

Abstract—A single amino acid mutation can have a significant
impact on the stability of protein structure. Thus, the prediction of
protein stability change induced by single site mutations is critical
and useful for studying protein function and structure. Here, we
presented a new deep learning network with the dropout technique
for predicting protein stability changes upon single amino acid
substitution. While using only protein sequence as input, the overall
prediction accuracy of the method on a standard benchmark is >85%,
which is higher than existing sequence-based methods and is
comparable to the methods that use not only protein sequence but
also tertiary structure, pH value and temperature. The results
demonstrate that deep learning is a promising technique for protein
stability prediction. The good performance of this sequence-based
method makes it a valuable tool for predicting the impact of
mutations on most proteins whose experimental structures are not
available. Both the downloadable software package and the user-
friendly web server (DNpro) that implement the method for
predicting protein stability changes induced by amino acid mutations
are freely available for the community to use.

Keywords—Bioinformatics, deep learning, protein stability
prediction, biological data mining.

INTRODUCTION
Single site amino acid mutations may have a significant

impact on the stability of the structure of a protein. Since
experimental determination of the stability change caused by
mutations on proteins is time consuming and costly,
computational prediction of the stability change induced by
single-site mutations is useful for screening a large number of
mutations for studying the structure and function of proteins.
It can be used for protein engineering, protein design,
mutagenesis analysis, and the study of the relationship
between phenotypes and genotypes.

Recently, a variety of methods based on physical
potentials [6, 7, 8, 9, 10], statistical potentials [11, 12, 13, 14,
15, 32, 36, 37], empirical potentials [16, 17, 18, 19, 20],
machine learning [1, 2, 21, 25, 26] and combined approaches
[31, 33, 34] have been developed to predict protein structure
stability upon single-site amino acid mutation. The physical
potential approaches, statistical potential approaches, and
empirical potential approaches aim to approximate either the
physical or pseudo-physical energy based on physical
principles or their statistical approximation. Machine learning
methods are data-driven knowledge-based methods that learn

a function from the data to map the input information
regarding a protein and its mutation to the energy change
without the need of approximating the physics underlying
mutation stability. This data-driven formulation of the
problem makes it possible to apply a large array of machine
learning methods to tackle the problem. Therefore, a wide
range of machine learning methods has been applied to the
same problem. E Capriotti et al., 2004 [2] presented a neural
network for predicting protein thermodynamic stability with
respect to native structure; J Cheng et al., 2006 [1] developed
MUpro, a support vector machine with radial basis kernel to
improve mutation stability prediction; iPTREE based on C4.5
decision tree revealed temperature is an important factor in
mutation stability prediction [35]; R Casadio et al., 1995 [25]
proved a radial basis function neural network can predict the
free energy changes induced by mutations; M Masso et al.,
2008 [31] combined random forest, regression tree and ada-
boost on C4.5 decision tree with statistical potential approach
to predict protein stability change. This array of machine
learning tools with reasonable prediction accuracy are widely
used by the community, which demonstrates the effectiveness
of machine learning methods for protein stability prediction.

In addition to exploring various methods to further
improve the accuracy of mutation stability prediction,
reducing the amount of information required to make accurate
prediction is also important for making the prediction methods
generally applicable to any proteins that may not have the
information required by existing methods. Many previous
machine learning methods [2, 21, 25, 26, 31, 35] need
sequence, solvent accessibility, pH value, temperature or
tertiary structure information to make good predictions, which
limits their use only to a small portion of proteins whose such
information are available. J Cheng et al., 2006 [1] introduced a
method encoding only sequence and mutation residue
information, whose accuracy is comparable to existing
methods. Following this direction, we design a new method
based on cutting-edge deep learning networks to further
improve protein stability changes upon single-site mutations
using only protein sequence information.

