often 
makes deep learning capable of gradually transforming low-
level input features into higher-level concepts from layer to 
layer, which often leads to better prediction performance. 

As for this protein stability prediction task, a special kind 
of deep learning architecture - Deep Belief Network (DBN) [5] 
is developed, which stacks a number of layers of Restricted 
Boltzmann Machines [5] to predict protein stability changes 
upon mutations. A logistic regression [29] is added on the top 
layer of DBN, which allows the weights in the DNB that have 
been pre-trained by the unsupervised convergence-divergence 
algorithm to be fine-tuned by the supervised back-propagation 
method [22, 23]. The Dropout technique [3, 4, 27] is also 
applied in DBN to make the hidden layers more diverse to 
avoid overfitting. The deep learning model is tested in a 20-
fold cross-validation on a standard protein stability 
benchmark. The results demonstrate this new deep learning 
method outperforms some widely used methods in protein 
stability prediction on a standard benchmark. 

METHOD 

Protein Stability Dataset 
We use the S1615 dataset [1,2] in this work, which is 

widely used in the field of protein stability prediction [1, 2, 31, 
35]. The mutations in the dataset were originally extracted 
from ProTherm [30] mutation energy database. The dataset 
has 1615 mutations obtained from 42 different proteins. PDB 
code of the mutated protein, secondary structure, solvent 
accessibility, original and mutated residues, temperature, pH 
and energy change are available in the dataset.  

The energy change associated with each mutation in the 
dataset represents the change of protein stability caused by a 
single-site mutation. A positive energy change indicates a 
protein is more stable upon a mutation while a negative energy 
change indicates a decrease in structural stability. In a binary 
classification case, mutations with positive energy changes are 
labeled positively as well as all the others are labeled 
negatively. Dataset S1615 thus has 1168 negative data points 
and 447 positive examples, i.e. about 28% mutations increase 
the stability of the proteins.  

Besides S1615, a redundancy-reduced subset of S1615 
dataset that contains 388 unique mutations is also used to 
cross validate our model and optimize parameters. S388 has 
340 negative examples and 48 positive ones. We carry out a 
20-fold cross validation as in the previous work [1, 2, 31] to 
determine the good parameter values for the deep learning 
network. To avoid overfitting the S388 dataset during training, 
an independent dataset S65 is selected randomly from the 
S1615 dataset excluding the mutations in S388 dataset in order 
to blindly test the deep learning model trained on the S388 
dataset. S65 has 52 negative examples and 13 positive 
examples. S65 is not used in any way until the final 
parameters and architecture of the deep learning model are 
determined by 20-fold cross validation on the S388 dataset 

Encoding Scheme of Input Features 
In order to make our method applicable to proteins 

without known tertiary structures, we only use the features 
that can be derived from protein sequence alone as input.  
Following the same feature extraction approach in [1], a 
window centered on the mutation site is used to capture the 
information regarding the mutation and its adjacent sequence 
environment. Each position in the window except the mutation 
site is represented by 20 binary numbers that represent 20 
possible amino acids at the position. Only the number 
representing the amino acid at the position is set to 1, while all 
others are set to 0. For the mutation site in the window, the 
number representing the original residue is set to -1 and the 
number denoting the substitute residue is set to 1, while all 
other 18 numbers are set to 0. The size of the window is fixed 
at 7 because the previous work [1] demonstrated that the size 
yielded the best performance. As a result, a vector of 140 input 
features is generated for each mutation, which captures the 
information of the mutated residue and its three residue 
neighbors on each side.  

After the encoding, the datasets consisting of both input 
features and binary class labels (positive or negative) are used 
to train and test our deep learning method - the Deep Belief 
Network (DBN) [22, 23] – for classifying mutations via 20-
fold cross-validation and independent testing.  

Restricted Boltzmann Machine (RBM) and Deep Belief 
Network (DBN) for Protein Stability Prediction 

 

 
 

Figure 1. A Restricted Boltzmann Machine (RBM) model is 
comprised of a visible layer of nodes, a hidden layer of nodes, 
and the weighted connections between the nodes in two layers. 
The strength of each connection is quantified by an adjustable 
weight associated with it. As a simple example, in this model, 
there are 3 hidden units in the hidden layer and 4 visible units 
in the visible layer. 



 
A Deep Belief Network (DBN) stacks several layers of 

Restricted Boltzmann Machines (RBMs) (Figure 1) [22] 
together to map input to output step by step. An RBM model 
is composed of one visible layer of nodes representing input 
features and one hidden layer of nodes representing hidden / 
latent variables. The nodes in the two layers are fully 
connected and the strength of connection between two nodes 
(vi in the visible layer and hj in the hidden layer) is measured 
by weights (𝜔!" ) of the connection between them. The 
probability of activating a visible or hidden unit is defined as:  

 
                          𝑝 𝑣! = 1 ℎ = 𝜎 𝑎! + ℎ!! 𝜔!"                         
(1) 

                  𝑝 ℎ! = 1 𝑣 = 𝜎 𝑏! + 𝑣!! 𝜔!"                         
(2) 

 
Here, vi denotes the ith unit in the visible layer and hj the 

jth unit in hidden layer. 𝜔!" is the weight of the connection 
between   them , 𝑎!  and 𝑏!  are bias for the two nodes 
respectively.  𝜎 𝑥  is a sigmoid function as follows: 

 
                 𝜎 𝑥 = 1 1 + 𝑒 !!                                            

(3) 
 
The energy of a joint configuration of all the nodes of an 

RBM is given by: 
 
        𝐸 𝑣, ℎ = − 𝑎!!∈! 𝑣! − 𝑏!!∈! ℎ! − 𝑣!!∈!,!∈! ℎ!𝜔!"       
(4) 

 
Thus, the probability of a joint configuration of the visible 

and hidden nodes is defined as: 
 
                   𝑝 𝑣, ℎ = 𝑒!! !,! 𝑍                                       

(5) 
 
Here Z is the normalization constant – the sum of the 

probabilities of all joint configurations:  
 
               𝑍 = 𝑒!! !,!

!,!                                                     
(6) 

 
The objective of training an RBM is to adjust its weights 

such that the probability of the visible layer p(v) (i.e. the 
likelihood of the data) is maximized. p(v) is simply calculated 
as the sum of the probabilities of all possible joint 
configurations over all hidden units: 

  
                   𝑝 𝑣 = !

!
𝑒!! !,!

!                                           
(7) 

 
One of the most popular un-supervised methods to train 

RBMs is Contrastive Divergence (CD) [5] algorithm that 
adjusts weight 𝜔!"  by the difference between the current 
setting (vihj

(t)) at time t and the next setting (vihj
(t+1)) at time 

t+1.  

 
Figure 2. A Deep Belief Network (DBN) consisting of 
multiple RBMs with a logistic regression classifier on top of 
it. The output of each lower layer is used as the input for the 
next layer.  
 

The same unsupervised CD algorithm can be used to pre-
train all the layers of a DBN consisting of multiple RBNs step 
by step (see Figure 2 for a DBN example). It iteratively trains 
every two adjacent layers as an RBM from bottom up while 
using the output of the lower layer as the visible input of the 
immediate upper layer. The input of the first layer is set as the 
original input data. Before pre-training, the weights and bias 
are initialized either randomly or to 0.  

The unsupervised learning described above can map input 
features into high-level hidden features represented by the 
nodes in the higher layer. In order to make a DBN to classify 
data into different categories, a classifier needs to be added at 
the top of a DBN (Figure 2). In this work, a logistic 
regression is added at the top of DBN because it is easy to 
train. The weights between the logistic regression node and 
the hidden layers can be trained by the standard back-
propagation algorithm - gradient descent with respect to the 
difference between the output of the DBN and the real labels 
of the data (i.e. classification error). Furthermore, the 
classification error is back propagated from the logistic 
regression node all the way down to the visible layer in order 
to fine tune all weights in the DBN in a supervised fashion. 
Although this hybrid training protocol of combining both 
unsupervised and supervised learning above works well in 
most situations, it still may be susceptible to the classic 
problem of overfitting data in machine learning. To reduce 
overfitting, we apply the dropout [3] training technique to 
train the deep learning network (Figure 3). During training, 
dropout randomly sets some units to 0 to temporarily drop 
them out of the deep network. When a unit is dropped out, all 
the connections associated with the unit are removed. 
Therefore, in each iteration of training, there is a different 
combination of active units. In addition to reducing 
overfitting, dropout also helps prevent units from co-adapting.  