Deep learning [22, 23, 24, 28] is the latest development in
the field of machine learning, which has shown good
performance in many complex machine learning tasks such as
image processing, speech recognition, and protein structure
prediction. Like traditional neural networks, deep learning

DNpro: A Deep Learning Network Approach to
Predicting Protein Stability Changes Induced by

Single-Site Mutations
Xiao Zhou and Jianlin Cheng*

Computer Science Department

University of Missouri
Columbia, MO 65211, USA

*Corresponding author: chengji@missouri.edu

networks [22, 23, 24, 28] consists of multi-layer of nodes and
the nodes between adjacent layers are fully connected.
However, different from discriminative back-propagation
supervised learning in neural networks, the weights between
adjacent layers of deep learning networks can be learned
mostly by un-supervised stochastic gradient descent or
divergence-convergence algorithms in order to maximize the
likelihood of input data. Therefore, deep learning networks
can be trained on the almost unlimited amount of unlabeled
data even though the labeled data can still be used to tune the
weights of deep learning networks via back-propagation when
available. This fundamental new training scheme helps avoid
the vanishing gradient problem in traditional back-propagation
and enables deep learning to use a large number of layers of
nodes (i.e. deep networks) for complex learning tasks in
contrast to typical two-layer or three-layer architecture used
by traditional neural networks. And the deep architecture often
makes deep learning capable of gradually transforming low-
level input features into higher-level concepts from layer to
layer, which often leads to better prediction performance.

As for this protein stability prediction task, a special kind
of deep learning architecture - Deep Belief Network (DBN) [5]
is developed, which stacks a number of layers of Restricted
Boltzmann Machines [5] to predict protein stability changes
upon mutations. A logistic regression [29] is added on the top
layer of DBN, which allows the weights in the DNB that have
been pre-trained by the unsupervised convergence-divergence
algorithm to be fine-tuned by the supervised back-propagation
method [22, 23]. The Dropout technique [3, 4, 27] is also
applied in DBN to make the hidden layers more diverse to
avoid overfitting. The deep learning model is tested in a 20-
fold cross-validation on a standard protein stability
benchmark. The results demonstrate this new deep learning
method outperforms some widely used methods in protein
stability prediction on a standard benchmark.

METHOD

Protein Stability Dataset
We use the S1615 dataset [1,2] in this work, which is

widely used in the field of protein stability prediction [1, 2, 31,
35]. The mutations in the dataset were originally extracted
from ProTherm [30] mutation energy database. The dataset
has 1615 mutations obtained from 42 different proteins. PDB
code of the mutated protein, secondary structure, solvent
accessibility, original and mutated residues, temperature, pH
and energy change are available in the dataset.

The energy change associated with each mutation in the
dataset represents the change of protein stability caused by a
single-site mutation. A positive energy change indicates a
protein is more stable upon a mutation while a negative energy
change indicates a decrease in structural stability. In a binary
classification case, mutations with positive energy changes are
labeled positively as well as all the others are labeled
negatively. Dataset S1615 thus has 1168 negative data points
and 447 positive examples, i.e. about 28% mutations increase
the stability of the proteins.

Besides S1615, a redundancy-reduced subset of S1615
dataset that contains 388 unique mutations is also used to
cross validate our model and optimize parameters. S388 has
340 negative examples and 48 positive ones. We carry out a
20-fold cross validation as in the previous work [1, 2, 31] to
determine the good parameter values for the deep learning
network. To avoid overfitting the S388 dataset during training,
an independent dataset S65 is selected randomly from the
S1615 dataset excluding the mutations in S388 dataset in order
to blindly test the deep learning model trained on the S388
dataset. S65 has 52 negative examples and 13 positive
examples. S65 is not used in any way until the final
parameters and architecture of the deep learning model are
determined by 20-fold cross validation on the S388 dataset