 
Figure 3. The dropout training protocol. Dropout 
stochastically sets some nodes (units) to 0 to disable them at a 
constant [3] or adaptive [4] rate in each epoch of training and 
fine-tuning. When a unit is dropped out, all the weights related 
to it will not be updated in this epoch. 
 

The standard dropout approach sets the dropout rate to 
0.5, which has been proved optimal for a wide range of 
networks and tasks. In this work, the dropout rate is applied to 
all layers except the input layer. In addition to the standard 
dropout approach, we test the adaptive dropout method. 
Instead of using a constant 0.5 dropout rate, the adaptive 
dropout (also called standout) regularizes its hidden units by 
selectively setting activities to 0 according to an adaptive rate 
determined by two user-defined parameters: 𝛼 and 𝛽 [4].  

RESULTS 

Parameter Estimation and Model Selection 
A deep learning model has a number of parameters to 

determine, such as the number of hidden layers, the number of 
hidden nodes in each hidden layer, learning rates, and dropout 
rates. Choosing an appropriate deep learning model for a 
specific task is vital. Here, two datasets S388 and S65 are used 
for selecting models. We conduct a 20-fold cross-validation on 
the S388 dataset to test different sets of parameter values. The 
parameters that work well in the cross-validation are used to 
train deep learning models on whole S388 dataset, which are 
then tested on the independent test dataset S65.  

 
Table 1. Eight sets of good parameters tested on S388 dataset 
according to 20-fold cross-validation. The first column lists 
the index of each parameter set, columns 2-6 the parameters 
(the number of hidden units in each hidden layer, learning rate 
in pre-training phase, learning rate in fine-tuning phase, 
dropout protocol, parameters of dropout protocol), and the last 
column the overall classification accuracy – the percent of 
correctly classified mutations among all the mutations.  

Index 
of 

Parame
ter Set 

# of 
Hidden 
Units 

in each 
Layer 

Separat
ed by 

“,” 

Pre-
Traini

ng 
Learni

ng 
Rate 

Fine-
Tunin

g 
Learni

ng 
Rate 

Dropo
ut 

Proto
col 

Dropout 
Paramet

ers 

Classificat
ion 

Accuracy 

1 100,60,
40 0.1 1.5 Standa

rd 
Rate = 

0.5 0.8513 

2 40,20 0.1 1.5 Standa Rate = 0.8631 

rd 0.5 

3 40,20 0.1 15 Standa
rd 

Rate = 
0.5 0.8631 

4 20,12 0.1 1.5 Standa
rd 

Rate = 
0.6 0.8553 

5 60,40,2
0 0.1 15 Stando

ut 
𝛼 = 1,  
𝛽 = 5 0.8500 

6 40,20,1
6 0.3 1.5 Stando

ut 
𝛼 = 2,  
𝛽 = 3 0.8500 

7 40,20 0.1 1.5 Stando
ut 

𝛼 = 1,  
𝛽 = 5 0.8500 

8 20,16 0.1 0.5 Stando
ut 

𝛼 = 2,  
𝛽 = 3 0.8579 

 

Table 2. The accuracy of five selected deep learning models 
on S65 dataset. These models are trained on S388 dataset. The 
index of each model corresponds to its index in Table 1, where 
the parameters of the model can be found.  