Encoding Scheme of Input Features
In order to make our method applicable to proteins

without known tertiary structures, we only use the features
that can be derived from protein sequence alone as input.
Following the same feature extraction approach in [1], a
window centered on the mutation site is used to capture the
information regarding the mutation and its adjacent sequence
environment. Each position in the window except the mutation
site is represented by 20 binary numbers that represent 20
possible amino acids at the position. Only the number
representing the amino acid at the position is set to 1, while all
others are set to 0. For the mutation site in the window, the
number representing the original residue is set to -1 and the
number denoting the substitute residue is set to 1, while all
other 18 numbers are set to 0. The size of the window is fixed
at 7 because the previous work [1] demonstrated that the size
yielded the best performance. As a result, a vector of 140 input
features is generated for each mutation, which captures the
information of the mutated residue and its three residue
neighbors on each side.

After the encoding, the datasets consisting of both input
features and binary class labels (positive or negative) are used
to train and test our deep learning method - the Deep Belief
Network (DBN) [22, 23] – for classifying mutations via 20-
fold cross-validation and independent testing.

Restricted Boltzmann Machine (RBM) and Deep Belief
Network (DBN) for Protein Stability Prediction

Figure 1. A Restricted Boltzmann Machine (RBM) model is
comprised of a visible layer of nodes, a hidden layer of nodes,
and the weighted connections between the nodes in two layers.
The strength of each connection is quantified by an adjustable
weight associated with it. As a simple example, in this model,
there are 3 hidden units in the hidden layer and 4 visible units
in the visible layer.

A Deep Belief Network (DBN) stacks several layers of

Restricted Boltzmann Machines (RBMs) (Figure 1) [22]
together to map input to output step by step. An RBM model
is composed of one visible layer of nodes representing input
features and one hidden layer of nodes representing hidden /
latent variables. The nodes in the two layers are fully
connected and the strength of connection between two nodes
(vi in the visible layer and hj in the hidden layer) is measured
by weights (𝜔!") of the connection between them. The
probability of activating a visible or hidden unit is defined as:

 𝑝 𝑣! = 1 ℎ = 𝜎 𝑎! + ℎ!! 𝜔!"
(1)

 𝑝 ℎ! = 1 𝑣 = 𝜎 𝑏! + 𝑣!! 𝜔!"
(2)

Here, vi denotes the ith unit in the visible layer and hj the

jth unit in hidden layer. 𝜔!" is the weight of the connection
between them , 𝑎! and 𝑏! are bias for the two nodes
respectively. 𝜎 𝑥 is a sigmoid function as follows:

 𝜎 𝑥 = 1 1 + 𝑒 !!

(3)

The energy of a joint configuration of all the nodes of an

RBM is given by:

 𝐸 𝑣, ℎ = − 𝑎!!∈! 𝑣! − 𝑏!!∈! ℎ! − 𝑣!!∈!,!∈! ℎ!𝜔!"
(4)

Thus, the probability of a joint configuration of the visible

and hidden nodes is defined as:

 𝑝 𝑣, ℎ = 𝑒!! !,! 𝑍

(5)

Here Z is the normalization constant – the sum of the

probabilities of all joint configurations:

 𝑍 = 𝑒!! !,!

!,!
(6)

The objective of training an RBM is to adjust its weights

such that the probability of the visible layer p(v) (i.e. the
likelihood of the data) is maximized. p(v) is simply calculated
as the sum of the probabilities of all possible joint
configurations over all hidden units:

 𝑝 𝑣 = !

!
𝑒!! !,!

!
(7)

One of the most popular un-supervised methods to train

RBMs is Contrastive Divergence (CD) [5] algorithm that
adjusts weight 𝜔!" by the difference between the current
setting (vihj

(t)) at time t and the next setting (vihj
(t+1)) at time

t+1.

Figure 2. A Deep Belief Network (DBN) consisting of
multiple RBMs with a logistic regression classifier on top of
it. The output of each lower layer is used as the input for the
next layer.