Mode
l 

Index 

Mode
l 

Nam
e 

Accurac
y 

Precisio
n (P) 

Precisio
n (N) 

Specificit
y 

Sensitivit
y 

Correlatio
n 

Coefficien
t 

1 DBN-
1 0.877 0.857 0.879 0.981 0.462 0.571 

2 DBN-
2 0.831 0.600 0.873 0.923 0.462 0.426 

3 DBN-
3 0.846 0.800 0.850 0.981 0.308 0.433 

4 DBN-
4 0.846 0.615 0.903 0.903 0.612 0.519 

8 DBN-
8 0.862 0.750 0.877 0.962 0.462 0.515 

 
We investigated on how different values of several key 

parameters (i.e. the number of hidden layers, number of 
hidden units in each layer, pre-train learning rate, fine-tune 
learning rate, and standard or standout dropout parameters) 
influence the performance of the deep learning models. The 
results of eight sets of good parameter values tested on S388 
via 20-fold cross-validation are listed in Table 1. When 
different numbers of hidden layers are tested, 2 or 3 hidden 
layers work best. More than 3 layers of networks produce 
more complicated models with the similar accuracy. So we 
chose to use 2 or 3 layers in order to get simpler models. 
Among different numbers of hidden units tested, 12 to 100 
hidden units work reasonably well. The fine-tuning learning 
rate may vary in a wide range and most of them achieve good 
performance. When training a Deep Belief Network without 
the dropout technique, the model is extremely biased toward 
the predominant negative class due to the highly imbalanced 
distribution of the two classes in the dataset. When dropout is 
applied to our method, the model begins to perform in a much 
more balanced way as reported in [3]. Both standard dropout 
[3, 27] and adaptive dropout [4] are used in our model. The 
dropout rates of 0.5 and 0.6 for the standard dropout protocol 
work similarly well. In the standout dropout scheme, the 
highest accuracy of 85.79% is achieved with alpha=2, and 
beta=3, which is similar to the performance of the standard 
dropout protocol. As shown in Table 1, most of models using 
the standard dropout have slightly better performance than 
standout dropout ones.  

After the cross-validation on S388, top 5 models (model 
indices: 1, 2, 3, 4, and 8) are selected to train 5 models (DBN-



1, DBN-2, DBN-3, DBN-4, DBN8) on the whole S388 dataset. 
The performance of these five models on the independent test 
dataset S65 is reported in Table 2. In order to assess the 
results, a confusion matrix is calculated for each experiment, 
which contains numbers of true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN). Based on 
the confusion matrix, the overall accuracy (the percent of 
correctly classified mutations), precision on positive examples, 

precision on negative examples, specificity, sensitivity, and 
correlation coefficient are calculated as follows to gauge the 
prediction performance of the methods:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁 =
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐶𝑜𝑟𝑟.𝐶𝑜𝑒𝑓.

=
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

𝑇𝑃 + 𝐹𝑁 × 𝑇𝑃 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑁 × 𝑇𝑁 + 𝐹𝑃
 

 
(8) 

All of the 5 models have similar accuracy (i.e. percent of 
correctly classified mutations) on the test dataset that is 
comparable to the cross-validation accuracy on S388 dataset. 
This demonstrates that the models do not overfit the training 
set S388. The specificities are usually higher than the 
sensitivities because the dataset has many more negatives than 
positives. The DBN-4 model has the highest sensitivity among 
the 5 models. DBN-1 and DB-3 have the best specificity as 
well as the high precision on positive examples. So we choose 
the parameters of DBN-1, DBN-3 and DBN-4, respectively, to 
test their performance on the entire S1165 dataset through 
cross-validation. 
 

 
Figure 4. The ROC curves of three DBN models cross-validated on 
S1615. The AUC values and correlation coefficients are reported in 

the legend. 
 

Results on the S1615 Dataset 
To further investigate the performance of DBN models, 

the parameters of DBN-1, DBN-3, and DBN-4 are tested on 
the S1615 data using 20-fold cross-validation. The ROC 
curves of the three models are plotted and the Area Under the 
Curve (AUC) is calculated (Figure 4). The ROC curve is the 
receiver operating characteristic curve, which shows the 
relationship between true positive rate (sensitivity) and false 
positive rate (1 - specificity). This graphical plot can 

effectively illustrate a binary classifier's performance when the 
threshold on the false positive rate is varied.  

As shown in Figure 4, the three ROC curves are very 
close and their AUCs are almost the same. DBN-1 has the best 
ROC curve with AUC value of 0.878, while DBN-4 has the 
highest correlation coefficient of 0.640. The results show that 
the DBN models are stable and robust. 

Comparison with Other Mutation Stability Prediction 
Methods 

Table 3 reports the performance of our three DBN 
models (DBN-1, DBN-3, and DBN-4) on the S1615 dataset in 
comparison with other four popular mutation stability 
predictors: AdaBoost/C4.5, iPTREE, NeuralNet and MUpro. 
Among these methods, AdaBoost/4.5, iPTREE, and NeuralNet 
use both sequence and structural information as input, while 
the three DBN models and MUpro only use sequence 
information as input.  

Among all of the methods, AdaBoost/C4.5 has the highest 
overall accuracy (~87%). It applies AdaBoost algorithm on 
C4.5 decision tree and uses both sequence and structure 
information as input. The overall accuracy (~86%) of each 
DBN method that uses only sequence information as input is 
only slightly (~1%) lower than AdaBoost/4.5, and it is about 2% 
higher than MUpro that uses sequence information only. In 
particular, DBN’s precision on the positive examples is around 
80%, which is higher than all other methods. This makes the 
DBN methods very useful for identifying rare mutations that 
increase the stability of proteins in the real-world situation. 
Therefore, the DBN’s good performance makes it generally 
applicable to the vast majority of proteins without known 
experimental structures.  
 
Table 3. Results of three deep earning models (DBN-1, DBN-
3 and DBN-4) on S1615 dataset in comparison with 
AdaBoost/C4.5, iPTREE, NeuralNet and MUpro.  

Method 

Input 
Infor
matio

n 

Accu
racy 

Precisi
on(P) 

Precisi
on(N) 

Speci
ficity 

Sensi
tivity 

Correl
ation 
Coeffi
cient 

AdaBoo
st/C4.5 

Sequen
ce & 

Structu
re 

0.872 0.796 0.898 0.929 0.733 0.670 

Random 
Forest 

Sequen
ce & 

Structu
re 

0.862 0.771 0.894 0.919 0.713 0.650 

iPTREE 

Sequen
ce & 

Structu
re 

0.871 0.836 0.881 0.949 0.668 0.670 

NeuralN
et 

Sequen
ce & 0.810 0.710 0.830 0.910 0.520 0.490 



Structu
re 

MUpro Sequen
ce only 0.841 0.693 0.888 0.897 0.711 0.590 

DBN-3 Sequen
ce only 0.862 0.824 0.871 0.953 0.608 0.624 

DBN-1 Sequen
ce only 0.856 0.782 0.880 0.927 0.673 0.630 

DBN-4 Sequen
ce only 0.861 0.808 0.877 0.940 0.660 0.640 

 
 
Protein Stability Prediction Tool and Web Server 
 
We construct a user-friendly web server (DNpro) available at 
[38] for users to use our deep learning methods for protein 
stability prediction. Users can enter a protein sequence, 
mutated position, and mutated residue at the web page and 
then click “submit” button to get prediction results. The 
standalone DNpro package implemented in Java can also be 
downloaded at the same web site. The DNpro tool has a pre-
trained model that can be used to predict protein stability 
change upon mutation. It also has training and cross-validation 
function that allows users to train and test a deep learning 
model on any input dataset.  

 

CONCLUSION AND FUTURE WORK 
 
In this work, we present a deep learning method to predict 

the protein stability change induced by single amino acid 
mutations. On a standard benchmark dataset, the deep learning 
method that uses protein sequence as only input performs 
better than another popular method that uses sequence 
information only and similarly to the most accurate methods 
that use both sequence and structural information. The 
experiment demonstrates that deep learning is a promising 
approach to the protein mutation stability prediction problem 
and the sequence-based deep learning method can be widely 
useful for studying the mutations of the vast majority of 
proteins without known tertiary structures. In the future, we 
plan to test different classifiers (e.g. support vector machines) 
other than logistic regression on top of the deep learning 
networks to see if the prediction accuracy can be further 
improved. A larger training dataset and additional input 
features may be used with deep learning to improve the 
prediction accuracy too.  
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