The same unsupervised CD algorithm can be used to pre-
train all the layers of a DBN consisting of multiple RBNs step
by step (see Figure 2 for a DBN example). It iteratively trains
every two adjacent layers as an RBM from bottom up while
using the output of the lower layer as the visible input of the
immediate upper layer. The input of the first layer is set as the
original input data. Before pre-training, the weights and bias
are initialized either randomly or to 0.

The unsupervised learning described above can map input
features into high-level hidden features represented by the
nodes in the higher layer. In order to make a DBN to classify
data into different categories, a classifier needs to be added at
the top of a DBN (Figure 2). In this work, a logistic
regression is added at the top of DBN because it is easy to
train. The weights between the logistic regression node and
the hidden layers can be trained by the standard back-
propagation algorithm - gradient descent with respect to the
difference between the output of the DBN and the real labels
of the data (i.e. classification error). Furthermore, the
classification error is back propagated from the logistic
regression node all the way down to the visible layer in order
to fine tune all weights in the DBN in a supervised fashion.
Although this hybrid training protocol of combining both
unsupervised and supervised learning above works well in
most situations, it still may be susceptible to the classic
problem of overfitting data in machine learning. To reduce
overfitting, we apply the dropout [3] training technique to
train the deep learning network (Figure 3). During training,
dropout randomly sets some units to 0 to temporarily drop
them out of the deep network. When a unit is dropped out, all
the connections associated with the unit are removed.
Therefore, in each iteration of training, there is a different
combination of active units. In addition to reducing
overfitting, dropout also helps prevent units from co-adapting.

Figure 3. The dropout training protocol. Dropout
stochastically sets some nodes (units) to 0 to disable them at a
constant [3] or adaptive [4] rate in each epoch of training and
fine-tuning. When a unit is dropped out, all the weights related
to it will not be updated in this epoch.

The standard dropout approach sets the dropout rate to
0.5, which has been proved optimal for a wide range of
networks and tasks. In this work, the dropout rate is applied to
all layers except the input layer. In addition to the standard
dropout approach, we test the adaptive dropout method.
Instead of using a constant 0.5 dropout rate, the adaptive
dropout (also called standout) regularizes its hidden units by
selectively setting activities to 0 according to an adaptive rate
determined by two user-defined parameters: 𝛼 and 𝛽 [4].

RESULTS

Parameter Estimation and Model Selection
A deep learning model has a number of parameters to

determine, such as the number of hidden layers, the number of
hidden nodes in each hidden layer, learning rates, and dropout
rates. Choosing an appropriate deep learning model for a
specific task is vital. Here, two datasets S388 and S65 are used
for selecting models. We conduct a 20-fold cross-validation on
the S388 dataset to test different sets of parameter values. The
parameters that work well in the cross-validation are used to
train deep learning models on whole S388 dataset, which are
then tested on the independent test dataset S65.

Table 1. Eight sets of good parameters tested on S388 dataset
according to 20-fold cross-validation. The first column lists
the index of each parameter set, columns 2-6 the parameters
(the number of hidden units in each hidden layer, learning rate
in pre-training phase, learning rate in fine-tuning phase,
dropout protocol, parameters of dropout protocol), and the last
column the overall classification accuracy – the percent of
correctly classified mutations among all the mutations.

Index
of

Parame
ter Set

of
Hidden
Units

in each
Layer

Separat
ed by

“,”

Pre-
Traini

ng
Learni

ng
Rate

Fine-
Tunin

g
Learni

ng
Rate

Dropo
ut

Proto
col

Dropout
Paramet

ers

Classificat
ion

Accuracy

1 100,60,
40 0.1 1.5 Standa

rd
Rate =

0.5 0.8513

2 40,20 0.1 1.5 Standa Rate = 0.8631

rd 0.5

3 40,20 0.1 15 Standa
rd

Rate =
0.5 0.8631

4 20,12 0.1 1.5 Standa
rd

Rate =
0.6 0.8553

5 60,40,2
0 0.1 15 Stando

ut
𝛼 = 1,
𝛽 = 5 0.8500

6 40,20,1
6 0.3 1.5 Stando

ut
𝛼 = 2,
𝛽 = 3 0.8500

7 40,20 0.1 1.5 Stando
ut

𝛼 = 1,
𝛽 = 5 0.8500

8 20,16 0.1 0.5 Stando
ut

𝛼 = 2,
𝛽 = 3 0.8579

Table 2. The accuracy of five selected deep learning models
on S65 dataset. These models are trained on S388 dataset. The
index of each model corresponds to its index in Table 1, where
the parameters of the model can be found.

Mode
l

Index

Mode
l

Nam
e

Accurac
y

Precisio
n (P)

Precisio
n (N)

Specificit
y

Sensitivit
y

Correlatio
n

Coefficien
t

1 DBN-
1 0.877 0.857 0.879 0.981 0.462 0.571

2 DBN-
2 0.831 0.600 0.873 0.923 0.462 0.426

3 DBN-
3 0.846 0.800 0.850 0.981 0.308 0.433

4 DBN-
4 0.846 0.615 0.903 0.903 0.612 0.519

8 DBN-
8 0.862 0.750 0.877 0.962 0.462 0.515

We investigated on how different values of several key

parameters (i.e. the number of hidden layers, number of
hidden units in each layer, pre-train learning rate, fine-tune
learning rate, and standard or standout dropout parameters)
influence the performance of the deep learning models. The
results of eight sets of good parameter values tested on S388
via 20-fold cross-validation are listed in Table 1. When
different numbers of hidden layers are tested, 2 or 3 hidden
layers work best. More than 3 layers of networks produce
more complicated models with the similar accuracy. So we
chose to use 2 or 3 layers in order to get simpler models.
Among different numbers of hidden units tested, 12 to 100
hidden units work reasonably well. The fine-tuning learning
rate may vary in a wide range and most of them achieve good
performance. When training a Deep Belief Network without
the dropout technique, the model is extremely biased toward
the predominant negative class due to the highly imbalanced
distribution of the two classes in the dataset. When dropout is
applied to our method, the model begins to perform in a much
more balanced way as reported in [3]. Both standard dropout
[3, 27] and adaptive dropout [4] are used in our model. The
dropout rates of 0.5 and 0.6 for the standard dropout protocol
work similarly well. In the standout dropout scheme, the
highest accuracy of 85.79% is achieved with alpha=2, and
beta=3, which is similar to the performance of the standard
dropout protocol. As shown in Table 1, most of models using
the standard dropout have slightly better performance than
standout dropout ones.

After the cross-validation on S388, top 5 models (model
indices: 1, 2, 3, 4, and 8) are selected to train 5 models (DBN-

1, DBN-2, DBN-3, DBN-4, DBN8) on the whole S388 dataset.
The performance of these five models on the independent test
dataset S65 is reported in Table 2. In order to assess the
results, a confusion matrix is calculated for each experiment,
which contains numbers of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). Based on
the confusion matrix, the overall accuracy (the percent of
correctly classified mutations), precision on positive examples,

precision on negative examples, specificity, sensitivity, and
correlation coefficient are calculated as follows to gauge the
prediction performance of the methods:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑁 =
𝑇𝑁

𝐹𝑁 + 𝑇𝑁

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐶𝑜𝑟𝑟.𝐶𝑜𝑒𝑓.

=
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

𝑇𝑃 + 𝐹𝑁 × 𝑇𝑃 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑁 × 𝑇𝑁 + 𝐹𝑃

(8)

All of the 5 models have similar accuracy (i.e. percent of
correctly classified mutations) on the test dataset that is
comparable to the cross-validation accuracy on S388 dataset.
This demonstrates that the models do not overfit the training
set S388. The specificities are usually higher than the
sensitivities because the dataset has many more negatives than
positives. The DBN-4 model has the highest sensitivity among
the 5 models. DBN-1 and DB-3 have the best specificity as
well as the high precision on positive examples. So we choose
the parameters of DBN-1, DBN-3 and DBN-4, respectively, to
test their performance on the entire S1165 dataset through
cross-validation.

Figure 4. The ROC curves of three DBN models cross-validated on
S1615. The AUC values and correlation coefficients are reported in

the legend.

Results on the S1615 Dataset
To further investigate the performance of DBN models,

the parameters of DBN-1, DBN-3, and DBN-4 are tested on
the S1615 data using 20-fold cross-validation. The ROC
curves of the three models are plotted and the Area Under the
Curve (AUC) is calculated (Figure 4). The ROC curve is the
receiver operating characteristic curve, which shows the
relationship between true positive rate (sensitivity) and false
positive rate (1 - specificity). This graphical plot can

effectively illustrate a binary classifier's performance when the
threshold on the false positive rate is varied.

As shown in Figure 4, the three ROC curves are very
close and their AUCs are almost the same. DBN-1 has the best
ROC curve with AUC value of 0.878, while DBN-4 has the
highest correlation coefficient of 0.640. The results show that
the DBN models are stable and robust.

Comparison with Other Mutation Stability Prediction
Methods

Table 3 reports the performance of our three DBN
models (DBN-1, DBN-3, and DBN-4) on the S1615 dataset in
comparison with other four popular mutation stability
predictors: AdaBoost/C4.5, iPTREE, NeuralNet and MUpro.
Among these methods, AdaBoost/4.5, iPTREE, and NeuralNet
use both sequence and structural information as input, while
the three DBN models and MUpro only use sequence
information as input.

Among all of the methods, AdaBoost/C4.5 has the highest
overall accuracy (~87%). It applies AdaBoost algorithm on
C4.5 decision tree and uses both sequence and structure
information as input. The overall accuracy (~86%) of each
DBN method that uses only sequence information as input is
only slightly (~1%) lower than AdaBoost/4.5, and it is about 2%
higher than MUpro that uses sequence information only. In
particular, DBN’s precision on the positive examples is around
80%, which is higher than all other methods. This makes the
DBN methods very useful for identifying rare mutations that
increase the stability of proteins in the real-world situation.
Therefore, the DBN’s good performance makes it generally
applicable to the vast majority of proteins without known
experimental structures.

Table 3. Results of three deep earning models (DBN-1, DBN-
3 and DBN-4) on S1615 dataset in comparison with
AdaBoost/C4.5, iPTREE, NeuralNet and MUpro.

Method

Input
Infor
matio

n

Accu
racy

Precisi
on(P)

Precisi
on(N)

Speci
ficity

Sensi
tivity

Correl
ation
Coeffi
cient

AdaBoo
st/C4.5

Sequen
ce &

Structu
re

0.872 0.796 0.898 0.929 0.733 0.670

Random
Forest

Sequen
ce &

Structu
re

0.862 0.771 0.894 0.919 0.713 0.650

iPTREE

Sequen
ce &

Structu
re

0.871 0.836 0.881 0.949 0.668 0.670

NeuralN
et

Sequen
ce & 0.810 0.710 0.830 0.910 0.520 0.490

Structu
re

MUpro Sequen
ce only 0.841 0.693 0.888 0.897 0.711 0.590

DBN-3 Sequen
ce only 0.862 0.824 0.871 0.953 0.608 0.624

DBN-1 Sequen
ce only 0.856 0.782 0.880 0.927 0.673 0.630

DBN-4 Sequen
ce only 0.861 0.808 0.877 0.940 0.660 0.640

Protein Stability Prediction Tool and Web Server

We construct a user-friendly web server (DNpro) available at
[38] for users to use our deep learning methods for protein
stability prediction. Users can enter a protein sequence,
mutated position, and mutated residue at the web page and
then click “submit” button to get prediction results. The
standalone DNpro package implemented in Java can also be
downloaded at the same web site. The DNpro tool has a pre-
trained model that can be used to predict protein stability
change upon mutation. It also has training and cross-validation
function that allows users to train and test a deep learning
model on any input dataset.

CONCLUSION AND FUTURE WORK

In this work, we present a deep learning method to predict

the protein stability change induced by single amino acid
mutations. On a standard benchmark dataset, the deep learning
method that uses protein sequence as only input performs
better than another popular method that uses sequence
information only and similarly to the most accurate methods
that use both sequence and structural information. The
experiment demonstrates that deep learning is a promising
approach to the protein mutation stability prediction problem
and the sequence-based deep learning method can be widely
useful for studying the mutations of the vast majority of
proteins without known tertiary structures. In the future, we
plan to test different classifiers (e.g. support vector machines)
other than logistic regression on top of the deep learning
networks to see if the prediction accuracy can be further
improved. A larger training dataset and additional input
features may be used with deep learning to improve the
prediction accuracy too.

REFERENCES
[1] J Cheng, A Randall, and P Baldi. Prediction of Protein Stability Changes
for Single-Site Mutations Using Support Vector Machine. PROTEINS:
Structure, Function, and Bioinformatics 2006;62:1125-1132.
[2] E Capriotti, P Fariselli, and R Casadio. A neural-network-based method
for prediction protein stability changes upon singe point mutations. Vol. 20
Suppl. 1 2004, p i63-i68, DOI: 10.1093/bioinformatics/bth928.
[3] N Srivastava, G Hinton, and A Krizhevsky. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Journal of Machine Learning
Reasearch 15 2014;1929-1958.
[4] L.J. Ba, and B Frey. Adaptive dropout for training deep neural networks.
Advances in Neural Information Processing System 26, 2013.
[5] G Hinton. A Practical Guide to Training Restricted Boltzmann
Machines. Momentum, 2010.
[6] PA Bash, UC Singh, R Langridge, PA Kollman. Free-energy
calculations by computer simulations. Science 1987;256:564-568.

[7] M Prevost, SJ Wodak, B Tidor, M Karplus. Contribution of the
hydrophobic effect to protein stability: analysis based on simulations of the
ile-96-ala mutation in barnsase. Proceeding of the National Academy of
Sciences, USA 1991;88:10880-10884.
[8] B Tidor, M Karplus. Simulation analysis of the stability mutant r96h of
t4 lysozyme. Biochemistry 1991;30:3217–3228.
[9] C Lee, M Levitt. Accurate prediction of the stability and activity effects
of site-directed mutagenesis on a protein core. Nature 1991;352:448–451.
[10] C Lee. Testing homology modeling on mutant proteins: predicting
structural and thermodynamic effects in the ala98-val mutants of t4 lysozyme.
Folding and Design 1995;1:1–12.
[11] D Gillis, M Rooman. Predicting protein stability changes upon mutation
using database-derived potentials: solvent accessibility determines the
importance of local versus non-local interactions along the sequence. Journal
of Molecular Biology 1997;272:276–290.
[12] MJ Sippl. Knowledge-based potentials for proteins. Current Opinion in
Structural Biology 1995;5:229–235.
[13] D Gillis, M Rooman. Prediction of stability changes upon single-site
mutations using database-derived potentials. Theoretical Chemistry Accounts
1999;101:46–50.
[14] H Zhou, Y Zhou. Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure selection and
stability prediction. Protein Science 2002;11:2714–2726.
[15] H Zhou, Y Zhou. Quantifying the effect of burial of amino acid residues
on protein stability. Proteins 2004;54:315–322.
[16] R Guerois, JE Nielsen, L Serrano. Predicting changes in the stability of
proteins and protein complexes: a study of more than 1000 mutations. Journal
of Molecular Biology 2002;320:369–387.
[17] V Villegas, AR Viguera, FX Aviles, L Serrano. Stabilization of proteins
by rational design of alpha-helix stability using helix/coil transition theory.
Folding and Design 1996;1:29–34.28.
[18] V Munoz, L Serrano. Development of the multiple sequence
approximation within the AGADIR model of alpha-helix formation:
comparison with zimm-bragg and lifson-roig formalisms. Biopolymers
1997;41:495–509.
[19] H Domingues, J Peters, KH Schneider, H Apeler, W Sebald, H
Oschkinat, L Serrano. Improving the refolding yield of interleukin-4 through
the optimization of local interactions. Journal of Biotechnology 2000;84:217–
230.
[20] AJ Bordner, RA Abagyan. Large-scale prediction of protein geometry
and stability changes for arbitrary single point mutations. Proteins
2004;57:400–413.
[21] E Capriotti, P Fariselli, and R Casadio. I-Mutant2.0: predicting stability
changes upon mutation from the protein sequence or structure. Nucleic Acids
Research, 2005
[22] G Hinton, S Osindero, Y Teh. A fast learning algorithm for deep belief
nets. Neural computation 2006.
[23] Y Bengio, P Lamblin, and D Popovici. Greedy Layer-Wise Training of
Deep Networks. Advances in neural information processing systems,
2007;19:153.
[24] G Hinton, and R Salakhutdinov. Reducing the Dimensionality of Data
with Neural Networks. Science, 2006;313(5786):504-507.
[25] R Casadio, M Compiani, P Fariselli, F Viarelli. Predicting free energy
contributions to the conformational stability of folded proteins from the
residue sequence with radial basis function networks. Proceedings of
International Conference on Intelligent Systems for Molecular Biology,
volume 3, p 81–88.1995.
[26] C Frenz. Neural network-based prediction of mutation-induced protein
stability changes in staphylococcal nuclease at 20 residue positions. Proteins
2005;59:147–151.
[27] N Srivastava. Improving Neural Networks with Dropout. 2013.
[28] H Lee, R Grosse, and R Ranganath. Convolutional Deep Belief
Networks for Scalable Unsupervised Learning of Hierarchical
Representations. Proceedings of the 26th Annual International Conference on
Machine Learning, p609-616, 2009
[29] DW Hosmer Jr, S Lemeshow. Applied logistic regression. 2004.
[30] M Gromiha, J An, H Kono, M Oobatake, H Uedaira, P Prabakaran, A
Sarai. Protherm, version 2.0: thermodynamic database for proteins and
mutants. Nucleic Acids Res 2000;28:283–285.
[31] M Masso, L Vaisman. Accurate prediction of stability changes in protein
mutants by combining machine learning with structure based computational
mutagenesis. Bioinformatics(2008) 24(18): 2002-2009.
[32] C Worth, R Preissner, T Blundell. SDM- a server for predicting effects of
mutations on protein stability and malfunction. Nucleic Acids Research, 2011.

[33] Y Dehouck, J Kwasigroch, D Gilis, M Rooman. PoPMusic 2.1: a web
server for the estimation of protein stability changes upon mutation and
sequence optimality. BMC Bioinformatics 2011, 12:151.
[34] Y Dehouck, A Grosfils, B Folch. Fast and accurate predictions of protein
stability changes upon mutations using statistical potentials and neural
networks: PoPMuSiC-2.0. Bioinformatics (2009) 25 (19): 2537-2543.
[35] L Huang, M Gromiha, S Hwang, S Ho. Knowledge acquisition and
development of accurate rules for predicting protein stability changes.
Computational Biology and Chemistry 30 (2006) 408-415.
[36] V Parthiban, MM Gromiha, D Schomburg. CUPSAT: prediction of
protein stability upon point mutations. Nucleic Acids Res 2006.
[37] C Deutsch, B Krishnamoorthy. Four-body scoring function for
mutagenesis. Bioinformatics 2007.
[38] http://sysbio.rnet.missouri.edu/dnpros/

